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ON COVERINGS OF MODULES

By

Mark L. TEPLY and Seog Hoon RIM

Abstract. Let $R$ be a ring, and let $\tau$ be a torsion theory for R-mod.
We give a necessary condition for every R-module to have a $\tau-$

torsionfree cover; this necessary condition is close to the known
sufficient condition. Then we present a method for computing $\tau-$

torsionfree covers of modules that can be embedded in $Q_{\tau}$ -modules,
where $Q_{\tau}$ is the quotient ring for $\tau$ .

$\ln$ this paper, we let $R$ be a ring, and we let $\tau$ be an hereditary torsion theory
of left R-modules with torsion class $\mathscr{T}$ , torsionfree class $\mathscr{F}$ , filter of left ideals $\mathscr{L}$ ,
and quotient ring $Q_{\tau}$ . For a module $M$, we let $\tau(M)$ denote the largest submodule
of $M$ that is in $\mathscr{T}$ and $Q_{\tau}(M)$ be the localization of $M$. For the basic definitions
and results on torsion theories, the reader may consult [7].

After the characterization of projective covers by Bass [2], Enochs [4] found
the existence of torsionfree covers of modules for the usual torsion theory over an
integral domain. A concrete method for constructing these covers was obtained
by Banaschewski [1]. The concept of a torsionfree cover was extended to modules
over associative rings by Teply [13]: given an hereditary torsion theory $\tau$ and a
module $M$, an epimorphism $\theta:F\rightarrow M$ is called a $\tau$-torsionfree cover if

(1) $F$ is $\tau$-torsionfree,
(2) for any homomorphism $h:F^{\prime}\rightarrow M$ with $F$ ‘

$\tau$-torsionfree, there is a
homomorphism $g:F^{\prime}\rightarrow F$ such that $h=\theta g$ , and

(3) $ker\theta$ contains no nonzero $\tau$-pure submodule of $F$.
General results about the existence and uniqueness of $\tau$-torsionfree covers was
obtained in [13], [8] and [14]; $\tau$-torsionfree covers exist when $\tau$ has finite type (i.e.,
when the filter $\mathscr{L}$ for $\tau$ has a cofinal subset of finitely generated left ideals.) The
extension of Banaschewski’s construction only works when $\tau$ is a perfect torsion
theory. Since the existence proof calls for forming an infinite direct sum of $\tau-$
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injective modules and factoring out by a module obtained from Zom’s Lemma,
no general method for realistic computation of $\tau$-torsionfree covers is known.
Several researchers have studied this problem and found particular cases (mostly
when $R$ is commutative) in which constructions can be given for the $\tau$-torsionfree
cover; for example, see [3], [10], [11], and [12]. Important problems in this area are

(1) to give a precise characterization of the torsion theories $\tau$ for which every
module has a $\tau$-torsionfree cover, and

(2) to find a construction for the $\tau$-torsionfree cover when $\tau$ is not perfect.
If every module has a $\tau$-torsionfree cover, it is trivial to show that $R$ must be

$\tau$-torsionfree. But no other necessary conditions for every module to have a $\tau-$

torsionfree cover have been published. In this paper, we present a necessary
condition for every module to have a $\tau$-torsionfree cover; this necessary condition
is close to the sufficient condition given in [14]. Then we present a method for
computing the $\tau$-torsionfree cover of a module $N$ that embeds in a $Q_{\tau}$-module $M$,

where $M$ has a $Q_{\tau}$ -projective cover.
We need one definition before we present our necessary condition in Theorem

1.
A $\tau$-torsionfree module $M$ is called $\tau$-exact if every $\tau$-torsionfree homo-

morphic image of $M$ is $\tau$-injective.

REMARKS. (1) The localization functor $Q_{\tau}(-)$ for $\tau$ is an exact functor if and
only if every $\tau$-torsionfree $\tau$-injective module is $\tau$-exact. This observation is
immediate from [7, Proposition 44.1, (1) $\Leftrightarrow(3)$ ].

(2) Any $\tau$-injective $\tau$-cocritical module is $\tau$-exact, as the only $\tau$-torsionfree
homomorphic images of such a module $M$ are $0$ and $M$.

(3) If $E$ is $\tau$-exact and $E$ ‘ is a $\tau$-pure submodule of $E$, then $E$ ‘ and $E/E^{\prime}$ are
$\tau$-exact.

$PR\infty F$ . It is clear from the definition that $E/E^{\prime}$ is $\tau$-exact; so we show that
$E^{\prime}$ is $\tau$-exact. Let $K$ be $\tau$-pure in $E^{\prime}$ ; we need to show that $E^{\prime}/K$ is $\tau$-injective.
Sinoe $E^{\prime}/K$ and $E/E^{\prime}$ are $\tau$-torsionfree, so is $E/K$ ; the $\tau$-exactness of $E$ implies
that $E/K$ is $\tau$-injective. Since $E^{\prime}/K$ is $\tau$-pure in $E/K$ , then $E^{\prime}/K$ is $\tau$-injective by
[7, Proposition 8.4].

(4) If $0\rightarrow E^{\prime}\rightarrow E\rightarrow E^{\prime\prime}\rightarrow 0$ is an exact sequence and if $E^{\prime}$ and $E^{\prime\prime}$ are $\tau-$

exact, then $E$ is also $\tau$-exact.

PROOF. Since $E^{\prime}$ and $E^{l/}$ are $\tau$-exact, it follows from [7, Prop. 8.2] that $E$ is
$\tau$-injective. We let $N$ be a $\tau$-pure submodule of $E$ and show that $E/N$ is $\tau-$
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injective. Since

$E^{\prime}/(E^{\prime}\cap N)\cong(E^{\prime}+N)/N\subseteq E/N\in \mathscr{F}$ ,

then $(E^{\prime}+N)/N$ is $\tau$-injective by the $\tau$-exactness of $E^{\prime}$ . Thus

$(E/N)/((E^{\prime}+N)/N)\cong E/(E^{\prime}+N)\in \mathscr{F}$ .

From the $\tau$-exactness of $E^{\prime\prime}\cong E/E^{\prime}$ and the induced epimorphism $ E/E^{\prime}\rightarrow$

$E/(E^{\prime}+N)$ , it now follows that $E/(E^{\prime}+N)$ is $\tau$-injective. Now the exact
sequence

$0\rightarrow(E^{\prime}+N)/N\rightarrow E/N\rightarrow E/(E^{\prime}+N)\rightarrow 0$

and [7, Prop. 8.2] imply that $E/N$ is $\tau$-injective, as desired.

THEOREM 1. If every R-module has a $\tau$-torsionfree cover, then any directed
union of $\tau$-exact submodules of a module is $\tau$-injective.

PROOF. Let $M$ be the directed union of $\tau$-exact submodules $M_{\alpha}(\alpha\in A)$ of a
given module. Let $\theta:F\rightarrow E_{\tau}(M)/M$ be a $\tau$-torsionfree cover. For each $\alpha\in A$ , let
$p_{\alpha}$ : $E_{\tau}(M)/M_{\alpha}\rightarrow E_{\tau}(M)/M$ be the natural epimorphism. By the directedness of
the $M_{\alpha}\prime s,$ $M$ is $\tau$-torsionfree, and hence each $E_{\tau}(M)/M_{\alpha}$ is $\tau$-torsionfree. Con-
sequently, there exist homomorphisms $g_{\alpha}$ : $E_{\tau}(M)/M_{\alpha}\rightarrow F$ such that $\theta g_{\alpha}=\rho_{\alpha}$ . If
$kerg\beta\neq M/M_{\beta}$ for some $\beta\in A$ , choose an $M_{\gamma}$ such that $(M_{\gamma}+M_{\beta})/M_{\beta}$ is not
contained in $kerg\beta$ . Then $g\beta((M_{\gamma}+M_{\beta})/M_{\beta})$ is a $\tau$-injective submodule of $ker\theta$ ,
which contradicts the definition of a $\tau$-torsionfree cover. Therefore, we must have
$kerg_{\alpha}=M/M_{\alpha}$ for each $\alpha\in A$ , and hence $E_{\tau}(M)/M\cong img_{\alpha}$ is $\tau$-torsionfree,
which forces $M$ to be $\tau$-injective.

REMARK. The known sufficient condition for every R-module to have a $\tau-$

torsionfree cover is equivalent to the condition, the directed union of $\tau$-torsionfree
$\tau$-injective submodules of a given module is $\tau$-injective. (See [14, Theorem] and [7,
Proposition 42.9].) This latter condition is close to the necessary condition
obtained in Theorem 1.

COROLLARY 2. (T. Cheatham, personal letter). If every module has a $\tau-$

torsionfree cover, then any direct sum of $\tau$-cocritical $\tau$-injective modules is $\tau-$

injective.

Now we tum our attention toward computing $\tau$-torsionfree covers of
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modules. We recall that the ring homomorphism $R\rightarrow Q_{\tau}$ is a flat epimorphism if
$Q_{\tau}\otimes_{R}Q_{\tau}\cong Q_{\tau}$ and $Q_{\tau}$ is flat as a right R-module.

PROPOSITION 3. Let $i:R\rightarrow Q_{\tau}$ be a flat epimorphism of rings. If $\theta:F\rightarrow M$

is a $\tau$-torsionfree cover of a $Q_{\tau}$-module $M$, then $F$ is a $Q_{\tau}$ -module.

PROOF. Consider the diagram

$F$
$\rightarrow^{i\otimes 1}$

$Q_{\tau}\otimes_{1}F\downarrow^{R_{\otimes\theta}}$

$\theta$

$M$ $\leftarrow^{\mu}$
$Q_{\tau}\otimes_{R}M$

where $\mu$ is the multiplication map. Since $R\rightarrow Q_{\tau}$ is a flat epimorphism, $\mu$ is an
isomorphism, and hence $Q_{\tau}\otimes_{R}F\in \mathscr{F}$ . Since $\theta:F\rightarrow M$ is a $\tau$-torsionfree cover,
there exists $g:Q_{\tau}\otimes_{R}F\rightarrow F$ such that $\theta_{g}=\mu(1\otimes\theta)$ . Therefore, $\theta g(i\otimes 1)=\theta$ .
By the uniqueness of $\tau$-torsionfree covers, $g(i\otimes 1)$ must be an automorphism $\alpha$ of
$F$. Hence $Q_{\tau}\otimes_{R}F=(l\otimes 1)F\oplus ker\alpha^{-1}g$ . Since $R\rightarrow Q_{\tau}$ is a flat epimorphism,
the canonical map $Q_{\tau}\otimes_{R}F\rightarrow Q_{\tau}(F)$ is a monomorphism, and hence $F$ is es-
sential in $Q_{\tau}\otimes F$ . It follows $ker\alpha^{-1}g=0$ . Therefore, $i\otimes 1$ : $F\rightarrow Q_{\tau}\otimes F$ is an
isomorphism, so that $F$ is a $Q_{\tau}$ -module via $qf=q\otimes f$ .

Next we make an elementary observation that is useful in computing some $\tau-$

torsionfree covers of $Q_{\tau}$-modules.

PROPOSITION 4. Let $M$ be a $Q_{\tau}$-module. If $\Phi$ : $P\rightarrow M$ is a $Q_{\tau}$-projective
cover of $M$ and if $\theta$ : $F\rightarrow M$ is a $\tau$-torsionfree cover of $M$, then there is a R-
homomorphism $g:P\rightarrow F$ such that $\theta g=\Phi$ and $ F=img+ker\theta$ .

PROOF. Since $P$ is $\tau$-torsionfree, the definition of a $\tau$-torsionfree cover gives
the existence of $g:P\rightarrow F$ with the desired properties.

REMARKS. (1) If $g$ is an epimorphism, then $F\cong P/kerg$ and the homo-
morphism $\overline{\Phi}$ : $P/kerg\rightarrow M$ induced by $\Phi$ is a $\tau$-torsionfree cover of $M$.

(2) If $R\rightarrow Q_{\tau}$ is a flat epimorphism, then Propositions 3 and 4 show that $F$ is
a $Q_{\tau}$ -module and the homomorphism $g:P\rightarrow img$ is a $Q_{\tau}$ -projective cover.

We can now give our method for computing the $\tau$-torsionfree cover of a R-
submodule $N$ of a $Q_{\tau}$ -module $M$ such that $M$ has a $Q_{\tau}$ -projective cover. For
example, we can apply our method when $\tau$ has finite type (so that every R-
module has a $\tau$-torsionfree cover) and $Q_{\tau}$ is a left perfect ring (so that every $Q_{\tau^{-}}$
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module has a projective cover). We also note that if $\tau$ is not a perfect torsion
theory, then there are nonzero $\tau$-torsion modules that are R-submodules of $Q_{\tau^{-}}$

modules.
The method for computing the $\tau$-torsionfree cover of a given R-module $N$

consists of the following steps:
(1) Embed $N$ into a $Q_{\tau}$ -module $M$.
(2) Find the $Q_{\tau}$ -projective cover $\Phi$ : $P\rightarrow M$ of $M$.
(3) By Proposition 4, there is a homomorphism $g:P\rightarrow F$ with $\theta g=\Phi$ ,

where $\theta:F\rightarrow M$ is the $\tau$-torsionfree cover. Using the properties of a $\tau$-torsionfree
cover, compute $kerg$ . Since $img\cong P/kerg$ and $ F=img+ker\theta$ , then $F$ must be
very close to $P/kerg$ .

(4) Using the structure of $P,$ $M$ and $img$ , we determine $F$; the map
$\overline{\Phi}$ : $P/kerg\rightarrow M$ induced by $\Phi$ can be used to find the map $\theta:F\rightarrow M$ for the $\tau-$

torsionfree cover of $M$.
(5) Then the $\tau$-torsionfree cover for $N$ will be either the restriction of $\theta$ to

$\theta^{-1}(N)$ ,

$\theta:\theta^{-1}(N)\rightarrow N$ ,

or else an induced map of some easily found factor of $\theta^{-1}(N)$ ,

$\overline{\theta}:\theta^{-1}(N)/K\rightarrow N$ .
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