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Satoshi GoMYoO

Introduction

In [4], we realized subgroups of type As, A4 x A4 and A, x Es of the compact
simple Lie group of type Eg. In this paper, we shall realize subgroups of type Dg
of the compact and non-compact simple Lie groups of type Egs.

In [5], [6], and [11], Yokota and some members of his school found
all involutive automorphisms ¢ and realized subgroups G? of fixed points of
connected exceptional simple Lie groups G explicitly, which correspond to
Berger’s result of simple Lie algebras [2]. But in their results concerning sub-
groups of type Dg of Lie groups of type Eg, the definition of subgroups are not
clear and proof of isomorphism is very difficult in comparison with their other
results.

We improve those results in this paper. Our improvement make results that
are more simple and intelligible. Hence they are of widely applicable to sym-
metric spaces. Our results are as follows.

type G G°

ES ES Ss(16,C)

Eg (compact) (EE)® Ss(16) Theorem 6.6(1)

20 (Eg)™ Ss(16) Theorem 6.6(2)
(ES)™ Ss(8,8) x 2
(ES)™ Ss*(16) x 2 heorem 6.11(2)

Eg(_24) (E$)™n Ss(4,12) 6.0
(ES)Y Ss*(16) x 2 Theorem 6.11(1)

In §2, §3 and §4, we make a new realization of exceptional Lie algebras
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of type Eg. Since this new realization starts from the definition of spinor groups
directly, the final results will be made clearly understandable.

In §5, we define connected exceptional simple Lie groups G of type Es.

In §6, we find involutive automorphisms ¢ and realize subgroups G which
are isomorphic to semi-spinor groups.

Finally the author wishes to express his sincere thanks to Professor Ichiro
Yokota, who motivated the author to study this subject and to Professor Hiroshi
Asano and Professor Ryosuke Ichida for their valuable suggestions and constant
encouragement.

§1. Notations and Preliminaries

VC .= V@iV the complexification of a real vector space V, C:= RC.
7 : the complex conjugation of V¢ (resp. C™, M(n,C)) with respect to V
(resp. R™, M(n,R)).
I, : the m x m unit matrix.

-I, 0 0 -7
(D)o (3 )

SO(n,C):={AeM(n,C)|'dA = I,,det 4 = 1},
SO(n) := {4 € SO(n,C) |14 = A},
SO(p,q) :={4eSO(p+4q,C)|t(I,,qAl,q) = A},
S0*(2p) := {4 € SO(2p,C) |1(J,4J;") = 4},
so(n,C) :={X e M(n,C)|'X + X =0},
so(n) := {X e so(n,C)|1X = X},
so(p,q) = {X eso(p+q,C)|t(lp,¢XI,,4) = X},

50*(2p) := {X e s0(2p, C) | 1(J,XJ; ') = X}.

§1.1. Spinor Groups and Semi-spinor Groups ([1])

Let K =R or C and {ej,e,,...,e,} be the canonical basis of K". Let T be
the tensor algebra of K" and U the two-sided ideal of T generated as

xX®x+(x,x)l (xeK")

where (,) is the symmetric bilinear form of K" satisfying (e;,e;) =9, (Kro-
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necker’s delta). Define the Clifford algebra CI/(K") by
CI(K™"):=T/U.

We denote the multiplication of o, f € CI(K") by o - . It is clear that K and K"
can be naturally considered as subspaces of C/(K") and for x,y e K" we have

xX-y+y-x=-2xy).

It is known that spinor groups Spin(n) = Spin(n,R) and Spin(n,C) are
defined by

qg=12,3...,

Spin(n,K):={ a=aj -ay--ar, € CI(K") | % € K",
2
Hiqu(ai,ai) =1

The unit element of Spin(n,K) is 1 = —a-a (a€ K", (a,a) = +1) and the inverse
element of
x=a-ay---ay_1 - ay € Spin(n, K)
is
al = Qyq - Azg—1 - a2 - a1 € Spin(n, K).
The vector representation p : Spin(n,K) — SO(n,K) is given by

plax=a-x-a ! (xeKk").

It is known that Spin(n,K) is a covering group of SO(n,K) (double covering),
and Spin(n,K) (n > 3) is simply connected. Let

w=ey-e - €3y 1 ey c Spin(2n,K).
It is known that the centers of spinor groups are
z(Spin(2n+ 1,K)) = {1, -1} = Z>,
z(Spin(2,K)) = Spin(2,K),
z(Spin(4n, K)) ={1,-1} x {l,w} = Z, x Z, (n=>1),
z(Spin(4n + 2,K)) = {l,0,—1,—w} = Zsy (n=1)

and
Spin(n,K)/{1,—1} = SO(n,K) (n=1).
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Define semi-spinor groups Ss(4n) = Ss(4n,R) and Ss(4n,C) by
Ss(4n) := Spin(4n)/{1,w}, Ss(4n,C) := Spin(4n,C)/{l,w}.
It is known that
Ss(4n,K)#£S0(4n,K) (n = 3),
and
Ss(4n, K) =~ Spin(4n,K)/{1, —w}.

Let /,m be non-negative integers and /+m =n. Define the symmetric
bilinear form (,); , of R" satisfying

-1 (<i=j<l),
(e,-,ej),,m:={l (I+1<i=j<Il+m=n),
0 (i#J)

Let U;,, be the two-sided ideal of the tensor algebra 7 of R" generated by
x®x+(x,x);,1 (xeR").
Define the Clifford algebra CI(R"), , as
CI(R"); = T /Ui m.

We denote the multiplication of «,f e C/(R"),, by a-B. The spinor group
Spin(l,m) defined as

g=12,3...,
Spin(l,m) :== o =ay---ay € CI(R"), , | % € R",
2q
Hizl(ai’ai)[,m = 1

Clearly CI(R"),, = CI(R") and Spin(0,n) = Spin(n).
For any C-linear transformation K : C" — C”" and any element a = a; - a2 - - -
axm € Spin(n, C), we define K(a) € Spin(n, C) as

K(x) = K(ay) - K(a2) - - - K(azm) € Spin(n, C).

Now, we identify an element

o= (bl) : (bz) e Spin(l,m), (b;eR',c;e R™)

(1 2
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S (zb1> . (lbz) _ ( by ) . (sz) e Spin(l +m, C).
C1 (o9} —ia 12

Using this identification, we can consider the following

with

Spin(l,m) = {a € Spin(l + m, C) | Tl m(at) = o}.

Then Spin(/;m) is a real subgroup of Spin(/ +m,C).

Let /+m>3 and Im #0. It is known that SO(/,m) is not connected (it
has two connected components) and Spin(/,m) is connected. As same as in the
case of Spin(n), Spin(l/,m) is a double covering group of SO(/,m), (the connected
component of the identity of SO(/,m)). Furthermore Spin(1,2) and Spin(/,m)
(I,m > 2) are not simply connected, while Spin(1,m) (m > 3) is simply con-
nected.

Let / = m =0 mod 2. Since ) mo = (-1)'w = o, we see w e Spin(l,m). If
I+ m =0 mod 4, we define a real subgroup Ss(/,m) of Ss(I +m,C) by

Ss(I,m) := Spin(I,m) /{1, w}.

Furthermore, consider a double covering group of SO*(2m). It is known that
SO*(2m) is connected and not simply connected. Define

G := p~(S0*(2m)) = {a € Spin(2m, C) | p(x) € SO*(2m)}
= {x e Spin(2m, C) | t(Jmp(®)J;,") = p(a)}.
Since t(Jmp(a)J;!) = p(Jntx) and Ker p = {1}, we see
G = {0 € Spin(2m, C) | tJu(at) = +a} = G, UG-,

where G4 = {a e G|J,ta = +a}. It is clear that G. N G_ = ¢. Since tJ,, is an
involutive automorphism of Spin(2m, C), G, is connected ([7]). It is clear that G,
is closed, because tJ,, is continuous.

Now, we assume G_ # ¢. For any o e G, and 8, B’ € G_, we have a-f e G_
and B-f € G,. This shows G_ =G, -f (feG_) and G_ is closed and con-
nected. Moreover, we can prove that G is connected as follows. Let o€ G,,
BeG_ and 4 = p(a), B= p(B) € SO*(2m). There exists a continuous curve y :
I — SO*(2m) < SO(2m,C) (I =]0,1]) such that y(0) = 4 and y(1) = B. Hence,
we can choose a continuous curve j : I — Spin(2m, C) such that p(5(z)) = y(¢)
and 7(0) = «. From the definition of G, 7 = G is clear. Since p(5(1)) = (1) = B,
we see 7(1) = or —p. This shows G = G, UG_ is connected. This contradicts

G+ﬂé_=¢.
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Hence we see G_ = ¢ and G = G, is a connected simple Lie group. Thus we
can define a double covering group of SO*(2m) as follows:
Spin*(2m) := {a € Spin(2m, C) | 1S, (a) = }.

Clearly, Spin*(2m) is a real subgroup of Spin(2m,C). From the fact above,
Spin*(2m) is a connected simple Lie group. On the other hand, since
n1(SO*(2m)) = Z (m:o0dd) or Z x Z, (m:even) ([9]), Spin*(2m) is not simply
connected.

Since tJpw = (—=1)"ems1- -€2m-€1 - €p = (—l)m(—l)mza) =w, We see wE
Spin*(2m). Hence we define a real subgroup Ss*(4n) of Ss(4n,C) as

Ss*(4n) := Spin*(4n)/{1, w}.

§1.2. Vector Representation of Spin(n,K)

For 1 <i# j <n, define an element a;(t) of Spin(n,K) as

t .t
a;i(t) == —e; (cos 5+ sin iej)'

It is clear a;(0) = 1. Since a;(t) - o;(t2) = a;i(¢1 + 12), we see
{oi(2) € Spin(n,K) | t € R}
is a l-parameter subgroup of Spin(n,K). Since
x-y-x==20x,y)x+ (x,x)y, (x,yeK" < CI(K")),
we see
p(aii(t))e; = coste; —sinte;, p(a;(t))e; = sin te; + cos te;,

p(oi(t))ex = ex  (k #1, ).

§1.3. Cayley Algebra and Half-spinor Representations of so(8, C) ([3], [8])

Let € be the division Cayley algebra over R and €€ its complexification. We
denote the multiplication and the canonical conjugation of € (resp. €) by xy

and % (x,ye € (resp. €°)). The symmetric bilinear form of € (resp. €) is
defined by

(x,9) = 5 (7 + %),

Let {ep,el,...,e7} be the R-basis (resp. C-basis) of € (resp. €€) with the fol-
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lowing relation:
eoer =ereg =¢; (0<k<7), (eo=1, the unit element),
e,f:—eo (1<k<T7), ee=—eer 1<k#I1<7),
€lex; =e€3, e€1eq4 =es5, e85 =¢e7, €364 =¢7,
e€3es = €¢, €6€4 = €2, €6€7 =€,
& =ey, &=—e (k#0),

(ei,ej) =05 (Kronecker’s delta).

Let y be the automorphism of €€ satisfying

( )_ €i, i2071’2’39
NI =1 e, i=4,56,7.

Define the split Cayley algebra €’ by
C = {xeC|myx = x}
= {eOa el ) eZ7 63, ie4, ieS, ieﬁ? ie7}R-span‘

We identify €€ with C® by
7
Zx,-ei = I(XO,XI, v ,)C7).
i=0

Then we see
50(8,C) = 50(€€) = {X e gl(€°) | (Xx, y) + (x,Xy) =0 for x, ye €},
$0(8) = s0(€) = {X e gl(C) | (Xx, y) + (x, Xy) =0 for x,ye C},
s0(4,4) = s0(€') = {X e gl(€') | (Xx, y) + (x, Xy) =0 for x,yeC'}.
Define element G; (0 <i# j<7) of s0(8,C) and so(8) by
Gyer = Oper — diey.

For an element x € € or €, we denote the left (resp. right) multiplication by L,
(resp. Ry). Define element F;; (0 <i# j<7) of s0(8,C) or s0(8) as

1
Fj=3LoLs
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It is known that both
{Gjl0<i<j<7} and {F|0<i<j<7}

are C- (resp. R-) bases of so(8,C) (resp. so(8)). Furthermore, both
{Gyj, Gatiaj iGra |0 < i< j < 3,0 <k, I <3}

and
{Fyj, Fayiarj,iFras1|0<i< j<3,0<k,l<3}

are R-bases of so(4,4).

In the following statements of this subsection, we can replace so(8,C)
with so0(8) (resp. s0(4,4)) and €€ with € (resp. €').

Define C-linear transformations n, ¥ and v of so(8,C) as

nGy = Fj, kXx=Xx (xe€%), v=rx

It is known that n, k¥ and v are outer automorphisms of the Lie algebra so(8, C)
and

2 .
=k2=v=(m)*=id, n=vk=rxv’, Kk=nv="1'n,

V2 = KT, VIt = 7IV2 =KV = V2K' = KNTK = TIKT,

where id denotes the identity map. Hence we have

LemMma 1.1.

1 1 1
VGij = ELé"Lej’ vZGij = ERéiRejv anij = §Re,-Réj.

The following lemma is well known.

LEMMA 1.2. For X €s0(8,C) and x,y e €€, we have

X(xy) = (nXx)7 + x(vX y).
For x, ye(ic, we define a C-linear transformation x x y of €€ as

(xx y)z=(y,2)x—(x,2)y (z e(EC).

Clearly, we see xx y=—yx x, xx yeso(8, C) for any x,y€€C and ¢ x
e, =0, e, x ¢ =Gy (i # j). Hence we have the following
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LEMMA 1.3. For x,y,ze€ €€, the following relations are valid.

(1) K(x X y) = %X 7,
1 1 . 1

(2) n(x x y) = 2L <Ly ) 5 (x, y)id = 2 (LxLj — LyLy),
1 1 1

() V% ) = 5 LiLy =5 (% 1)id = § (LeLy = LyLy),
5 1 1 : 1

(4) vi(x x y) = ‘2’R5cRy ) (x, y)id = 4 (RzRy — R;Ry),
1 1 : 1

(5) va(x x y) = szR); ~3 (x,y)id = 3 (R<R; — RyR;),
(6) xP X z=7a(x x zy) — v*(Zx X ¥).

Proor. (1) It is easily obtained. (2) Since nGy; = Fj; and L, L; = id, the first
equality is clear. Using this, we have

4n(x x y) =2n(x x y) —2n(y X x)
= {LxL); - (X, y)ld} — {LyL;c — (y,x)id} = LXL}; — LyL,‘C

The relations (3), (4) and (5) are obtained in a way similar to (2). (6) Let p € €€.
Using (2) and (4), we have

2{n(x x zy) = v}(2x x y)}p
= x{(Zy)p} — (py)(2x) = x{(¥2)p} — (Py)(X2)
= x{2(z, p)y — (3p)z} — (py)(Xz)
= 2(z, p)xy — x{(P¥)z} — (py)(%2z) = 2(z, p)xy — 2(x, py)z
= 2(z, p)xy — 2(x¥, p)z = 2(xJ X z)p. O
The following is known.

LEMMA 1.4. The representation m is an even half-spinor representation of
s0(8, C) and the representation v is an odd half-spinor representation of so(8, C).

§2. Spinor Group Spin(16, K)
We identify (€€)? (resp. €%) with C'¢ (resp. R'®) as

t(xay) = t(x0axla"',-x77y0?y17"'7y7)
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where x =37, x;e, ¥ =], ye;. Using this identification, we can consider
that groups Spin(16,C) and Spin(16) are

, g=1,23...,
Spin(16,C) = { a = & - - - dzg € CI((€C)?) | @i € (E)? |
29 . .
\ Hizl(ai’ai) =1)

Spin(16) = {oz = - dy, € CI(€?)

q=123...
&,’G(gz,(di,&i) =1 ,
where (a),a;) = (a1,a2) + (b1,b2), a; ="(ai, bi) € c2.
Let
VF=CRCapEetxC.

V is a 128 dimensional real vector space.
In the following statements of this section, the replacement Spin(16, C) (resp.
s0(16,C), €€, VC, ... etc.) with Spin(16) (resp. s0(16), €, V,... etc.) is possible.

§2.1. Even Half-spinor Representations of Spin(16,C) and so(16,C) ([8])

DEFINITION 2.1.  We define a representation p of Spin(16,C) on VC as

() () oo

=(—a1(@x) @y —x® bi(byy),a1x ® bry — arx ® b1 y),

/() (5))ose

=(—a1z@ byw + arz ® biw, —a1(az) @w —z ® El(bzw)),

play -ay- - ayn—1 - Gam) = p(@ - @) - - - p(@2m—1 - G2m)-

Since p(1) = p((—a) - a) :p((:g) : (Z)) =1, p is well-defined.
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For i,j=0,1,...,7, define elements ocfj‘.(t) (k=1,2,3) of Spin(16,C) as

t .t
O‘ilj(’):( ) (Cosze -{—smzej)7 (i;éj)
0 0
0 0
a2 (1) = : t t (i # J)
v —e; cos 7 e +sin S ¢; ’

t
ao- ()7 2"
i - O t

S = ¢;

2
An element of so0(16, C) can be written by the sum of the following elements

A 0 0 u'v
0 B)’ —v'u 0

where A4, B e so(8,C) and u,ve €€ = C%. From §1.2, we have

0 0
— \0 G; )

G; O
o P (0) _0=(0 O>, ()

d 3 0 e;'e;
dtp(al]( )) 1= (—ej’e,- 0

PROPOSITION 2.2. The representation dp of s0(16,C) on VS is given as

Sfollows.
4 A 0
"\\o & (x®y,z@w)

=(#AXx® y+x @ nBy,vAz ® w + z ® vBw),

t
dp(( 0 uv))(x@y,z@w)z(%uz@vw,——%ﬁx@ﬁy).

—v'u 0

Proor. From [Lemma 1.1, we have

(G0
P 0 o )(x®y,z®w)

= P (x® 1,z ® W)

=0
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4 oo g om30)o) 9 (oo $o) )

=0
1 1._
= (iei(ejx) ® y,ze,-(ejz) ® w) = (nGjx ® y,vGiz @ w).
Similarly we have
0 O
dp 0 G (x® y,z@w) = (x @ nGjy,z ® vGyw).
i
Furthermore
0 e,-’ej
dp , (x®y,z®@w)
—€;°€; 0
=L @) (x® @ W)
d t_ .t
= pr (e,- (cos ieix) ® y+eiz®@sn Eejw,
'.@'_t_‘.+‘. £)®
— é;x ® sin 2e,y e (cos 2e,z w »
1 1_ _
= ieiz®ejw,—§eix®ejy . O

It is clear that the representation (Spin(16,C),p, V) is irreducible. Since
dim V¢ = 128, we see the following

PROPOSITION 2.3. The representation p (resp. dp) of the Lie group Spin(16,C)
(resp. the Lie algebra so0(16,C)) is an even half-spinor representation.

§2.2. Bilinear Map X

DEFINITION 2.4. Define an anti-symmetric bilinear map

X:VExVE —s0(16,C) (V xV — s0(16))
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(41 ® 71.0) X (12 ® 3, 0) ((J’u)’z)no(xl X X2) » X2)7T(()y1 y yz))
2 zZ V4
(0,21 @ w1) X (0,22 @ wp) = ((WI,WZ)VO( ) (z1 zz)vz(()m X Wz))’

(x®y,0)><(0,z®w)=< 0 %(xz)t(yw))

—3(y®) (x2) 0
LEMMA 2.5. For a€ Spin(16,C) and P,Q e VC, we have
Ad(@)(P x @) = p(0)(P x Q)p(a)~" = p(@)P x p(a)Q.

Proor. It is sufficient to prove for

of = 4 . % € Spln(167 C)? (ai7 ai) + (bi’bi) =1
b1 b2

in the following 3 cases. Case 1. P = (x; ® »;,0), @ = (x, ® »,,0). Case 2. P =
(0,21 ®wi), 0= (0,2 ®ws). Case 3. P=(x® »,0), 0= (0,zQ®w).

Case 1. Let

P@ P x 0pe ™ = (It 3 o 5

L Bl), p(a)Pxp(a)Q:(_,C2 5

Then we have
A1 = H{(y1, )@, n(x1 x x2)az) + (x1,%2) (b1, 7(yy X yy)b2)}ar x az
+ 4{(a1,a2) + (b1,02)}(y1, y2)n(x1 X x2)a2 X ay
— 2(y1, ya)m(x1 X x2)a1 X a1 — 2(yy, ¥o)7(x1 X X3)ay X aa
+ (y1, y2)m(x1 x x2)
and
Az = (y1, yp)n(a1(@x1) x a1(@2x2)) + (b1(b2y1), b1(b2,))7(x1 X x2)
+ (01, 01(b23,)) (a1 (@2x1) X x2) + (b1 (b2yy), y2)m(x1 X a1 (@2x2))
+ (b2y1, b2y,)V2 (@11 X @1%2) + (B1yy, b1y,)v?(G2x) X G2%7)

— (l;zyl,l;lyz)vz(c_llxl X ﬁzXz) — (Elyl,gzyz)vz(dle X 671X2).
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From [Lemma 1.3, we have

(¥1,b1(b237)) = (B1y1,b1y;) = 2(b1, 7(yy x y2)b2) + (¥1, ¥2)(b1, b2),

n(ay(@x1) X x2) — v (@x1 X @1x2) = a1 X x2(@x1)

= (x1,X2)a; X az + 2n(x; X x2)az X ay,

vi(ax, x axy) = n(x; x a(axy)) — xi(ax;) x a
= (a,a)n(x; X x2) — 2n(x) X x2)a X a,
n(ay(@x)) x a1(@x2)) = (a1, a1)(az, a2)n(x1 x x2) — 2(az, a2)n(x1 x x2)a1 X ay
— 2(ay,a))n(x) X x2)ax X az + 4(ay, az)n(x1 x x2)a x a

+4(ay, n(x) X x2)az)a; X as.

Using these, we see 4 = A;. We can obtain B} = B; and C; = C; similarly. We
can prove Cases 2 and 3 in a way similar to Case 1. O

This lemma implies the following

LEMMA 2.6. For X € s0(16,C) and P,Q € VC, we have
(X,Px Q] =dp(X)Px Q+ P xdp(X)Q.

LEmMMA 2.7. For Pie VS (i=1,2,3), we have
dp(P1 X P2)P3 + dp(Pz X P3)P1 + dp(P3 X P])Pz = 0.

Proor. It is sufficient to prove the following 4 cases. Case 1. P; =
(xi ® y;,0), (i=1,2,3). Case 2. P; = (x; ® y;,0), (i=1,2), P3 = (0,z® w). Case
3. P; = (O,Z,' ® W,'), (l = 1,2), P3 = (X® y,O) Case 4. P, = (0, z;i ® W,'),
(i=1,2,3).

CasE 1.
dp(P1 x P2)Py = ((y1, y2){(x1 X X2)x3} ® y3 + (x1,X2)x3 @ {(¥; X ¥2)y3},0)

= ((x2,x3)x1 @ (¥1, ¥2) y3 — (x3,x1)X2 ® (1, ¥2) V3

+ (X1, %2)X3 ® (2, ¥3) 1 — (X1, X2)%3 ® (3, ¥1) 2, 0)
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—((x3,x1)%2 ® (32, ¥3) 31 — (X1, %2)%3 ® (32, ¥3) )1
+ (%2, x3)%1 ® (¥3, ¥1)¥2 — (X2, X3)X1 ® (¥1, ¥2)3,0)
— ((x1,%2)x3 @ (¥3, ¥1) y2 — (X2, X3)%1 ® (¥3, Y1) Y2
+ (x3,%1)%2 @ (¥1, ¥2) ¥3 — (x3,X1)%2 ® (2, ¥3) 91, 0)
= —dp(P, x P3)Py — dp(P3 x Py)P;
Hence the formula can be proved in this case. The other cases can be probed in a
way similar to Case 1. (]
§2.3. Symmetric Bilinear Form in V€
Define a symmetric bilinear form (,) in V¢ as

((x1 ® y1,21 @ W), (X2 ® ;5,22 @ Wp)) = (x1,X2)(¥1, ¥2) + (21, 22) (W1, w2).

Then we have the following

LeMMA 2.8. For a e Spin(16,C), X € s0(16,C) and P,Q € VC, we have

(1) (p()P, p(2)Q) = (P, Q),
(2) (dp(X)P, Q) + (P,dp(X)Q) =,
(3) tr X(P x Q) = 2(dp(X)P, Q).

ProoF. (1) and (2) are clear. In order to prove (3), we consider the following
lemma.

LEMMA 2.9. For Ae€s0(8,C) and x,y € €€, we have
(4) tr An(x x y) = 2(nAdx, y),
(5) tr Av?(x x y) = 2(v24x, y).

PrOOF. Since s0(8,C) is spanned by a x b (a,be €F), it is sufficient to
prove for A =a x b. From [Lemma 1.3, we have

trAn(x x y) = Z(n(x x y)Ae;, e;)

i

—Z (x(yAei), e;) Z (x, y)(Ae;, e;)
2
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= 32 {b.e)(x(Fa), i) (@ e)(x(b), )
= 2 {(x(7@), ) ~ (x(7b), @)} = 3 {(a(Bx), y) — (b(ax), )}

1
= 2(2 (LoaLj — LpLs)x, J’) = 2(nAx, y).
Thus (4) is proved. (5) can be proved similarly. O

PrOOF OF LEMMA 2.8 (3). Let P=(x1 ® y;,z21®w;) and Q= (x2 ® y,,

A O

22®W2). FOI’X=(O B

) (4,B e s0(8,G)), we have

tr X (P x Q) = (yy, yy)tr An(x; x x3) + (w1, wo)tr Av?(z; x z3)
+ (x1,%2)tr Br(y; % ;) + (21, z2)tr Bv2(wy x wy)
= 2(y1, y,)(mAX1, X2) + 2(wy, wa) (v Az, 23)
+ 2(x1,%2)(mBYy, ;) + 2(21, 22) (V2 Bwy, wy)
= 2(dp(X)P, Q).

0 u'v
_pt

ForX:( v 0

) , we have

2r X (P x Q) = —tru'v'{(x122) (3, W2) — (x221) '(y2%1)}
— tro‘u{(x122) ‘(3 W2) — (x221) (¥, %1)}

= —(v, y1W2)(u, x122) + (v, y,W1) (4, x221)

— (u, x122) (v, y1W2) + (4, x221) (v, y,W1)

= 2(uzy, x2)(vw1, y3) — 2(iax1, 22) (0 yy, w2)

= 4(dp(X)P, Q). O

§3. Complex Exceptional Lie Algebra g¢ of Type Eg
§3.1. Lie Algebra g¢

Let
g=-s0(l6) D V.

g i1s a 248 dimensional real vector space.
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DEFINITION 3.1.  We define an anti-symmetric bilinear multiplication |,] in g
(resp. %) as

(X, P), (Y, Q)] = ([X, Y] - P x Q,dp(X)Q — dp(Y)P)

where X,Y € s0(16) (resp. s0(16,C)) and P,Qe V (resp. V°).
Lemma 3.2. g and g€ are Lie algebras with the multiplication [,).
PrROOF. We can prove the Jacobi identity using Lemmas and 2.7. O

§3.2. Simplicity of g and Type of g€

C

LemMma 3.3. g% is a simple Lie algebra.

PrOOF. Let a be a non-zero ideal of g¢. There are three cases to
be considered: Case 1. so(16,C)Na # {0}. Case 2. V Na# {0}. Case 3.
50(16,C)Na = {0} and V< Na = {0}.

Case 1. Since so(16,C)Na is a non-zero ideal of so(16,C), we see
s0(16, C) = a. Moreover we have

VC =dp(s0(16,C))VE = [50(16,C), V] = [a, V] < a.
Then we have a = g°.

Case 2. For any non-zero element Pe V¢ Na, we can choose an element
Qe VC such that P x Q #0. Hence we can reduce this case to the Case 1.

Case 3. Let ¢:g° — s0(16,C) denote the projection. Since g(a) is a non-
zero ideal of s0(16, C), we see g(a) = s0(16,C). Let V< =3 (V'©), be a weight
decomposition of the representation (so(16, C),dp, V¢) with respect to a Cartan
subalgebra D16 ¢) = $0(16,C). Choose an element H € b6y such that
o;(H) # 0 for any weight o;. Since H € b, 6,y < g(a), there exist a non-zero
element

P=) b,P,eVC
oy

where P, € (Vc)a’_ i1s a weight vector and b,, € C, such that (H, P) € a. Then we
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have
[(H,0),(H,P)] = (0,dp(H)P) = (0, > oci(H)ba,.Pa,) e V<Na={0}.

This shows o;(H)b, Py, =0. Since o;(H)#0, we see b, =0, ie, P=
>y by Py, = 0. This is a contradiction. O

Since dim¢c g¢ = 248, we have the following
THEOREM 3.4. g€ is a complex exceptional Lie algebra of type Es.
§3.3. Killing Form of g¢

PROPOSITION 3.5. The Killing form B of o€ is given by

Proor. Let us define a symmetric bilinear form as
Bl((X’P)a(Yv Q)) = trXY—z(Pa Q)

Using Cemma 2.8, we see that B, is gC-invariant. Since g© is simple, there exists
some o € C such that B= aB;. Since B(R,R) =60 and B;(R,R) =2 for R=

((l(g‘f g),O) e g¢, we see B = 30B,. n

§4. Real Forms of g©
§4.1. Involutions of g©

Let y be the automorphism of €€ defined in §1.2. Using this, we define a C-
linear transformation y, on g© as

A u'v
N o' B ,(X®y,Z®W)

A A w'u
_((—v’(yu) B ),(yx®y,yz®w)>.

It is clear y? = id. Furthermore, define C-linear transformations &, & and ¢ of
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as
(X, (x® y,z@w)) = (I3 XIgg,(—x ® y,z Q@ w)),
82(X’ (.X ® Y,z ® W)) = (18,8X18,8a (x ® Y, —z ® W))’

fX,(x® 1, 2@ W) = (X, (—Xx ® y,—z @ W)).

It is clear that ¢ =¢1&; = &6; and & = ¢3 = ¢ = id. From the definition, it is
clear that y,, ¢, & and ¢ are commutable with each other. Furthermore we have
the following Lemma through straightforward calculations.

LEMMA 4.1. y,, &1, & and ¢ are involutive automorphisms of g°.

Let J be a C-linear transformation of g€ defined by

JX,(x®y,zQw)) = (Js Xz, (y®x,w®z))

where Jg = ( I —18>. It is clear that J2 =id and &/ = Je. Furthermore we

have the following Lemma through straightforward calculations.
LemMa 4.2. J is an involutive automorphism of g°.

Since 7 is the complex conjugation, ty,, g, Te, Tyig, TYiE, tJ and teJ
(j = 1,2) are complex conjugate linear involutions of the complex Lie algebra g¢.
§4.2. Real Forms of g©
Since the Killing form B of g€ is negative definite on g,
g=(6°)={Reg|tR=R} =s0(16)® V

is a compact real form of g°.
Let us consider the R-subalgebra (g€)™ of g€ defined as

(g°)™ = {Reg"|re1R=R} = 50(8,8) ® (V )™,

where
(VO™ =iERCPER®C.

It is clear that (g€)™ is a real form of g€, i.e., ((g)™ )¢ = gC. Let

50(8,8) = f50(8,8) D Pso(s, 3)
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be a Cartan decomposition of so(8,8). The Cartan decomposition of (g©)™ is
given by

(gC)H?] =f@p, I= f50(8,8) @ f(VC)mla

P = Peors.8) D P(V )™,
where
vy ={(0,z@w)|z,we §},
Pvoy= = {('x® Y 0) | X, Y€ G’}

The Cartan involution is & and the Cartan index of (g€)™ is dimp — dim¥ =
128 — 120 = 8. Hence (g)™ is an exceptional non-compact real simple Lie

algebra of type Egsg). Similarly, let us consider the other real forms of g¢ as
follows:

(6©)” :={Reg“|7eR = R} = s0(16) @iV,
(Cartan involution ¢, Cartan index 8),
(6)™" := {Re g |1y R= R} = 50(4,12) @ (V)™
(Cartan involution ¢;y;, Cartan index —24),
(@) :={Reg"|tJR =R} =s0°(16) ® (V)7
(Cartan involution J, Cartan index —24),
(6°)™ := {Re g |teJR =R} =s0*(16) @ i(VE) ",

(Cartan involution &/, Cartan index 8),

where
(VO™ =i’ CPE' ®C,
(VC)rJ — (GC®€C)TJ @ (¢C®€C)TJ,

€ ®eHY = {Zm@yk D ®y=) ®rxk}-
k k k

Thus we have the following
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THEOREM 4.3. (1) g is a compact exceptional real Lie algebra of type Es.
(2) (€)™ = (g€)™ = (g€)™ is a non-compact exceptional real Lie algebra of

type Egg.
(3) (€)™ =~ (g)™ is a non-compact exceptional real Lie algebra of type

Eg(_24)-

§5. Exceptional Simple Lie Groups of Type Es ([5], [6], [10], [11])
Define a positive definite Hermitian inner product of g¢ as
(Ri,Ry) := —B(Ry,tR;), (R;egC).

We define a complex exceptional simple Lie group and a compact exceptional
simple Lie group of type Ejg as

ES = Autcg€,
E8 = {O( € ESC I <(XR1, dR2> = <R17 R2>}

For a non-compact exceptional simple Lie algebra egq of type Egy) (k =8
or —24), a non-compact connected exceptional simple Lie group Egy) can be
defined as

Eg(k) = AutReg(k)

= ((Bs) )™ = {a e E{ | o = aoy},

where oy is the complex conjugation of e = g¢ with respect to es(k)- Hence from

we have the following

THEOREM 5.1.

(1) Ey =~ (E)" :={a € E{ |ta = at},
(2) Egs) = (EC)™ = (ES)™ = (BES)™,
(3) Eg(—oa) = (ES)™" =~ (EE)™.

From definitions of the transformation ¢ and the real forms of g€, ¢ can be
considered as an element of the groups EC, E, Egsy and Eg(_).

§6. Subgroups of Type Dy

Clearly, the complex exceptional Lie algebra g¢ of type Eg has a classical
subalgebra so(16,C) of type Dg. For real exceptional Lie algebras of type Eg,
from §4.2 we see the following (1), (2) and (3).
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(1) The compact exceptional Lie algebra of type Eg has a classical subalgebra
s0(16) of type Ds.

(2) The non-compact exceptional Lie algebra of type Egs) has classical
subalgebras s0(16), s0(8,8) and so*(16) of type Ds.

(3) The non-compact exceptional Lie algebra of type Eg_»s has classical
subalgebras so(4,12) and so*(16) of type Ds.

In this section, we consider subgroups of type Dg of complex and real

exceptional Lie groups of type Ejg.

§6.1. Subgroups of Type Ds of ES
In this subsection, consider subgroup of ES;
(E{) = {a€ E{ |eoe = o} < Ey .
We define a mapping ¢ : Spin(16,C) — (EL)® as
p(z) (X, P) = (Ad(2)X, p(o)P).

The Lie algebra of (EL)® is isomorphic to (e§)® = so(16, C) = LieSpin(16, C).
Thus the differential of ¢ is surjective. Since (ES)° is connected ([7]), ¢ is
surjective. Since

z(Spin(16,C)) = {1, -1} x {1, w}

o=(5)-(5)-(5)- () ()~ (2)

and p(+1) = p(+w) = +id, we see Kerp = {1,w}. Hence we have the following

where

THEOREM 6.1. The complex exceptional Lie group EE of type Es has the
following subgroup of type Ds.

(ES)® = Ss(16, C) := Spin(16, C) /{1, w}.

§6.2. Preliminaries for Non-compact Case

Define elements w;, w, € Spin(16,C) as

() (5) (5 = (2) () ()
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It is clear that w{ =w? =1 and ®w = 0 - W, = w; - @;. Since
plw) =Lg, p(wy)=—IgeSO(16,C)
and
LeLe L, Le Lo Le Lo L, = id,c,

we see the following

LEMMA 6.2.
p(w1) = p(w) =&, @(—w1)=p(—w2) =&,
(1) =p(w) =1, o(-1)=9(-w)=-e
Furthermore we define elements w3, w4 € Spin(16,C) as
-(5)-(5)-(5)-(5)
=0 0 0 0)
(5)-(5)(3)(5)-(a)- ()~ ()
a)4 == . . . . . ... .
0 0 0 0 € €1 €7
It is clear that w? = w? =1 and w = w3 - w4 = w4 - w3. Since
plw3) =Is12, p(ws) = —1Is12 € SO(16,C)
and

Leo Le1 Lez Le3 = L€4L€5 L86Le7 =7

we have the following

LEmMMA 6.3.

p(w3) = p(wa) = 17, 9(—w3) = p(—w4) = &27;-

Define an element j € Spin(16,C) as

1 1 1

—_ e —¢ —€
.27 V2! N
J=11 1 1,

vz V2! N

It is clear that j? = 1.
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LEMMA 6.4.

J=w jroy=wy-j-w, w-j=j-w, w-j=j- w.

. s (3) (3) = (2). (2) -1
(5) () (=GN )

Hence
1, 1,
w...w_(eo). V2~ .(0)...<e7). V2 .(0
AN U IRV IS T AN
V20 V2
1, 1,
o v2 V20 .
=(-1) =J.
1 1
—ep —e7

V2 V2

Furthermore we see w;-j=w; -j- w% =j- w;.

LEMMA 6.5.

(- o) =@ -w)=J, ¢(=j- o) =09(-j w)=el.

Proor. From §1.2, we have p(j-w;) = Js. Hence
0(j - 1) (X, P) = (JsXJg ', p(j - 1) P).
1

0
Let j, = \? : (ek)- Then j-wy =j,-j, - j;, and we have

7
PUI® 3,2 @ W) = J=(~¥® ¥ + Ei(z @ W), ~Fx(x ® ) ~ 2 @),

where Ei(z ® w) = exz ® exw. Using this, we have

plJj-0)(x® y,z@w) =3(A(x® ), A(z @ w)),
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where

A=1-> EE+ Y EEE,

k<l 1<k<i<m

Throught the straightforward calculations, we see A(e; x ¢;) = 8¢; x ¢; for any
0 <i, j<7. Then we have ¢(j-w;) =J. Since ¢(w) =1 and ¢(—w) = ¢, others
are clear. O

§6.3. Subgroup Ss(16) of Eg and Ejyg

From §6.1, we have the following

THEOREM 6.6. (1) The compact exceptional Lie group (E{)" of type Eg has
the following subgroup of type Ds.

((ES)T)® = Ss(16) := Spin(16)/{1, w}.

(2) The non-compact exceptional Lie group (E{)™ of type Eyg) has the
Sfollowing subgroup of type Dg.

((E€)™)® = Ss(16) := Spin(16)/{1, w}.

ProoF. (1)
(BS)")* = (ES))" = {o(2) |« € Spin(16, C), tp(a)7 = p(o) }
= {p(a) |« € Spin(16)}
~ S5(16) := Spin(16) /{1, w}.
(2) (ES))" = ((EE)™)° is clear. a

§6.4. Subgroup Ss(8,8) x 2 of Ejy,

In this subsection, consider subgroup of (EL)™;
(ES)™) = {ae (BS)™ |exe = a} < (Eg)™ = Ey).
Since
((ES)™)" = (BS))™ = {p(a) |« € Spin(16, C), e179(a)te1 = p(o)}

= {p(2) |« € Spin(16, C), e1p(z2)e1 = p(2)},
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we consider
G = {a € Spin(16, C) | e1¢(ta)e; = () }.
Clearly, ((ES)™)° = ¢(G). Let « € G. From we have
o(x) = e19(tp)er = p(—wi)o(ta)p(—w;) = p(w; -t - @), (6,7 =1,2).
Since Kerg = {l,w} and - w; = w,, we see
Xx=@w-TA-W O o= W -To-W).
Hence we have
G =G UG,;, where G| = {a€e Spin(16,C)|w; - ta - w; = a},
G, = {f € Spin(16,C) | w1 - 1f - w = B}.
LEMMA 6.7. For ae Gy and B,B' € G,, we have
a-Be Gy, PB-B eG.
PROOF.
w-t(a-f)-or=w)-ta-1Tf-wr=w-T0-® W -TPwy;=0a-P,
o t(f-B)oy=w -B-tp o= -Bwrwr-tf oy =4-f. O
From we have j e G,. Clearly, G;N G, = ¢. Then we have

G,=G-j and G=GIUG, =G x{l,j} =G x2.

For
- o~ ~ . ~ a;
o=4dy-ay---ay,€ Spin(l6,C), a;,= ,
b;
we see
W -TA-W] =W -TA] - W] - @] - TAy - W] -+ - W] * Ty * O}
and

- - —1T4;
w) - ta; - w = Iy gta; = .
Tb,'
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Then, from §1.1, we see
G, = Spin(8,8) = {a € Spin(16, C) | Iy sto. = a}.

From Lemmas and 6.3, we see ¢(j) =Je. Since w e Spin(8,8) and
Ker ¢g,ins,8) = {1, 0}, we see

9(G) = Spin(8,8)/{1,w} x {1,0(j)} = Ss(8,8) x {1,Je}.

Thus we have the following

THEOREM 6.8. The non-compact exceptional Lie group (ESC)™ of type Eg )
has the following subgroup of type Ds.

((ES)™)* = Ss5(8,8) x {1,Je,} = S5(8,8) x 2.

§6.5. Subgroup Ss(4,12) of Eg_y4
In this subsection, consider subgroup of (EL)™7";
(ES)™m) = (ae (E)™ |oze = a} = (BS)™ = Ey_ay.
Since
((Eg)™™M)" = ((Eg)")™™
= {p(a) | o € Spin(16, C), y e17p(0)tery; = o(a)}
= {p(2) |« € Spin(16, C), y1810(tt)ery; = p(0)},
we consider
G' = {ae Spin(16,C) | y,z19(ta)e1y = ()}
From Lemma 6.3, the same as §6.4 we have the following
G' = G;UG;, where G| = {a € Spin(16,C) | w3 - 10 - w3 = },
G, = {B € Spin(16,C) | w3 - 18 - w4 = B}.
For
a=d -0 Gy € Spin(l6,C), & = (a,->’

W€ S€¢C

co3-w-w3:co3-r&1-a)3-a)3-1'512-603---603-1&2,,,-0)3
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and

~ ~ —yta;
w3 - Ta; - W3 = 14712‘L'a,~ = .
‘l.'b,'

Then, from §1.1, we see
G, = Spin(4,12) = {a € Spin(16, C) | In 1ot = at}.

It is known that the symmetric space (EC)™7”'/((EL)™"")® is simply connected
(9]). Then we have the following exact sequence.

21(E/E?) —— mo(E?) —— mo(E) —— mo(E/E?)

0

where E = (EL)™"". Then E® = ((EF)™")® is connected. On the other side we
see

(E$)™)" = 9(G") = 9(G) Up(G,)
and ¢(G{)N(G;) = ¢. Hence we have G, = ¢, G' = G| = Spin(4,12) and

(Eg)™")* = o(G)).
Since w € Spin(4,12) and Kerg|g,;,4 1) = {1, 0}, we see
¢(G') = p(G]) = Spin(4,12)/{1, w} = Ss(4,12).

Thus we have the following

THEOREM 6.9. The non-compact exceptional Lie group (ES)™7" of type
Eg(_24y has the following subgroup of type Ds.

(ES)™M)* =~ Ss(4,12).
§6.6. Subgroup Ss*(16) x 2 of Eg;) and Eg_y4
In this subsection, consider subgroups of (ES)™ and (EL)™;
(ES)Y) = {ae (EQ)Y |ee = o} = (E{)™Y = Eg_aa,

(ES)™) = {ae (EQ)™ |ene = a} = (ES)™ = Ey).
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It is clear that
((Esc)rej)e = (ESC)TJ)S-
Since
(BO)™)* = (ED))Y = {o(2) |« € Spin(16, C), Jrgp(a)t] = p(«)}
= {o(a) | o € Spin(16, C), Jo(ra)J = ¢(a)},
we consider
G" = {o € Spin(16,C) | Jo(ra)J = (o) }.
From Lemmas and 6.5, the same as §6.4 we have the following
G"=G/UGy, where G ={xe Spin(16,C)|j-w; -ta-w;-j=a},
G, ={BeSpin(16,C)|j- w1 - 1B w2-j=B}.
The same as Lemma 6.7, we have the following

LEMMA 6.10. For ae G; and B, B’ € G, we have
«-BeGy), B-B edGy.
From we see
jroptorwj=joy-j =0 -j =o.
ie., w; € Gj. Clearly, G/ NGj = ¢. Then we have
Gy =G/ -w and G =G/UG) =G} x {l,m} = G] x2.

For
, o 3 ) a;
a=a -ay--dwm € Spin(16,C), a,= ( ),

we see
Jroy-ta-o - j=j-wr-ta -0 jjortdy oy jej ot - 01 - j
and

. . C Jrd — —1b;
J -1 -1a;- Q@1 - J = JgTa; = wa; )

Then, from §1.1, we see

G| = Spin*(16) = {a € Spin(16, C) | Jgroe = a}.
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From [Lemma 6.2, we have ¢(w))=¢. Since e Spin*(16) and
Ker ¢l gin-16) = {1, 0}, we see

o(G") = Spin*(16)/{1,w} x {1,p(w;)} = Ss*(16) x {1, }.

Thus we have the following

THEOREM 6.11. (1) The non-compact exceptional Lie group (ESC)TJ of type
Eg(_24) has the following subgroup of type Ds.

(ES)™)® = Ss*(16) x {1,6,} = Ss*(16) x 2.

(2) The non-compact exceptional Lie group (ESC)“" of type Egs) has the
ollowing subgroup of type Ds.
Sfollowi b f D

(ES)™) = 85*(16) x {1,} = Ss*(16) x 2.
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