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VANISHING THEOREM FOR $2$-TORSION INSTANTON
INVARIANTS

By

Hajime ONO

Abstract. For any closed, oriented, simply connected spin 4-
manifold $X$ with $b_{X}^{+}>1$ and even, by Fintushel and Stem [7],
differential-topological polynomial invariants with its values in $Z_{2}$

are defined. These invariants are analogues of Donaldson polynomial
invariants. In [7], it is proved that if $X=X^{\prime}\# S^{2}\times S^{2}$ , then these
invariants do not always vanish. But in this paper, it is proved that
these invariants vanish for a large class of connected sums.

1. Introduction

For any smooth oriented closed simply connected 4-manifold $X$ with $b_{X}^{+}$

greater than one and odd, in [4] Donaldson polynomial invariants are defined,
where $b_{X}^{+}$ is the dimension of the maximal positive subspace for the inter-
section form on $H_{2}(X)$ . They are evaluations of certain elements of the rational
cohomology of the space $\mathfrak{B}_{X,l}^{*}$ of equivalence classes of irreducible connections in
a $SU(2)$ -bundle over $X$ of charge 1 on a homology class represented by the
moduli space of anti-self-dual connections. In the case when $b_{X}^{+}$ is even, analogues
of these invariants are defined by using the cohomology $H^{*}(\mathfrak{B}_{X,l}^{*};R)$ for some
coefficient ring $R$ ([5]). In particular, in [7], torsion invariants are defined when
$R=Z_{2}$ , and some properties of these are proved. The main properties, which
are in contrast with the vanishing theorem for the Donaldson polynomials
for connected sums, are that the torsion invariants do not always vanish for
$X\# S^{2}\times S^{2}$ , where $X$ is spin with $b_{X}^{+}>1$ odd. But in this article, it is proved that
the torsion invariants vanish for large class of connected sums.

Let $\mathscr{M}_{X,l}$ be the moduli space of anti-self-dual $SU(2)$ connections of charge $l$ .
In case $b_{X}^{+}>1$ is even, for a generic metric, the moduli space $\mathscr{M}_{X,l}$ is the smooth
manifold and we have $\dim \mathscr{M}_{X,/}=8l-3(1+b_{X}^{+})=2d+1$ . So if there is a non-
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trivial l-dimensional cohomology class $u$ in $\mathfrak{B}_{X,/}^{*}$ , then, for homology classes
$z_{1},$

$\ldots,$
$z_{d}\in H_{2}(X;Z)$ , similar polynomial invariants can be defined by evaluating

the class $\mu(z_{1})\cup\cdots\cup\mu(z_{d})\cup u$ on the fundamental class of $\mathscr{M}_{X,l}$ , where $\mu(z_{j})\in$

$H^{2}(\mathfrak{B}_{X,l}^{*};Q)$ (for the definition of homomorphism $\mu$ , see [6]). In the case $l$ is even
and $X$ is spin, there is a non-trivial class $u_{1}\in H^{1}(\mathfrak{B}_{X,/}^{*};Z_{2})$ . Thus in this case, for
large enough 1, there is a polynomial invariant $ql,u_{1},X$ of degree $d$ in $H_{2}(X;Z)$

with values in $Z_{2}$ . Like as Donaldson invariants, $ql,u_{1},X$ is an invariant of the
smooth stmcture of X. (See section 2 for a more complete description.)

Our main theorem, whose proof will be given in section 3, is

THEOREM 1.1. Let $X_{1},$ $X_{2}$ be closed simply connected spin 4-manifolds with
$b_{X_{i}}^{+}>1$ and with $b_{X_{1}}^{+}+b_{X_{2}}^{+}$ even. Suppose that $l_{j}>3(1+b_{X_{j}}^{+})/4$ and $l_{1}+l_{2}$ even. If
we set $d_{i}=4l_{i}-3(1+b_{X_{j}}^{+})/2$ , for $r\neq 0,$ $d_{1}+d_{2}+1$

$ql_{1+l_{2},u_{1},X_{1}\# x_{2}()=0}z_{1},$$\ldots,$
$z_{r},$ $w_{1},$

$\ldots,$ $w_{d_{1}+d_{2}+1-r}$ ,

where $z_{1},$
$\ldots,$

$z_{r}\in H_{2}(X_{1} ; Z)$ and $w_{1},$
$\ldots,$

$w_{d_{1}+d_{2}+1-r}\in H_{2}(X_{2}; Z)$ .

In [7], Fintushel and Stem considered the torsion invariants of the connected
sums $X\# S^{2}\times S^{2}$ , in the case when $X$ is closed simply connected oriented spin
4-manifold with $b_{X}^{+}$ odd. One of the main theorems in that article is the
“nonvanishing” theorem.

THEOREM 1.2 (Fintushel-Stern [7]). Let $X$ be a closed simply connected spin

4-manifold with $b_{X}^{+}>1$ and odd. Suppose 1 is odd and in stable range (i.e.
$l>3(1+b_{X}^{+})/4)$ .

Then $q_{l+1,u_{1},X\# S^{2}\times S^{2}}$ is defined andfor any classes $z_{1},$
$\ldots,$

$z_{d}\in H_{2}(X;Z)$ andfor
$x=[S^{2}\times\{point\}]$ and $y=[\{point\}\times S^{2}]$ in $H_{2}(S^{2}\times S^{2}; Z)$ we have

$qf\chi(z_{1}, \ldots, z_{d})\equiv q_{l+1,u_{1},X\# S^{2}\times S^{2}}(z_{1}, \ldots, z_{d}, x, y)$ $mod 2$

Here $q\tau,x$ in the left-hand side is $the_{\backslash }$ ordinary Donaldson polynomial and we set
$2d=8l-3(1+b_{X}^{+})$ .

Note that $b_{S^{2}\times S^{2}}^{+}=1$ . Thus, in general, Theorem 1.1 dose not hold in the
case when one of the $X_{j}$ has $b_{X_{j}}^{+}=1$ .

2. Torsion invariants

Let $X$ be a closed, oriented, simply connected smooth 4-manifold, and $P$ be
a $SU(2)$ -bundle over $X$ with the second Chem class $c_{2}(P)=l\geq 0$ . We write
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$\mathscr{A}=\mathscr{A}(P)$ for the space of connections on $P$ and $\mathscr{G}=\mathscr{G}(P)$ for the group of
gauge transformations on $P$ . The gauge group $\mathscr{G}$ acts on $\mathscr{A}$ by pullback and its
quotient $\mathscr{A}/\mathscr{G}$ is denoted by $\mathfrak{B}(P)=\mathfrak{B}_{X,/}$ . Denote by $\mathfrak{B}_{X,l}^{*}\subset \mathfrak{B}_{X,l}$ the subset of
irreducible connections. The moduli space of equivalence classes of anti-self-dual
connections on $P$ is denoted by $\mathscr{M}_{X,l}$ , i.e.

$\mathscr{M}_{X,l}(g)=\{A\in \mathscr{A}|*_{g}F_{A}=-F_{A}\}/\mathscr{G}$ ,

where $F_{A}$ is the curvature of $A,$ $g$ is a Riemaniann metric on $X$, and $*_{g}$ is
the Hodge star operator induced from $g$ . The transversality argument and the
Atiyah-Singer index theorem show that the moduli space is, if non-empty, an
$8l-3(1+b_{X}^{+})$ dimensional smooth manifold for a generic metric, when $b_{X}^{+}>0$

and $1>0$ .
To define torsion invariants of $X$ with $b_{X}^{+}>1$ and even, we need a non-trivial

torsion class $u_{1}\in H^{1}(\mathfrak{B}_{X,l}^{*};Z_{2})$ . But it is proved in [10] (see also [7], [2]) that

$\pi_{1}(\mathfrak{B}_{X,k}^{*})\simeq\{_{0}^{Z_{2}}$
’

$(otherwise)$

($Xisspina$nd $k$ is even)

So we can define the class $u_{1}$ as a generator of $H^{1}(\mathfrak{B}_{X,l}^{*};Z_{2})$ . This class is
identified with the first Stiefel-Whitney class of a (real) determinant line bundle of
a family of (real) twisted Dirac operators parametrized by $\mathfrak{B}_{X,l}^{*}$ ([3], [7], [2]). Here
suppose $b_{X}^{+}$ is greater than one and even. The moduli space of anti-self-dual
connections on the $SU(2)$ bundle over $X$ with the second Chem class $c_{2}=k$

has formal dimension $8k-3(1+b_{X}^{+})=2d+1$ . Let homology classes $z_{1},$
$\ldots,$

$ z_{d}\in$

$H_{2}(X;Z)$ be represented by generic embedded surfaces $\Sigma_{1},$

$\ldots,$
$\Sigma_{d}\subset M$ , and

$V_{\Sigma_{1}},$

$\ldots,$
$V_{\Sigma_{d}}\subset \mathfrak{B}_{X,k}^{*}$ be codimension 2 geometric representatives associated

with $\mu(\Sigma_{I})$ , where the $\mu$-map $\mu$ : $H_{2}(X, Z)\rightarrow H^{2}(\mathfrak{B}_{X,k}^{*};Z)$ defined in [3]. By the
usual dimension counting argument as in the case of Donaldson invariants, if
$k>(3(1+b_{X}^{+})+1)/4$ (which is “stable range” condition), then the intersection

$J=\mathscr{M}_{X,k}\cap V_{\Sigma_{1}}\cap\cdots\cap V_{\Sigma_{d}}$

is a l-dimensional compact manifold (for generic metrics on $X$ ).

DEFINITION 2.1.

$ qk,u_{1)}x(\Sigma_{\mathfrak{l}}, \ldots, \Sigma_{d})=\langle V_{\Sigma_{1}}\cap\cdots\cap V_{\Sigma_{d}}\cap \mathscr{M}_{X,k}, u_{1}\rangle$ .

As the Donaldson invariants, next conditions hold.
(i) $qk_{\mathcal{U}_{1}},x(\Sigma_{1}, \ldots, \Sigma_{d})$ depends on $\Sigma_{j}$ only through its homology class

$[\Sigma_{j}]\in H_{2}(X;Z)$ ,
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(ii) $qk.u_{1}.X(\Sigma_{1}, \ldots, \Sigma_{t}l)$ is multilinear and symmetric in $[\Sigma_{1}],$

$\ldots,$
$[\Sigma_{d}]$ ,

(iii) $q_{k.\iota l_{1}}x$ is natural with respect to orientation preserving diffeomorphism.
Condition (iii) contains the assertion that $qk.u_{1}.X$ is independent of the choice of
generic metric and is an invariant of the oriented diffeomorphism type of $X$.

3. The proof of Theorem 1.1

Now, we prove Theorem 1.1, which is some version of vanishing theorem.

PROOF OF THEOREM 1.1. We only prove the case when both $b_{X_{1}}^{+}$ and $b_{X}^{+_{\underline{\gamma}}}$

are odd. (If both $b_{X_{1}}^{+}$ and $b_{X_{2}}^{+}$ are even, it can be proved by exactly the same
argument.) First, we must see that $q/1+/2\cdot\iota l_{1}.X_{1}\#\chi_{\underline{\gamma}}$ is well-defined. Since $b_{X_{1}\# X_{\underline{2}}}^{+}=$

$b_{X_{|}}^{+}+b_{X}^{+_{\underline{\gamma}}}>1$ and $l_{j}>3(1+b_{X}^{+})/4$ , we have $l_{1}+l_{2}>(3(1+b_{X_{1}}^{+}+b_{X}^{+_{\underline{\gamma}}})+3)/4>$

$3(1+b_{X_{1}tX_{\underline{7}}}^{+})/4+1/4$ , so $l_{1}+l_{2}$ is in the stable range to $X_{1}\# X_{2}$ . On the other
hand, the dimension of the moduli space $\mathscr{M}_{X_{1}:X_{\underline{1}}.l_{1}+/_{-}}$, equals to $8(l_{1}+l_{2})-$

$3(1+b_{X_{1}tX_{2}})=2(d_{1}+d_{2})+3=2(d_{1}+d_{2}+1)+1$ . So $q/|+/2^{ll|}\cdot X_{1}.X_{2}$ is well-defined
and in $Sym_{Z^{1_{\underline{\gamma}}}}^{d+d_{\underline{7}}+1}(H_{2}(X_{1}\# X_{2}; Z))$ .

Now, suppose first that $0<r<d_{1}+2$ . Let $X=X_{1}\# X_{2}$ . We will consider a
sequence of metrics $\{g_{\iota},\}$ on $X$, as $v\rightarrow 0$ , whose limit is the one point union
$(X_{1}\vee X_{2}, g_{X_{1}}\vee g_{X_{2}})$ where $g_{X_{1}}$ and $g_{X_{\underline{7}}}$ are generic.

For each $v$ , we may assume that $J_{X}(v)=.\mathscr{M}_{X./+l_{2}}1(g_{\mathfrak{l}},)\cap V_{1}\cap\cdots\cap V_{d_{1}+d_{2}+1}$ is
non-empty, where the $V_{i}\prime s$ are the codimension 2 submanifolds in $\mathfrak{B}_{X./|+/2}^{*}\cup\{[\theta]\}$

( $[\theta]$ is the gauge equivalence class of the trivial connection on $X$ ) corresponding
to generic embedded surfaces representing the homology classes –j and $w_{j}$ . Then
we take a sequence $\{[A_{v}]\}$ , where $[A_{\iota},]\in J_{X}(v)$ . By Uhlenbeck’s theorem on
compactness and removability of singularities, there is a subsequence of $\{[A_{v}]\}$ ,
which has a weak limit $([A_{1}], [A_{2}];(x_{1}, \ldots, x_{\rho}, y_{1}, \ldots, y_{\sigma}))$ as $v\rightarrow 0$ , here,
$[A_{1}]\in \mathscr{M}_{X_{1}.m}(g_{X_{1}}),$ $[A_{2}]\in.\mathscr{M}_{X_{2},n}(g_{X_{2}})$ , and $x_{j}\in X_{1},$ $y_{j}\in X_{2}$ are the bubble points.
Note that by counting charges $m+n+\rho+\sigma\leq l_{1}+l_{2}$ .

LEMMA 3.1. For the sequence $\{[A_{v}]\}([A_{v}]\in J_{X}(v))$ , if $v$ converges to $0$ , we
have only the weak limits of the following form,

$([\Theta], [A_{2}];(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{\sigma}))$ ,

where $\Theta$ is a trivial connection on $X_{1}$ , and $[A_{2}]\in.\mathscr{M}_{X_{2}.n}(g_{X_{2}})$ for $n\neq 0$ .

$PR\infty F$ . As the same way in [7], we can prove this lemma by using counting
argument as follows.
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Let $([A_{1}], [A_{2}];(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{\sigma}))$ be the weak limit of the sequence
$\{[A_{v}]\}$ .

If both $m$ and $n$ are greater than $0$ , it means that both $[A_{1}]$ and $[A_{2}]$ are not
trivial connections, $[A_{1}]$ must lie on at least $ r-2\rho$ of $V_{1},$

$\ldots$ , $V_{r}$ , when we choose
the surfaces, which represent the homology classes $z_{l}$ and $w_{j}$ , in general position.
Hence we have a inequality $8m-3(1+b_{X_{1}}^{+})=2d_{1}-8(l_{1}-m)\geq 2(r-2\rho)$ . Simi-
larly, by the condition of $[A_{2}]$ , we deduce $2d_{2}-8(l_{2}-n)\geq 2(d_{1}+d_{2}+1-r-2\sigma)$ .
Conbining these inequalities, we have $8m+8n+4\rho+4\sigma\geq 8(l_{1}+l_{2})+2$ . Since
$\rho\geq 0$ and $\sigma\geq 0$ , this inequality contradicts the charge count.

If $m$ is greater than $0$ and $n$ equals to $0$ , for $[A_{1}]$ , we have the same inequality
as above. On the other hand, in this case, $A_{2}$ is the trivial connection on $X_{2}$ .
Here, recall the definition of the representative $V_{*}$ . For a homology class
$w_{j}\in H_{2}(X_{2}; Z)$ , we choose a generic embedded surface $\Sigma_{j}$ which represents $w_{j}$ .
Then we can construct a line bundle $\mathscr{L}_{\Sigma_{j}}$ over $\mathfrak{B}_{X_{2}}^{*}$ and extend it to $\tilde{\mathscr{L}}_{\Sigma_{j}}$ over
$\mathfrak{B}_{X_{2}}^{*}\cup[\Theta^{\prime}]$ , where $[\Theta^{\prime}]$ is the gauge equivalence class of the trivial connection on
$X_{2}$ . (For the precise construction of $\mathscr{L}_{\Sigma_{j}}$ and $\tilde{\mathscr{L}}_{\Sigma_{j}}$ , see [3], [6].) We have a section
$s_{j}$ : $\mathfrak{B}_{X_{2}}^{*}\cup[\Theta^{\prime}]\rightarrow\tilde{\mathscr{L}}_{\Sigma_{j}}$ such that $[\Theta^{\prime}]\not\in s_{j^{-1}}(0)$ . We define the representative $V_{j}$ as
$s_{j^{-1}}(0)$ . So $A_{2}=\Theta^{\prime}$ is not in any of $V_{r+1},$

$\ldots,$
$V_{d_{1}+d_{2}+1}$ . So we have $d_{1}+d_{2}+$

$1-r-2\sigma\leq 0$ . To sum up these inequalities and the charge count, $r\geq d_{1}+$

$d_{2}-3(1+b_{X_{2}}^{+})/2+2\rho+2$ . Since $l_{2}$ is in the stable range, we have $d_{1}+d_{2}-$

$3(1+b_{X_{2}})/2>d_{1}$ . So we get $r>d_{1}+2\rho+2$ , and this contradicts our assumption
$0<r<d_{1}+2$ .

Suppose that $m=n=0$ . In this case, as above, we have $ r\leq 2\rho$ and $d_{1}+d_{2}+$

$ 1-r\leq 2\sigma$ . From these inequalities and the charge count $\rho+\sigma\leq l_{1}+l_{2}$ , the
inequality $2(l_{1}+l_{2})\leq 3(1+b_{X}^{+})/2+1/2$ holds. This contradicts the stable range
condition. $\square $

Next, for sufficient small $v$ , we construct the obstruction bundle model which
gives the finite dimensional model of $J_{X}(v)$ .

DEFINITION. Fix an $\epsilon>0$ . A gauge orbit $[A]\in \mathfrak{B}_{X,l_{1}+l_{2}}^{*}$ is in $U$ if and only if
there are disjoint balls $B_{i}$ , the number of these balls is finite, with centers $p_{l}$ and
radii $\lambda_{j}$ in $X_{1}^{\prime}=X_{1}\backslash B_{X_{1}}(p_{0}, v)$ , where $B_{X_{1}}(p_{0}, v)$ is a geodesic ball with center
$p_{0}\in X_{1}$ and radius $v$ which is removed when we make the connected sum $X_{1}\# X_{2}$ ,

such that
(i) $\int_{X_{1}^{\prime}}\cup B_{j}|F_{A}|^{2}<\epsilon$ .
(ii) $\sum\lambda_{j}^{2}<\epsilon$ .
(iii) $|\int_{B_{i}}|F_{A^{-}}|^{2}-8\pi^{2}m_{j}|<\epsilon$ for some positive integers $m_{i}$ .
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From the definition above we see that, if we fix an $\epsilon$ , then for small enough $v$ ,

$J_{X}(v)\subset U$ . Since $J_{X}(v)$ is l-dimensional and codimension of the subset $U^{\prime}$ in $U$

which consists of connections for which some $m_{j}$ is greater than one is at least
four, to see the homology class $[J_{X}(v)]$ vanish, we can modify the condition (iii)
defining $U$ so that

(iii)’ $|\int_{B_{i}}|F_{A^{-}}|^{2}-8\pi^{2}|<\epsilon$ , for each $i$ .

Since we can decompose $U$ to disjoint union $\cup U_{p}(U_{\rho}$ is the subset of $U$

which consists of the connections with the property that the number of the points
$\{p_{j}\}$ is equal to $\rho$), in order to prove that the homology class of $J_{X}(v)$ is trivial it
suffices to verify that $J_{X,\rho}(v)=J_{X}(v)\cap U_{\rho}$ is homologically trivial in $U_{\rho}$ for each
$\rho$ . Note that by counting argument and hypothesis, $\rho\geq r/2>0$ . By the same
way, we define an open subset $U_{\rho,X_{1}}\subset \mathfrak{B}_{X_{1},\rho}^{*}$ , to be the connections which satisfy
the conditions of (i), (ii) and (iii)’ above.

Fix a $\rho>0$ . Let $\pi$ : $F_{X}^{+_{1}}\rightarrow X_{1}$ be the oriented orthonormal frame bundle
of $\bigwedge_{X_{1}}^{+}$ , and $G^{p}(F_{X_{1}}^{+}\times R^{+})\subset S^{\rho}(F_{X_{1}}^{+}\times R^{+})$ be the preimage of $\{((x_{1}, \lambda_{1}),$

$\ldots$ ,
$(x_{\rho}, \lambda_{\rho}))\in S^{\rho}(X_{1}\times R^{+})|x_{i}\neq x_{j}(i\neq j)\}$ , where $S^{\rho}$ means unordered $\rho$-tuple. If
we set $\mathscr{N}_{\rho}^{0}=\{((f_{1}, \lambda_{1}), \ldots, (f_{\rho}, \lambda_{\rho}))\in G^{\rho}(F_{X_{1}}^{+}\times R^{+})|\sum\lambda_{i}^{2}<\epsilon\}$ , we consider the
diagonal action of $SO(3)$ on $\mathscr{N}_{\rho}^{0}$ (where $SO(3)$ acts trivially on the $R^{+}$ factors).
Then there is a smooth embedding

$\gamma$ : $\mathscr{N}_{\rho}=\mathscr{N}_{\rho}^{0}/SO(3)\rightarrow \mathfrak{B}_{X_{1},\rho}^{*}$ ,

whose image is in $U_{p,X_{1}}$ . We identify the image $\gamma(\mathscr{N}_{\rho})$ with $\mathscr{N}_{\rho}$ and we can take a
section $\psi$ of a rank $3b_{X_{1}}^{+}$ vector bundle

$\eta_{X_{1}}=\oplus^{X_{1}}so(3)b^{+}\rightarrow \mathscr{N}_{\rho}$

such that $\gamma(\psi^{-1}(0))=U_{\rho.X_{1}}\cap \mathscr{M}_{\rho,X_{1}}$ . Roughly speaking, the map $\gamma$ is given by
gluing the standard l-instantons $on_{\sim}S^{4}$ with the trivial connection on $X_{1}$ by
gluing parameter $\mathscr{N}_{\rho}$ (actually $\gamma$ is its small perturbation in the ASD equation),
and the section $\psi$ is the obstruction of image of $\gamma$ to be ASD. (For a precise
definition, see [11], [6])

Likewise, $U_{\rho}\cap \mathscr{M}_{X,l_{1}+l_{2}}(g_{v})$ has the following description. We consider a
vector bundle

$\eta=\oplus^{\chi_{1}}[(\mathscr{N}_{\rho}^{0}b^{+}\times \mathscr{M}_{X_{2}^{0},a})\times SO(3)R^{3}]\rightarrow \mathscr{N}_{\rho}^{\prime}=(\mathscr{N}_{\rho}^{0}\times \mathscr{M}_{X_{2},a}^{0})/SO(3)$

where $a$ equals to $l_{1}+l_{2}-\rho,$ $\mathscr{M}_{X_{2},a}^{0}$ is the based moduli space (i.e. the space of
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the ASD connections modulo gauge transformations with their restrictions to a
base point in $X_{2}$ to be identity), and $U_{\rho}\cap \mathscr{M}_{X,l_{1}+l_{2}}(g_{v})$ can be identified with the
zero set of a section $\sigma(v)$ of this bundle.

Let $Fr(\mathscr{N}_{\rho}^{\prime})$ be the end of $\mathscr{N}_{\rho}^{\prime}$ corresponding $\sum\lambda_{j}^{2}=\epsilon$ . Since $J_{X}(v)\subset Int\mathscr{N}_{\rho}^{\prime}$ ,
$\sigma(v)|_{Fr(\mathcal{N}_{\rho}^{\prime})\cap\nabla_{1}\cap\cdots\cap V_{d_{1}+d_{2}+1}}$ has no zeros.

When $v$ converges to $0$ , the bundle $\eta$ splits to the pullbacks of $\eta_{X_{1}}$ and $\eta_{X_{2}}=$

$\oplus^{b_{\chi_{1}}^{+}}(\mathscr{M}_{X_{2},a}^{0}\times so(3)R^{3})$ , and, since for any element in $\mathscr{M}_{X_{2},a}$ and the standard
l-instantons on $S^{4}$ , the second cohomology groups of their Atiyah-Hitchin-Singer
complexes vanish, we can apply the multiple connected sum construction ([6],
section 7.2.8) to our situation. Then, for sufficiently small $v$ , the restriction of the
section $\sigma(v)$ to $Fr(\mathscr{N}_{\rho}^{\prime})$ is $\sigma_{X_{1}}(v)$ which is a small perturbation of the pullback of
the section $\psi|_{Fr(,V_{p})}$ . We fix such a small $v$ and drop it. Let $\mathscr{W}_{\rho}$ be the intersection
$\mathscr{N}_{p}^{\prime}\cap V_{1}\cap\cdots\cap V_{d_{1}+d_{2}+1}$ . Then

(1) $J_{X,\rho}=\sigma^{-1}|_{W_{p}}(0)$ .

Thus the section $\sigma$ is nonvanishing on $Fr(\mathscr{W}_{\rho})=Fr(\mathscr{N}_{\rho}^{\prime})\cap V_{1}\cap\cdots\cap V_{d_{1}+d_{2}+1}$ .
Since $\mathscr{W}_{\rho}$ consists of almost anti-self-dual connections, the notion of Uhlenbeck
compactification $\overline{\mathscr{W}_{\rho}}$ makes sense. (See [8]). The section $\sigma$ has no zeros of the
singular set of $\overline{\mathscr{W}_{\rho}}$ by compactness of $J_{X,\rho}$ .

Now we can extend the constructions above (the obstruction bundles and so
on) to $\overline{\mathscr{W}_{\rho}}$ and consider as follows: $\eta$ is the vector bundle of rank $3b_{X_{1}}^{+}$ over $\overline{\mathscr{W}_{\rho}}$

with the section $\sigma$ which is nonvanishing over the singular set $S$ of $\overline{\mathscr{W}_{\rho}}$ (which is
the lower strata of the Uhlenbeck type compactification, its codimension is more
than 4), and the section $\sigma$ is the small perturbation of the pullback of $\psi|_{Fr(\psi_{\rho X_{1}})}$

over the boundary $Fr(\mathscr{U}_{\rho}^{\wedge})$ . Here we denote that $\mathscr{W}_{\rho.X_{1}}=\mathscr{N}_{\rho}\cap V_{1}\cap\cdots\cap V_{r}$ and
$Fr(\mathscr{W}_{\rho,X_{1}})=Fr(\mathscr{N}_{\rho})\cap V_{1}\cap\cdots\cap V_{r}$ . So from the setting above, we have its
relative Euler class $e\in H^{3b_{X_{1}}^{+}}(\overline{\mathscr{W}_{\rho}}, Fr(\mathscr{W}_{\rho});Z)$ .

LEMMA 3.2. The cohomology class $e$ equals to zero $lf$ and only if the
homology class $[J_{X,\rho}]\in H_{1}(\mathscr{W}_{\rho};Z)$ is zero.

PROOF. Since $\dim\overline{\mathscr{W}_{\rho}}=3b_{X_{1}}^{+}+1$ , by Poincar\’e duality and the fact that the
codimension of $S$ is greater than 2, the following is hold;

$H_{1}(\mathscr{W}_{\rho};Z)\simeq H_{c}^{3b_{X_{1}}^{+}}(\mathscr{W}_{\rho}, Fr(\mathscr{W}_{\rho});Z)\simeq H^{3b_{x_{1}}^{+}}(\overline{\mathscr{W}_{\rho}}, Fr(\mathscr{W}_{\rho});Z)$ .

So from the equation (1) and the isomorphism above, the statement is immediate.
$\square $
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Now we have the following two inequalities by the counting argument.

$\left\{\begin{array}{l}\rho\geq r/2\\2d_{2}-8(l_{2}-a)\geq 2(d_{l}+d_{2}+1-r).\end{array}\right.$

On the other hand, the following equalities hold;

$\dim\overline{\mathscr{W}_{p.X_{1}}}=8\rho-3-2r$ ,

$\dim\overline{\mathscr{W}_{\rho}}=8\rho-8(l_{2}-a)-2(d_{1}+1)$ .

So we have

$3b_{X_{1}}^{+}+1\geq\dim\overline{\mathscr{W}_{\rho.X_{1}}}+3$ .

From this inequality, the dimension of $\mathscr{W}_{\rho.X_{1}}$ is at least 2 less than $3b_{X_{1}}^{+}$ , the rank
of $\eta_{X_{1}}$ . So we have the following lemma.

LEMMA 3.3. Any nonvanishing section of $\eta_{X_{1}}|_{Fr(7}$ ) is homotopic through
nonvanishing sections to $\psi|_{Fr(\gamma y_{\rho\lambda_{1})}}$ .

PROOF. The obstructions to such homotopies lie in $H^{j}(Fr(\mathscr{W}_{p.X_{1}})$ ;
$\pi_{l}(S^{3b_{x_{1}}^{+}-1}))$ . But, by the argument above, we have $H^{j}(Fr(V/\nearrow p.X_{1});\pi_{j}(S^{3b_{X_{1}}^{+}-1}))=0$

for any $i$ . $\square $

By the Lemma 3.2, to prove Theorem 1.1, it suffices to show that

CLAIM. The relative Euler class $e$ is zero.

PROOF OF CLAIM. This claim is equivalent to the existance of a nonvanishing
section of the bundle $\eta$ , whose restriction to $Fr(\mathscr{W}_{\rho})$ is the pullback of $\sigma_{X_{1}}|_{Fr(\#_{J}x_{1})}$ .
We will make such a section.

CASE 1. $3b_{X_{1}}^{+}+1>\dim\overline{\mathscr{W}_{\rho,X_{1}}}+3=8\rho-2r$

In this case, we will make a nonvanishing section $\tau$ of $\eta$ over $\overline{\mathscr{W}_{\rho}}$ as the
following procedure. We construct nonvanishing sections $\tau_{1}$ of $\eta_{X_{1}}$ over $\mathscr{W}_{\rho,X_{\mathfrak{l}}}$ and
$\tau_{2}$ of $\eta_{X_{2}}$ over $\mathscr{Y}=\vee \mathscr{M}_{x_{\underline{\gamma}},a}\cap V_{r+1}\cap\cdots\cap V_{d_{1}+d_{2}+1}$ and combine them to get $\tau$ . The
section $\tau$ will be nonvanishing over $S$ and it will be pulled back from $\tau_{1}$ over
$Fr(\mathscr{W}_{p})$ . But, since $\tau_{1}|_{Fr(/\prime)}pX_{1}$ is homotopic to $\sigma_{X_{1}}|_{Fr(\nu_{J})}\chi_{1}$ through nonvanishing
sections, by the Lemma 3.3, this section is the one which we want.
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First, the section $\tau_{1}$ is constracted as follows. Let $k$ be the unique integer such
that

$8\rho-2r-3\leq 3k<8\rho-2r\leq 3b_{X_{1}}^{+}$ .

We consider the subbundle of $\eta_{X_{1}}|_{\psi_{\rho X_{1}}}$
,

$\oplus^{k}(\mathscr{W}_{\rho}^{0_{X_{1}}}\times SO(3)R^{3})\rightarrow \mathscr{W}_{\rho,X_{1}}$ .

here $\mathscr{W}_{\rho}^{0_{X_{1}}}$ is the preimage of $\mathscr{W}_{\rho,X_{1}}$ by the base point fibration. Then
obstructions to the existence of nonvanishing sections of this bundle lie in
$H^{i}(\mathscr{W}_{\rho,X_{1}} ; \pi_{i-1}(S^{3k-1}))$ . So, from the definition of $k$ , the obstruction arises only
in the case $\dim\overline{\mathscr{W}_{\rho,X_{1}}}=8\rho-2r-3=3k$ . In this case, the obstruction is $ c^{k}\in$

$H^{3k}(\mathscr{W}_{\rho,X_{1}} ; Z)$ , where $c\in H^{3}(\mathscr{W}_{\rho,X_{1}} ; Z)$ is the Euler class of the vector bundle
$\mathscr{W}_{\rho}^{0_{X_{1}}}\times so(3)R^{3}$ . Since this bundle has odd rank, $c$ is 2-torsion, so $c^{k}$ is 2-torsion,
too. But, $H^{3k}(\mathscr{W}_{\rho,X_{1}} ; Z)$ is torsion free, so this obstruction vanishes. Here, we see
that $\oplus^{k}(\mathscr{W}_{\rho}^{0_{X_{1}}}\times so(3)R^{3})\simeq(\mathscr{W}_{\rho}^{0_{X_{1}}}\times R^{3k})/SO(3)$ , so equivalently, we have a
nonvanishing $SO(3)$ -equivariant map $\tau_{1}^{0}$ : $\mathscr{W}_{\rho}^{0_{X_{1}}}\rightarrow R^{3k}$ .

Next, we construct a section $\tau_{2}$ . Since $ a=l_{1}+l_{2}-\rho$ , we have

$\dim \mathscr{Y}=2d_{2}-8(l_{2}-a)-2(d_{1}+d_{2}+1-r)$

$=3b_{X_{1}}^{+}+1-(8\rho-2r)$

$<3b_{X}^{+}+1-3k$ .

So we have $\dim \mathscr{Y}\leq 3b_{X_{1}}^{+}-3k$ . We want to find a nonvanishing section $\tau_{2}$ of the
rank $3(b_{X_{1}}^{+}-k)$ vector bundle

$b_{\chi}^{+}-k\oplus^{1}so(3)\rightarrow \mathscr{Y}$

here, $\mathscr{Y}^{0}$ is the preimage of $\mathscr{Y}$ by the base point fibration. Note here that $b_{X_{1}}^{+}>k$ .
This is a subbundle of $\eta_{X_{2}}|_{y}$ . Since obstructions to the existance of nonvanishing
sections of this bundle lie in $H^{j}(\mathscr{Y};\pi_{i-1}(S^{3(b_{\chi_{1}}^{+}-k)-1}))$ , the obstruction arises only
in the case $\dim \mathscr{Y}=3(b_{X_{1}}^{+}-k)$ . In this case, the obstruction vanishes by the same
argument as the case of $\tau_{1}$ . So there is a nonvanishing $SO(3)$ -equivariant map
$\tau_{2}^{0}$ : $\mathscr{Y}^{0}\rightarrow R^{3(b_{X_{1}}^{+}-k)}$ .

To sum up, we construct $\tau$ which is desired as follows. Let

$W=[((f_{1}, \lambda_{1}), \ldots, (f_{\rho}, \lambda_{\rho}));(A, \xi)]\in \mathscr{W}_{\rho}^{0}\subset \mathscr{N}_{\rho}^{0}\times \mathscr{M}_{X_{2},a}^{0}$ ,

and we define an $SO(3)$ -equivariant map

$\tau^{0}$ : $\mathscr{W}_{\rho}^{0}\rightarrow R^{3b_{X_{1}}^{+}}$ ,
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by

$\tau^{0}(W)=(\sum\lambda_{j}^{2})\tau_{1}^{0}(((f_{1}, \lambda_{1}),$
$\ldots,$

$(f_{p^{\dot{\Lambda}_{\rho}}},)))+(\epsilon-\sum\lambda_{i}^{2})\tau_{2}^{0}(A, \xi)$ .

Here we regard $R^{3b_{X_{1}}^{+}}=R^{3k}\oplus R^{3(b_{X_{1}}^{+}-k)}$ , and the image of $\tau_{1}^{0}$ lies in the $R^{3k_{-}}$

summand and the image of $\tau_{2}^{0}$ in the $R^{3(b_{X_{1}}^{+}-k)}$ . The section $\tau^{0}$ is $SO(3)-$

equivariant, nonvanishing, and nonvanishing when extended to the singular set of
$W_{p}^{0}$ . So the quotient of $\tau^{0}$ is the desired section.

CASE 2. $\dim\overline{\mathscr{W}_{\rho,X_{1}}}+3=8\rho-2r=3b_{X_{1}}^{+}+1$

In this case, we have

$\dim \mathscr{W}_{p}=8\rho-8(l_{2}-a)-2(d_{1}+1)$ ,

$\dim \mathscr{Y}=0$ .

So $\mathscr{Y}$ consists of a finite number of points. Then $J_{X,\rho}$ is decomposed into unions
of connected components corresponding to these points. Thus, it is sufficient to

see each component. We may assume that $\mathscr{Y}$ is one point. Then $\mathscr{Y}^{0}$ is $SO(3)$ . So

$\mathscr{W}_{\rho}^{0}=\mathscr{W}_{\rho}^{0_{X_{1}}}\times SO(3)$

$\eta=\oplus^{X_{1}}so(3)b^{+}\times R^{3b_{\chi_{1}}^{+}}\rightarrow\overline{\mathscr{W}_{\rho}}$

$=(\overline{\mathscr{W}_{\rho}}^{0_{X_{1}}}\times SO(3))/SO(3)\simeq\overline{\mathscr{W}_{\rho}}^{0_{X_{1}}}$ .

Since $\eta$ is the trivial bundle, any nonvanishing section on $\eta$ is homotopic through
nonvanishing sections to a constant nonvanishing section, (when we interpret the
nonvanishing sections as nonvanishing maps from $\overline{\mathscr{W}_{\rho}}^{0_{X_{1}}}$ to $R^{3b_{X_{1}}^{+}}$ , this means that
all such maps are homotopic through nonvanishing maps to a nonzero constant
map,) and the restriction to $Fr(\overline{\mathscr{W}_{p}}^{0_{X_{1}}})$ of it is, too. Conversely, if there is a
nonvanishing section on $Fr(\overline{\mathscr{W}_{\rho}}^{0_{X_{1}}})$ which is homotopic through nonvanishing
sections to a nonvanishing constant section, we have nonvanishing extention of it
to $\overline{\mathscr{W}_{\rho}}^{0_{X_{1}}}$ .

On the other hand, since the bundle $\eta_{X_{1}}$ is isomorphic to $\eta/SO(3)$ , if a section
$Fr(\overline{\mathscr{W}_{\rho}}^{0_{X_{1}}})\rightarrow R^{3b_{\chi_{1}}^{+}}$ of $\eta|_{Fr(\overline{u_{p}}^{0_{\chi_{1}}})}$

is pulled back from a section of $\eta_{X_{1}}|_{Fr(\overline{\theta})}$ , then

this map has to be $SO(3)$ -equivariant, here the $SO(3)$ -action on R $X_{I}$ is iso-
morphic to $\oplus^{b_{X_{1}}^{+}}so(3)$ which is a direct sum of the adjoint representation.

Now, we want to construct a nonvanishing section of the vector bundle $\eta$

over $\overline{\mathscr{W}_{\rho}}\simeq\overline{\mathscr{W}_{\rho}}^{0_{X_{1}}}$ which is the pullback of $\sigma_{X_{1}}|_{Fr(\overline{\#_{/\prime X_{1}}})}$ on $Fr(\overline{\mathscr{W}_{\rho}})$ . But, as in the
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previous case, we may consider the pullback of $\tau_{\partial}$ instead of $\sigma_{X_{1}}|_{Fr(7\overline{r_{\rho X_{1}}})}$ . Here $\tau_{\partial}$

is a nonvanishing section of a rank $3(b_{X_{1}}^{+}-1)$ subbundle of $\eta_{X_{1}}$ over $Fr(\overline{\mathscr{W}_{p,X_{1}}})$ ,
which can be found by the same argument given in the construction of $\tau_{1}$ .

The pullback is the same as a nonvanishing $SO(3)$ -equivariant map

$\tau_{\partial}^{\prime}$ : $Fr(\overline{\mathscr{W}_{\rho}}^{0_{X_{1}}})\rightarrow R^{3(b_{x_{1}}^{+}-1)}\subset R^{3b_{\chi_{1}}^{+}}$ .

Thus $\tau_{\partial}^{\prime}$ is homotopic through nonvanishing maps to a constant nonvanishing
map and therefore it extends to a nonvanishing map $\overline{\mathscr{W}_{\rho}}^{0_{X_{1}}}\rightarrow R^{3b_{X_{1}}^{+}}$ . So in this
case, relative Euler class vanishes as in the previous case. $\square $

Note here that, if $b_{X_{1}}^{+}=1$ and $8\rho-2r=3b_{X_{1}}^{+}+1=4$ , then $\rho=1$ and $r=2$ ,
since we have $\rho\geq r/2>0$ and $\rho\in Z$ (this case corresponds to Theorem 1.2).
Thus $\dim Fr(\overline{\mathscr{W}_{\rho,X_{1}}})$ is zero and $Fr(\overline{\mathscr{W}_{\rho}}^{0_{X_{1}}})$ is a disjoint union of $SO(3)$ . So any
$SO(3)$ -equivariant map $Fr(\overline{\mathscr{W}_{\rho}}^{0_{X_{1}}})\rightarrow R^{3}\simeq so(3)$ is not homotopic through non-
vanishing maps to a nonvanishing constant map. From the argument above,
in this case, we cannot extend these maps to nonvanishing maps $\overline{\mathscr{W}_{\rho}}^{0_{X_{1}}}\rightarrow R^{3b_{X_{1}}^{+}}$ .
This means that the relative Euler class $e$ is not zero.

The proof of Theorem 1.1 in the case when $0<r<d_{1}+2$ is completed.
On the other hand, if $d_{1}+d_{2}+1>r>d_{1}+2$ , then $0<d_{1}+d_{2}+1-r<$

$d_{2}+2$ . So we set $r^{\prime}=d_{1}+d_{2}+1-r$ , and, from the same argument above, we
get conclusion. $\square $
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