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0. Introduction

Let $M_{n}(c)$ be a $4n$-dimensional quatemion space form with the metric $g$ of
constant quatemion sectional curvature $8c$ . The standard models of quatemion
space forms are the quatemion projective space $P_{n}(Q),$ $(c>0)$ , the quatemion
space $Q,$ $(c=0)$ and the quatemion hyperbolic space $H_{n}(Q),$ $(c<0)$ . Let $M$ be
a connected real hypersurface in $M_{n}(c)$ with the induced metric.

In particular in [9], J. S. Pak characterized real hypersurfaces in $P_{n}(Q)$ in
terms of the second fundamental form.

When we give a Riemannian manifold and its submanifold, the rank of
determined second fundamental form is called the type number.

B. Y. Chen and T. Nagano ([2]) investigated totally geodesic submanifolds
in Riemannian symmetric spaces, and as one of their results the following holds

THEOREM A ([2]). Spheres and hyperbolic spaces are only simply connected
irreducible symmetric spaces admitting a totally geodesic hypersurface.

Then it will be an interesting problem to study the type number $t$ of real
hypersurfaces in simply connected irreducible symmetric spaces excepted for
spheres and hyperbolic spaces.

As a partial answer, it is known that there exists a point such that $t(p)\geq 2$ in
any real hypersurface in complex space form with nonzero constant holomorphic
sectional curvature and complex dimension $\geq 3$ (cf. [8], [10]). Naturally we can
consider the following question.

Does $M_{n}(c)$ satisfy the similar fact?

We answer this question affirmatively, i.e., we shall prove the following
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MAIN THEOREM. Let $M$ be a connected real hypersurfaces in $M_{n}(c)(c\neq 0$ ,
$n\geq 2)$ . Then there exists a point $p$ in $M$ such that $t(p)\geq 2$ .

1. Preliminaries

A quatemion K\"ahler manifold is a Riemannian manifold $(\overline{M}, g)$ on which
there exists a 3-dimensional vector bundle $\overline{V}$ of tensors of type $(1, 1)$ satisfying
the following properties:

(1) In any open set $W$ in $M$, there is a local base $\{J_{i}(i=1,2,3)\}$ of $\overline{V}$ such
that

(1.1) $J_{i}^{2}=-I$ ,

(1.2) $J_{i}J_{i+1}=J_{i+2}=-J_{i+1}J_{i}$ $(imod 3)$ ,

where $I$ denotes the identity endmorophism.
Such a local base $\{J_{i}(i=1,2,3)\}$ is called a canonical local base of the

bundle $\overline{V}$ in $W$.
(2) There is a Riemannian metric $g$ on $\overline{M}$ such that

(1.3) $g(J_{i}X, Y)+g(X,J_{i}Y)=0$ ,

for any $X,$ $Y\in X(W)$ , where $X(W)$ is the set of all vector fields on $W$.
(3) The Levi-Civita connection $D$ on $\overline{M}$ satisfies following conditions: If

$\{J_{i}(i=1,2,3)\}$ is a canonical local base of $\overline{V}$ in $W$, then there exists three local
l-forms $p_{i}(i=1,2,3)$ on $\overline{M}$ such that

(1.4) $D_{X}J_{i}=p_{i+2}(X)J_{i+1}-p_{i+1}(X)J_{i+2}$ $(imod 3)$ ,

for all $X\in X(\overline{M})$ .
Let $Q(X)$ be the 4-plane spanned by vectors $X,$ $J_{1}X,$ $J_{2}X$ and $J_{3}X$ , for any

$X\in T_{X}\overline{M},$ $x\in\overline{M}$ . If the sectional curvature of any section for $Q(X)$ depends only
on $X$, we call it Q-sectional curvature.

A quatemion space form of Q-sectional curvature $8c$ is connected quatemion
Kahler manifold with constant Q-sectional curvature $8c$ , which denotes by $M_{n}(c)$ .

Let $M$ be a real hypersurface in $M_{n}(c)(n\geq 2, c\neq 0)$ . In a neighborhood of
each point, we choose a unit normal vector field $N$ in $M_{n}(c)$ . The Levi-Civita
connection $D$ in $M_{n}(c)$ and $\nabla$ in $M$ are related by the following formulas for any
$X,$ $Y\in X(M)$ :

(1.5) $D_{X}Y=\nabla_{X}Y+\langle AX, Y\rangle N$ ,

(1.6) $D_{X}N=-AX$ ,
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where $\langle, \rangle$ denotes the Riemannian metric on $M$ induced from the metric $g$ on
$M_{n}(c)$ and $A$ is the shape operator of $M$.

It is known that $M$ has an almost contact metric structure induced from the
quatemion structure $J_{j}$ on $M_{n}(c)$ , i.e., we define a tensor $\phi_{j}$ of type $(1, 1)$ , a vector
field $\xi_{i}$ and a l-form $\eta_{j}$ on $M$ by the following,

(1.7) $\langle\phi_{j}X, Y\rangle=g(J_{i}X, Y)$ , $\langle\xi_{j}, X\rangle=\eta_{j}(X)=g(J_{i}X, N)$ .

Then from (1.1) we have

(1.8) $\langle\phi_{j}X, Y\rangle+\langle X, \phi_{i}Y\rangle=0$ , $\langle\phi_{j}X, \phi_{j}Y\rangle=\langle X, Y\rangle-\eta_{j}(X)\eta_{l}(Y)$ ,

(1.9) $\phi_{j}\xi_{i+1}=\xi_{i+2}=-\phi_{i+1}\xi_{i}$ $(imod 3)$ .

From (1.3), we obtain

(1.10) $\phi_{j}^{2}=-I+\eta_{i}\otimes\xi_{i}$ , $\eta_{i}(\xi_{j})=1$ , $\phi_{j}\xi_{i}=0$ ,

(1.11) $\eta_{j}(\xi_{i+1})=\eta_{j}(\xi_{i+2})=0$ $(imod 3)$ ,

(1.12) $\phi_{j}=\phi_{i+1}\phi_{i+2}-\eta_{i+2}\otimes\xi_{i+1}=-\phi_{i+2}\phi_{i+1}+\eta_{i+1}\otimes\xi_{i+2}$ $(imod 3)$ .

Furthermore from (1.2) and (1.7), we get

(1.13) $(\nabla_{X}\phi_{j})Y=p_{i+1}(X)\phi_{i+2}Y-p_{i+2}(X)\phi_{i+1}Y$

$+\eta_{j}(Y)AX-\langle AX, Y\rangle\xi_{i}$ $(imod 3)$ .

In terms of (1.4) we have the following Codazzi equation

$(\nabla_{X}A)Y-(\nabla_{Y}A)X=c\sum_{i=1}^{3}(\eta_{i}(X)\phi_{j}Y-\eta_{j}(Y)\phi_{j}X-2\langle\phi_{i}X, Y\rangle\xi_{i})$ .

2. Formulas

We assume that the rank of $A$ is not larger than $m$ on an open set $W$, then
there exists an open set $W_{0}$ such that $t$ takes the constant $m$ . Then the Codazzi
equation gives

(2.1) $-A(\nabla_{X}Y-\nabla_{Y}X)=(\nabla_{X}A)Y-(\nabla_{Y}A)X$

$=c\sum_{i=1}^{3}(\eta_{j}(X)\phi_{j}Y-\eta_{l}(Y)\phi_{i}X-2\langle\phi_{j}X, Y)\xi_{j}\rangle)$ ,

for any vector fields $X,$ $Y\in kerA|_{W_{0}}$ .
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Taking the inner product of (2.1) with $Z\in kerA|_{W_{0}}$ , from (1.7) and $c\neq 0$ , we
have

(2.2) $0=\sum_{i=1}^{3}(\eta_{i}(X)\langle\phi_{j}Y, Z\rangle+\eta_{i}(Y)\langle\phi_{i}Z, X\rangle-2\eta_{j}(Z)\langle\phi_{j}X, Y\rangle)$ .

Putting $Z=X$ in (2.2), we obtain

(2.3) $\sum_{i=1}^{3}\eta_{j}(X)\langle\phi_{j}Y, X\rangle=0$ .

3. Proof of the Main theorem

Since Theorem $A$ , we get $m\geq 1$ . Suppose that $m=1$ . Let $\lambda$ be the nonzero
principal curvature with principal subspace $T_{\lambda}$ . Choose a local orthonormal frame
field $U,$ $e_{1},$

$\ldots,$
$e_{4n-2}$ on $M$ such that $e_{1},$

$\ldots,$ $e_{4n-2}$ is in $kerA|_{W_{0}}$ and $U\in T_{\lambda}$ . We
use the following convention on the range of indices otherwise stated: $r,$ $s,$ $\ldots=$

$1,$
$\ldots,$

$4n-2$ .
Putting $Z=e_{r}$ in (2.2), we get

(3.1) $\sum_{i=1}^{3}(\eta_{i}(X)\langle\phi_{i}Y, e_{r}\rangle-\eta_{j}(Y)\langle\phi_{j}X, e_{r}\rangle-2\langle\phi_{l}X, Y\rangle\eta_{j}(e_{r}))=0$ .

LEMMA. There exists a number $i$ such that $\eta_{j}(U)\neq 0$ .

PROOF. We assume that

(3.2) $\eta_{i}(U)=0$ ,

for any number $i$ . Then multiplying (3.1) by $\langle\phi_{i}U, e_{r}\rangle$ and summing up for $r$ ,

since $(1.8)\sim(1.12)$ and (3.2) we have

$-\eta_{i+1}(X)\langle\phi_{i+2}Y, U\rangle+\eta_{i+1}(Y)\langle\phi_{i+2}X, U\rangle$

$+\eta_{i+2}(X)\langle\phi_{i+1}Y, U\rangle-\eta_{i+2}(Y)\langle\phi_{i+1}X, U\rangle=0$ $(imod 3)$ .

Putting $X=e_{r}$ in above equation and summing up for $r$ , from $(1.9)\sim(1.11)$ and
(3.2) we obtain

$\langle\phi_{j}U, Y\rangle=0$ ,

together with equation $\langle\phi_{i}U, U\rangle=0$ , we get

(3.3) $\phi_{i}U=0$ .
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Putting $X=U$ and $Y=\xi_{i}$ in (1.13) and taking the inner product with $U$, then
using (1.10), (3.2) and (3.3) we get $\lambda=0$ , which is a contradiction. $\square $

On the other hand, (2.3) implies

(3.4) $\sum_{i=1}^{3}\eta_{j}(X)\langle\phi_{j}e_{r}, X\rangle=0$ .

Multiplying (3.1) by $\langle\phi_{j}U, e_{r}\rangle$ and summing up for $r$ , from (1.9), (1.10), (1.12)
and equation $\sum_{r}\langle\phi_{i}U, e_{r}\rangle e_{r}=\phi_{j}U$ , we get

$\eta_{j}(U)\sum_{j=1}^{3}\eta_{j^{2}}(X)+\eta_{l+1}(X)\langle U, \phi_{l+2}X\rangle-\eta_{i+2}(X)\langle U, \phi_{l+1}X\rangle=0$ $(imod 3)$ .

Putting $X=e_{r}$ in above equation and summing up for $r$ , by (1.9) we have

$\eta_{l}(U)(\sum_{j=1}^{3}\eta_{j^{2}}(\sum e_{r})-2)=0$ .

According to Lemma, above equation implies

(3.5) $\sum_{j=1}^{3}\eta_{j^{2}}(\sum e_{r})=2$ .

Multiplying (3.4) by $\eta_{j}(e_{r})$ and summing up for $r$ , then using (1.9), (1.10) and
Lemma we have

(3.6) $\sum_{j=1}^{3}\eta_{j}(X)\langle U, \phi_{j}X\rangle=0$ .

Again multiplying (3.4) by $\langle\phi_{i}X, e_{r}\rangle$ and summing up for $r$ and since (1.8), (1.12)
and (3.6) we obtain

(3.7) $\eta_{j}(X)(\Vert X\Vert^{2}-\sum_{j=1}^{3}\eta_{j^{2}}(X))=0$ .

Suppose that $\eta_{i}(X)=0$ for any number $i$ . Then we observe $\eta_{i}(\xi_{j})=\eta_{i}(U)=1$ .
This implies $\xi_{j}=U$ for any number $i$, which is a contradiction. Thus by (3.7) we
get

$\sum_{j=1}^{3}\eta_{j^{2}}(X)=\Vert X\Vert^{2}$ .
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Putting $X=e_{r}$ in above equation and summing up for $r$ , we have

$\sum_{j=1}^{3}\eta_{j}^{2}(\sum e_{r})=4n-2$ ,

which contradicts (3.5).
It completes the proof of Main Theorem.

REMARK (ADDED IN PROOF). J. E. D’Atri [3], J. Bemdt [1] and A. Martinez
[6] gave some examples of real hypersurfaces in $M_{n}(c),$ $c\neq 0$ . In case $M_{n}(c)$ is
$H_{n}(Q)$ , the type number of these examples is maximum. In case $M_{n}(c)$ is $P_{2}(Q)$ ,
there is an example of $t\equiv 4$ in the above. However, we don’t know an example
of real hypersurface in $M_{n}(c),$ $c\neq 0$ such that $t\equiv 2$ .
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