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1. Introduction

Recently, Bang-Yen Chen has introduced new type of Riemannian curvature
invariants and obtained sharp inequalities involving these invariants for arbitrary
submanifolds in Riemannian and Kaehlerian space forms. It is natural and
interesting to investigate and understand submanifolds which satisfy the equality
case of this type of inequalities, and such submanifolds have been investigated
by many geometers (cf. for instance, [2-6, 8-10, 12-16]). In this paper, we
investigate CR-submanifolds of complex hyperbolic spaces which satisfy the
equality case of one of Chen’s inequalities.

Let $M$ be an n-dimensional Riemannian manifold. Denote by $K(\pi)$ the
sectional curvature of $M$ associated with a plane section $\pi\subset T_{p}M,$ $p\in M$ . For
any orthonormal basis $e_{1},$

$\ldots,$
$e_{n}$ of the tangent space $T_{p}M$ , the scalar curvature $\tau$

at $p$ is defined to be

(1.1)
$\tau(p)=\sum_{i<j}K(e_{j}\wedge e_{j})$ .

Let $L$ be a subspace of $T_{p}M$ of dimension $r\geq 2$ and $\{e_{1}, \ldots, e_{r}\}$ an
orthonormal basis of $L$ . We define the scalar curvature $\tau(L)$ of the r-plane section
$L$ by

(1.2)
$\tau(L)=\sum_{\alpha<\beta}K(e_{\alpha}\wedge e_{\beta})$

, $1\leq\alpha,\beta\leq r$ .

For an integer $k\geq 0$ , denote by $\mathscr{S}(n, k)$ the finite set consisting of unordered
k-tuples $(n_{1}, \ldots, n_{k})$ of integers $\geq 2$ satisfying $n_{1}<n$ and $n_{1}+\cdots+n_{k}\leq n$ .
Denote by $\mathscr{S}(n)$ the set of k-tuples with $k\geq 0$ for a fixed $n$ .
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For each k-tuple $(n_{1}, \ldots, n_{k})\in \mathscr{S}(n)$ , Chen’s curvature invariant $\delta(n_{1}, \ldots, n_{k})$

introduced in [4,5,6] are given by

$\delta(n_{1}, \ldots, n_{k})(p)=\tau(p)-\inf\{\tau(L_{1})+\cdots+\tau(L_{k})\}$ ,

where $L_{1},$
$\ldots,$

$L_{k}$ run over all $k$ mutually orthogonal subspaces of $T_{p}M$ such that
$\dim L_{j}=n_{j},$ $j=1,$

$\ldots,$
$k$ .

Let $M$ be a submanifold in a Kaehler manifold $\tilde{M}$ . A subspace $V\subset T_{p}M$ is
called totally real if $JV\subset T_{p}^{\perp}M$ , where $T_{p}M$ and $T_{p}^{\perp}M$ denote the tangent space
and the normal space of $M$ at $p$ , respectively. A submanifold $M$ of $\tilde{M}$ is called a
CR-submanifold if there exists on $M$ a differentiable holomorphic distribution $\mathscr{D}$

such that its orthogonal complement $\mathscr{D}^{\perp}\subset TM$ is a totally real distribution [1].
For a $(2n+1)$ -dimensional CR-submanifolds with $2n$-dimensional maximal

holomorphic tangent subspace (i.e, $\dim \mathscr{D}^{\perp}=1$ ) in complex hyperbolic m-space
$CH^{m}(-4)$ of constant holomorphic sectional curvature-4, we have the following
sharp inequality involving the intrinsic invariant $\delta_{k}:=\delta(2, \ldots, 2)(2$ appears $k$

times) and the squared mean curvature ([5, 6]):

(1.3) $\delta_{k}\leq\frac{(2n+1)^{2}(2n-k)}{2(2n+1-k)}H^{2}-2(n^{2}+n-k)$ ,

where $H^{2}$ denotes the squared mean curvature.
Let $M$ be a real $2n$-dimensional Kaehler manifold. For a k-tuple

$(2n_{1}, \ldots, 2n_{k})\in \mathscr{S}(2n)$ , Chen has also introduced the complex $\delta$-invariants
$\delta^{c}(2n_{1}, \ldots, 2n_{k})$ by

$\delta^{c}(2n_{1}, \ldots, 2n_{k})=\tau-\inf\{\tau(L_{1}^{c})+\cdots+\tau(L_{k}^{c})\}$ ,

where $L_{1}^{c},$
$\ldots,$

$L_{k}^{c}$ run over all $k$ mutually orthogonal complex subspaces of $T_{p}M$ ,
$p\in M$ , with dimensions $2n_{1},$

$\ldots,$
$2n_{k}$ , respectively.

For $\delta_{n}^{c}$ $:=\delta^{c}(2, \ldots, 2)$ ( $2$ appears $n$ times) of a $2n$-dimensional Kaehler sub-
manifold in the complex Euclidean space, we have the following result from [5].

(1.4) $\delta_{n}^{c}\leq 0$ .

It was proved in [5] that a real hypersurface of a complex hyperbolic $(n+1)-$

space $CH^{n+1}(-4)$ satisfies the equality case of (1.3) if and only if the real
hypersurface is an open portion of a tubular hypersurface of radius $r\in R_{+}$ over a
totally geodesic $CH^{n/2}(-4)$ ($n+1$ is odd, $k=n$ ) or an open portion of a
horosphere in $CH^{n+1}(-4)$ .

B. Y. Chen and L. Vrancken has completely classified in [12] 3-dimensional
CR-submanifolds of complex hyperbolic spaces which satisfy the equality case of
(1.3) for $n=1$ and $k=1$ .
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A submanifold is said to be linearly full in $CH^{m}(-4)$ if it does not lie in any
totally geodesic complex hypersurface of $CH^{m}(-4)$ .

In this paper, in case $m>n+1$ , we investigate linearly full $(2n+1)-$

dimensional CR-submanifolds with $\dim \mathscr{D}^{\perp}=1$ in $CH^{m}(-4)$ which satisfy the
equality case of (1.3). Then we obtain $k=n$ . We are able to establish the explicit
representation of such submanifolds in an anti-de Sitter space-time via Hopf’s
fibration, in terms of Kaehler submanifolds of the complex Euclidean $(m-1)-$

space $C^{m-1}$ which satisfy the equality case of (1.4). Our result is a generalization
of Chen and Vrancken’s result with $n=1$ and $k=1$ ([12]). In case $m=n+2$ we
completely classify such submanifolds.

In section 2, we provide some fundamental equations on pseudo-Riemannian
submanifolds. In section 3, we present our main theorem. In section 4, we present
the sharp, general inequalities which relate the Chen invariants to the squared
mean curvature for submanifolds in Riemannian and Kaehlerian space forms. In
section 5, we present the inequality for $(2n+1)$ -dimensional CR-submanifolds
with $\dim \mathscr{D}^{\perp}=1$ in $CH^{m}(-4)$ , and give necessary conditions for the CR-
submanifolds to satisfy the equality case of the inequality. In the last section, we
provide the proof of our main theorem.

2. Preliminaries

Let $\tilde{M}$ be a pseudo-Riemannian manifold equipped with a pseudo-
Riemannian metric $\tilde{g}$ . Denote by $\tilde{\nabla}$ the metric connection of $\tilde{M}$ and by $\langle, \rangle$ the
inner product induced from the metric $\tilde{g}$ . A tangent vector $X$ to $\tilde{M}$ is called
space-like (respectively, light-like or time-like) if \langle X, $ X\rangle$ $>0$ or $X=0$ (respec-
tively, if \langle X, $ X\rangle$ $=0$ and $X\neq 0$ or if \langle X, $ X\rangle$ $<0$).

Let $M$ be an n-dimensional submanifold of $\tilde{M}$ . If the metric tensor of $\tilde{M}$

induces a pseudo-Riemannian metric (respectively, Riemannian metric) on $M$,
then $M$ is called a pseudo-Riemannian (respectively, Riemannian) submanifold of
$\tilde{M}$ . Let $\nabla$ denote the metric connection on $M$ with respect to the induced metric.

For vector fields $X,$ $Y$ tangent to the submanifold, we have the equation of
Gauss:

(2.1) $\tilde{\nabla}_{X}Y=\nabla_{X}Y+h(X, Y)$ ,

where $h$ is the second fundamental form of $M$ in $\tilde{M}$ . The mean curvature vector
$\vec{H}$ of the immersion is given by $\vec{H}=1/n$ trace $h$ . A submanifold is said to be
minimal if its mean curvature vector vanishes identically. Denote by $D$ the linear
connection induced on the normal bundle $T^{\perp}M$ of $M$ in $\tilde{M}$ . For each vector field
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$\xi$ normal to $M$, the Weingarten formula is given by

(2.2) $\tilde{\nabla}_{X}\xi=-A_{\xi}X+D_{X}\xi$ ,

where $A$ is the shape operator. It is well-known that the second fundamental form
and the shape operator are related by $\langle h(X, Y), \xi\rangle=\langle A_{\xi}X, Y\rangle$ .

Denote by $R$ and $\tilde{R}$ the Riemann curvature tensors of $M$ of $\tilde{M}$ , respectively,
and by $R^{D}$ the curvature tensor of the normal connection $D$ . Then the equation
of Gauss and Ricci are given respectively by

(2.3) $ R(X, Y;Z, W)=\tilde{R}(X, Y;Z, W)+\langle h(X, W), h(Y, Z)\rangle$

$-\langle h(X, Z), h(Y, W)\rangle$ ,

(2.4) $ R^{D}(X, Y;\xi, \eta)=\tilde{R}(X, Y;\xi, \eta)+\langle[A_{\xi}, A_{\eta}](X), Y\rangle$

for vectors $X,$ $Y,$ $Z,$ $W$ tangent to $M$ and $\xi,$
$\eta$ normal to $M$.

For the second fundamental form $h$ , we define the covariant derivative $\overline{\nabla}h$ of
$h$ with respect to the connection on $TM\oplus T^{\perp}M$ by

(2.5) $(\overline{\nabla}_{X}h)(Y, Z)=D_{X}(h(Y, Z))-h(\nabla_{X}Y, Z)-h(Y, \nabla_{X}Z)$ .

The equation of Codazzi is given by

(2.6) $(\tilde{R}(X, Y)Z)^{\perp}=(\overline{\nabla}_{X}h)(Y, Z)-(\overline{\nabla}_{Y}h)(X, Z)$ .

The Riemann curvature tensor of a complex space form $\tilde{M}(4\epsilon)$ of constant
holomorphic sectional curvature $ 4\epsilon$ takes the form:

(2.7) $\tilde{R}(X, Y)Z=\epsilon\{\langle Y, Z\rangle X-\langle X, Z\rangle Y+\langle JY, Z\rangle JX-\langle JX, Z\rangle JY$

$+2\langle X, JY\rangle JZ\}$ ,

where $J$ denotes the almost complex stmcture of $\tilde{M}(4\epsilon)$ .

3. Statement of Main Theorem

Consider the complex number $(m+1)$ -space $C_{1}^{m+1}$ endowed with the pseudo-
Euclidean metric go given by (for the details, cf. [11, 17])

(3.1) $g0=-dz_{0}d\overline{z}_{0}+\sum_{j=1}^{m}dz_{j}d\overline{z}_{j}$ ,

where $\overline{z}_{k}$ denotes the complex conjugate of $z_{k}$ .
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On $C_{1}^{m+1}$ we define

(3.2) $(z, w)=-z_{0}\overline{w}_{0}+\sum_{k=1}^{m}z_{k}\overline{w}_{k}$ .

Put

(3.3) $H_{1}^{2m+1}(-1)=\{z=(z_{0}.z_{1}\ldots..z_{m})\in C_{1}^{m+1} : (z, z)=-1\}$ ,

Then $H_{1}^{2m+1}(-1)$ is a real hypersurface of $C^{m+1}$ whose tangent space at $ z\in$

$H_{1}^{2m+1}(-1)$ is given by $T_{Z}H_{1}^{2m+1}(-1)=\{w\in C^{m+1} : {\rm Re}(z, w)=0\}$ . It is known
that $H_{1}^{2m+1}(-1)$ together with the induced metric $g$ is a pseudo-Riemannian
manifold of constant sectional curvature $-1$ , which is known as an anti-de Sitter
space time.

We put

$H_{1}^{1}=\{\lambda\in C:\lambda\overline{\lambda}=1\}$ .

Then we have an $H_{1}^{1}$ -action on $H_{1}^{2m+1}(-1)$ given by $z\mapsto\lambda z$ . At each point $z$

in $H_{1}^{2m+1}(-1)$ , the vector $iz$ is tangent to the flow of the action. Since $(, )$ is
Hermitian, we have $(iz, iz)=-1$ . Note that the orbit is given by $x(t)=e^{it}z$ and
$dx(t)/dt=ix(t)$ . Thus the orbit lies in the negative definite plane spanned by $z$

and $iz$ . The quotient space $ H_{1}^{2m+1}/\sim$
’ under the identification induced from the

action, is the complex hyperbolic space $CH^{m}(-4)$ with constant holomorphic
sectional curvature $-4$ . The almost complex structure $J$ on $CH^{m}(-4)$ is induced
from the canonical almost complex structure $J$ on $C_{1}^{m+1}$ , the multiplication by $i$,
via the totally geodesic fibration:

(3.4) $\pi:H_{1}^{2m+1}(-1)\rightarrow CH^{m}(-4)$ .

The main result of this paper is the following.

MAIN THEOREM. Let $U$ be a domain of $C^{n}$ and $\Psi$ : $U\rightarrow C^{m-1}$ be a hol-
omorphic isometric immersion in $C^{m-1}$ satisfying the equality case of (1.4). Define
$z:R^{2}\times U\rightarrow C_{1}^{m+1}$ by

(3.5) $z(u, t, w_{1}, \ldots, w_{n})=(-1-\frac{1}{2}|\Psi|^{2}+iu,$ $-\frac{1}{2}|\Psi|^{2}+iu,$ $\Psi)e^{it}$ .

Then $(z, z)=-1$ and the image $z(R^{2}\times U)$ in $H_{1}^{2m+1}$ is invariant under the group
action of $H_{1}^{1}$ . Moreover the quotient space $z(R^{2}\times U)/\sim is$ a $(2n+1)$ -dimensional
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CR-submanifold with $\dim \mathscr{D}^{\perp}=1$ of $CH^{m}(-4)$ which satisfies the equality case of
(1.3) for $k=n$ .

Conversely, in case $m>n+1$ , up to rigid motions of $CH^{m}(-4)$ , every linearly
full $(2n+1)$ -dimensional CR-submanifold with $\dim \mathscr{D}^{\perp}=1$ of $CH^{m}(-4)$ satisfying
the equality of (1.3) is obtained in such way with $k=n$ .

4. Some Inequalities

Let $M$ be a submanifold of an m-dimensional Kaehlerian space form $\tilde{M}^{m}(4\epsilon)$

with constant holomorphic sectional curvature $ 4\epsilon$ . For any vector $X$ tangent to $M$

we put $JX=PX+FX$ , where $PX$ and $FX$ are tangential and normal com-
ponents of $JX$ , respectively. For a subspace $L\subset T_{p}M$ of dimension $r$ we put

$\Psi(L)=\sum_{1\leq i<J\leq r}\langle Pu_{i}, u_{j}\rangle^{2}$
.

where $\{u_{1}, \ldots, u_{r}\}$ is an orthonormal basis of L. $\Psi(L)$ is an well-defined number
which is independent of the choice of the orthonormal basis $\{u_{1}, \ldots, u_{r}\}$ .

For each $(n_{1}, \ldots, n_{k})\in \mathscr{S}(n)$ , let $c(n_{1}, \ldots, n_{k})$ and $b(n_{1}, \ldots, n_{k})$ denote the
constants given by

(4.1) $c(n_{1}, \ldots, n_{k})=\frac{n^{2}(n+k-1-\sum n_{j})}{2(n+k-\sum n_{j})}$ ,

(4.2) $b(n_{1}, \ldots, n_{k})=\frac{1}{2}(n(n-1)-\sum_{j=1}^{k}n_{j}(n_{j}-1))$ .

We also need the following results from $[4, 5]$

LEMMA 4.1 (General Inequalities). Given an n-dimensional submanifold $M$ in
a Kaehlerian space form $\tilde{M}^{m}(4\epsilon)$ , we have

(4.3) $\tau-\sum_{i=1}^{k}\tau(L_{j})\leq c(n_{1}, \ldots, n_{k})H^{2}+b(n_{1}, \ldots, n_{k})\epsilon+\frac{3}{2}\Vert P\Vert^{2}\epsilon-3\epsilon\sum_{i=1}^{k}\Psi(L_{i})$

for any k-tuple $(n_{1}, \ldots, n_{k})\in \mathscr{S}(n)$ . The equality case of inequality (4.3) holds at a
point $p\in M$ if and only $lf$, there exists an orthonormal basis $e_{1},$

$\ldots,$
$e_{2m}$ at $p$, such

that
(a) $L_{j}=Span\{e_{n_{1}+\cdots+n_{j- 1+1}}, \ldots, e_{n_{1}+\cdots+n_{j}}\}$ ,
(b) the shape operators of $M$ in $\tilde{M}^{m}(4\epsilon)$ at $p$ take the following forms:
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(4.4) $A_{r}=\left\{\begin{array}{lllll}A_{1}^{r} & 0 & 0 & & 0\\| & | & | & & |\\0 & A_{k}^{r} & 0 & & 0\\0 & 0 & \mu_{r} & & 0\\| & | & | & . & |\\0 & 0 & 0 & & \mu_{r}\end{array}\right\}$ ,

$r=n+1,$ $\ldots,$
$2m$ ,

where $A_{r}:=A_{e_{r}}$ and each $Af$ is a symmetric $n_{j}\times n_{j}$ submatrix such that

(4.5) trace $(A_{1}^{r})=\cdots=trace(A_{k}^{r})=\mu_{r}$ .

PROPOSITION 4.2. Let $M$ be a (real) $2n$-dimensional Kaehler submamfold of
a Kaehlerian space form $\tilde{M}^{m}(4\epsilon)$ . Then, for any k-tuple $(2n_{1}, \ldots, 2n_{k})\in \mathscr{S}(2n)$ , the
complex $\delta$-invarian $t\delta^{c}(2n_{1}, \ldots, 2n_{k})$ satisfies

(4.6) $\delta^{c}(2n_{1}, \ldots, 2n_{k})\leq 2(n(n+1)-\sum_{j=1}^{k}n_{j}(n_{j}+1))\epsilon$ .

The equality case of inequality (4.6) holds at a point $p\in M\iota f$ and only $lf$, there
exists an orthonormal basis $e_{1},$

$\ldots,$
$e_{2m}$ at $p$, such that $e_{1},$

$\ldots,$
$e_{2n}$ are tangent to $M$

and $e_{2l}=Je_{2l-1}(1\leq l\leq k)$ and the shape operators of $M$ in $\tilde{M}^{m}(4\epsilon)$ at $p$ take the
following forms:

(4.7) $A_{r}=\left\{\begin{array}{llll}A_{1}^{r} & 0 & 0 & 0\\| & | & | & |\\0 & A_{k}^{r} & 0 & 0\\0 & 0 & 0 & 0\\| & | & | & |\\0 & 0 & 0 & 0\end{array}\right\}$ ,

$r=2n+1,$ $\ldots,$
$2m$ ,

where each $A_{j^{r}}$ is a symmetric $(2n_{j})\times(2n_{j})$ submatrix with zero trace.

By the property of the second fundamental form of a Kaehler submanifold
of a Kaehler manifold (cf. [18]) we have the following Proposition.
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PROPOSITION 4.3. Every Kaehler hypersurface of $\tilde{M}^{n+1}(4\epsilon)$ satisfies
$\delta_{n}^{c}=2(n^{2}+n-2k)\epsilon$ .

PROOF. Let $M$ be a Kaehler hypersurface in $\tilde{M}^{n+1}(4\epsilon)$ . Since $JA_{2n+1}=$

$-A_{2n+1}J$ , at each point $p$ of $M$, we can choose an orthonormal basis $e_{1},$ $Je_{1},$
$\ldots$ ,

$e_{n},$ $Je_{n}$ of $T_{p}(M)$ with respect to which the shape operator $A_{2n+1}$ is of the
following form:

(4.8) $A_{2n+1}=[^{\lambda_{0^{1}}}$

$-\lambda_{1}$

$\lambda_{n}$

$-\lambda_{n}0$ ,

It is well known that the shape operators of $M$ satisfy

(4.9) $A_{Je_{2n+1}}=JA_{2n+1}$ .

From (4.8) and (4.9), we have

(4.10) $A_{je_{2n+1}}=\left\{\begin{array}{llll}0 & \lambda_{l} & & 0\\\lambda_{l} & 0 & & \\ & & 0 & \lambda_{n}\\0 & & \lambda_{n} & 0\end{array}\right\}$ .

It follows from (4.8), (4.10) and Proposition 4.2 that $M$ satisfies the equality case
of (4.6) for a n-tuple $(2, \ldots, 2)\in \mathscr{S}(2n)$ . $\square $

5. Some Lemmas

First we recall the following result on CR-submanifolds from [7].

LEMMA 5.1. Let $M$ be a CR-submamfold of a Kaehler manifold $\tilde{M}$ . Denote
by $T^{\perp}M=J\mathscr{D}^{\perp}\oplus v$ the orthogonal decomposition of the normal bundle, where $\mathscr{D}^{\perp}$

is the totally real distribution and $v$ a complex subbundle of $T^{\perp}M$ . We have

(5.1) $\langle\nabla_{U}Z, X\rangle=\langle J(A_{JZ}U), X\rangle$ ,

(5.2) $A_{JZ}W=A_{JW}Z$ ,

(5.3) $A_{J\xi}X=-A_{\xi}JX$ ,
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for vector fields $Z,$ $W$ in $\mathscr{D}^{\perp},$
$\xi$ in $v,$ $U$ in $TM$ and vector field $X$ in the holomorphic

distribution $\mathscr{D}$ .

We also need the following result using Lemma 4.1

LEMMA 5.2. Let $x:M\rightarrow CH^{m}(-4)$ be a $(2n+1)$ -dimensional CR-

submamfold with $\dim \mathscr{D}^{\perp}=1$ . Then

(5.4) $\delta_{k}\leq\frac{(2n+1)^{2}(2n-k)}{2(2n+1-k)}H^{2}-2(n^{2}+n-2k)$

Equality sign of (5.4) holds for some $klf$ and only $\iota f$, there exists an
orthonormal basis $e_{1},$

$\ldots,$
$e_{2m}$ at $p$, such that $e_{1},$

$\ldots,$ $e_{2n+1}$ are tangent to $M$ and
$e_{l}=Je_{2l-1}(1\leq l\leq k)$ and the shape operators of $M$ in $\tilde{M}^{m}(4\epsilon)$ at $p$ take the
following forms:

(5.5) $A_{r}=\left\{\begin{array}{llll}A_{l}^{r} & 0 & 0 & 0\\| & | & | & |\\0 & A_{k}^{r} & 0 & 0\\0 & 0 & \mu_{r} & 0\\| & | & | & |\\0 & 0 & 0 & \mu_{r}\end{array}\right\}$ ,

$r=2n+2,$ $\ldots,$
$m$ ,

where each $Af$ is a symmetric $2\times 2$ submatrix such that

(5.6) trace $(A_{1}^{r})=\cdots=trace(A_{k}^{r})=\mu_{r}$ .

PROOF. For mutually orthonormal plane sections $L_{1},$
$\ldots,$

$L_{k}$ , we have

$\Vert P\Vert^{2}-2\sum_{j=1}^{k}\Psi(L_{j})\geq 2n-2k$ ,

with equality holding if and only if $L_{1},$
$\ldots,$

$L_{k}$ are complex planes. Combining
this and (4.3) yields (5.4). $\square $

We also need the following lemmas.

LEMMA 5.3. Let $x:M\rightarrow CH^{m}(-4)$ be a $(2n+1)$ -dimensional CR-

submamfold with $\dim \mathscr{D}^{\perp}=1$ . If $M$ satisfies the equality case of (5.4), then the
mean curvature vector $\vec{H}$ lies in $J\mathscr{D}^{\perp}$ .
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$PR\infty F$ . If $m=n+1$ , there is nothing to prove. So, we assume $m>n+1$ .
Hence, there is a complex subbundle $v$ of the normal bundle perpendicular to
$J\mathscr{D}^{\perp}$ such that $T^{\perp}M=J\mathscr{D}^{\perp}\oplus v$ . Let $\{e_{1}, \ldots, e_{2m}\}$ be an orthonormal frame field
on $M$ mentioned in Lemma 5.2. Then from (5.3) for a nonzero vector field $\xi\in v$ ,

$\langle A_{\xi}e_{1}, e_{1}\rangle+$ \langle $A_{\xi}Je_{1}$ , Je $ 1\rangle$ $=\langle A_{J\xi}Je_{1}, e_{1}\rangle-\langle A_{J\xi}e_{1}, Je_{1}\rangle=0$ .

Therefore the mean curvature vector $\vec{H}$ lies in $J\mathscr{D}^{\perp}$ . $\square $

LEMMA 5.4. Let $x:M\rightarrow CH^{m}(-4)$ be a linearly full $(2n+1)$ -dimensional

CR-submamfold with $\dim \mathscr{D}^{\perp}=1$ . If $m>n+1$ and $M$ satisfies the equality case
of (5.4), then $k=n$ and, with respect to some suitable orthonormal frame field
$\{e_{1}, \ldots, e_{2m}\}$ , the second fundamental form of $M$ in $CH^{m}(-4)$ satisfies

$h(e_{2r-1}, e_{2r-1})=Je_{2n+1}+\phi_{r}\xi_{r}$ , $h(e_{2r}, e_{2r})=Je_{2n+1}-\phi_{r}\xi_{r}$ ,

(5.7) $h(e_{2r-1}, e_{p})=0$ , $h(e_{2r}, e_{q})=0$ , $h(e_{2r-1}, e_{2r})=\phi_{r}J\xi_{r}$ ,

$h(e_{l}, e_{2n+1})=0$ , $h(e_{2n+1}, e_{2n+1})=2Je_{2n+1}$ ,

where $r=1,$
$\ldots,$

$n,$ $l=1,$
$\ldots,$

$2n$ and $p,$ $q\not\in\{2r-1,2r\}$ and $\phi_{r}$ are functions and $\xi_{r}$

are in $v$ .

PROOF. Let $\{e_{1}, \ldots, e_{2m}\}$ be an orthonormal frame field on $M$ mentioned
in Lemma 5.2 such that $e_{2n+2}$ is parallel to the mean curvature vector field and
$\{e_{1}, \ldots, e_{2n+1}\}$ diagonalize the shape operator $A_{2n+2}$ . Under the hypothesis, we
have $\vec{H}\in J\mathscr{D}^{\perp}$ according to Lemma 5.3. Without loss of generality we may
assume that $Je_{2n+1}=e_{2n+2}$ , and moreover lemma 5.2 implies $h(X, e_{2n+1})\in J\mathscr{D}^{\perp}$

for any $X$ tangent to $M$. Hence, using

$-A_{2n+2}X+D_{X}(Je_{2n+1})=\tilde{\nabla}_{X}(Je_{2n+1})=J(\nabla_{X}e_{2n+1})+Jh(X, e_{2n+1})$ ,

we obtain $D_{X}(Je_{2n+1})\in J\mathscr{D}^{\perp}$ for any $X\in TM$ . Since $J\mathscr{D}^{\perp}$ is of rank one and
$Je_{2n+1}$ is of unit length, this yields $D(Je_{2n+1})=0$ . Thus, $Je_{2n+1}$ is a parallel
normal vector field. The Coddazi equation yields

(5.8) $\langle\tilde{R}(X, Y)Z, Je_{2n+1}\rangle=\langle(\nabla_{X}A_{2n+2})Y-(\nabla_{Y}A_{2n+2})X, Z\rangle$

for $X,$ $Y,$ $Z$ tangent to $M$.
On the other hand, since

$R(X, Y)Z=-\langle Y, Z\rangle X+\langle X, Z\rangle Y-\langle JY, Z\rangle JX+\langle JX, Z\rangle JY$

$+2\langle JX, Y\rangle JZ$ ,
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(5.8) becomes

(5.9) $(\nabla_{X}A_{2n+2})Y-(\nabla_{Y}A_{2n+2})X=-\langle X, e_{2n+1}\rangle PY+\langle Y, e_{2n+1}\rangle PX$

$+2\langle PX, Y\rangle e_{2n+1}$ .

Next, by differentiating $J(Je_{2n+1})=-e_{2n+1}$ covariantly and by comparing the
tangential and normal parts, we get

(5.10) $\nabla_{X}e_{2n+1}=PA_{2n+2}X$ .

Further, by differentiating $A_{2n+2}e_{2n+1}=\mu_{2n+2}e_{2n+1}$ covariantly and using
(5.10) we obtain

$(\nabla_{X}A_{2n+2})(e_{2n+1})+A_{2n+2}PA_{2n+2}X=(X\mu_{2n+2})e_{2n+1}+\mu_{2n+2}PA_{2n+2}X$

and hence,

$\langle(\nabla xA_{2n+2})Y, e_{2n+1}\rangle+\langle A_{2n+2}PA_{2n+2}X, Y\rangle$

$=(X\mu_{2n+2})\langle e_{2n+1}, Y\rangle+\mu_{2n+2}\langle PA_{2n+2}X, Y\rangle$ .

Thus

$\langle(\nabla_{X}A_{2n+2})Y, e_{2n+1}\rangle-\langle(\nabla_{Y}A_{2n+2})X, e_{2n+1}\rangle+2\langle A_{2n+2}PA_{2n+2}X, Y\rangle$

$=(X\mu_{2n+2})\langle e_{2n+1}, Y\rangle-(Y\mu_{2n+2})\langle e_{2n+1}, X\rangle$

$+\mu_{2n+2}\langle PA_{2n+2}X, Y\rangle-\mu_{2n+2}\langle PA_{2n+2}Y, X\rangle$ .

This and (5.9) yield

(5. 11) $ 2\langle PX, Y\rangle+2\langle A_{2n+2}PA_{2n+2}X, Y\rangle$

$=(X\mu_{2n+2})\langle e_{2n+1}, Y\rangle-(Y\mu_{2n+2})\langle e_{2n+1}, X\rangle$

$+\mu_{2n+2}\langle PA_{2n+2}X, Y\rangle-\mu_{2n+2}\langle PA_{2n+2}Y, X\rangle$ .

We assume that $k<n$ . Then we have

$A_{2n+2}e_{2n-1}=\mu_{2n+2}e_{2n-1}$ , $A_{2n+2}$Je$2n-1=\mu_{2n+2}Je_{2n-1}$ .

By choosing $X=e_{2n-1}$ , $Y=Je_{2n-1}$ , We have $2+2\mu_{2n+2}^{2}=2\mu_{2n+2}^{2}$ . This is a
contradiction. Therefore, $k=n$ .

On the other hand by the equation (2.7), we have

(5. 12) $\tilde{R}(X, Y;Je_{2n+1}, \xi)=R^{D}(X, Y;Je_{2n+1}, \xi)=0$
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by virtue of $D(Je_{2n+1})=0$ . Hence, the equation of Ricci yields $[A_{Je_{2n+1}}, A\xi]=0$

for any $\xi\in v$ . We put $A_{2n+2}e_{2k-1}=\alpha_{k}e_{2k-1},$ $A_{2n+2}Je_{2k-1}=\beta_{k}Je_{2k-1}$ .
If $\alpha_{k}\neq\beta_{k}$ , for any $k(k=1, \ldots, n)$ , the shape operators take the following

forms:

(5.13) $A_{r}=\left\{\begin{array}{llllll}\gamma_{l}^{r} & & & & & 0\\ & -\gamma_{l}^{r} & & & & \\ & & . & & & \\ & & & \gamma_{n}^{r} & & \\0 & & & & -\gamma_{n}^{r} & 0\end{array}\right\}$ ,

$r=2n+3,$ $\ldots,$
$2m$ .

Then, for any $\xi\in v$ , (5.3) yields $A_{J\xi}e_{2k-1}=-A_{\xi}Je_{2k-1}$ . Combining this with
(5.13) we have $A_{2n+3}=\cdots=A_{2m}=0$ . Since $Je_{2n+1}$ is a parallel normal vector
field, this implies that $M$ is contained in a totally geodesic complex hyperbolic
space $CH^{n+1}(-4)$ of $CH^{m}(-4)$ . This is a contradiction. Hence, there exist
orthonormal vectors $\{e_{2k-1}, Je_{2k-1}\}$ such that $\alpha_{k}=\beta_{k}$ . Then by choosing
$X=e_{2k-1},$ $Y=Je_{2k-1}$ , from (5. 11) we have

$2+2\alpha_{k}^{2}=2\alpha_{k}\mu_{2n+2}$ ,

$2\alpha_{k}=\mu_{2n+2}$ .

Replace $e_{2n+1}$ by $-e_{2n+1}$ if necessary, we have $\alpha_{k}=1,$ $\mu_{2n+2}=2$ . If there exist
orthonormal vectors $\{e_{2j-1}, Je_{2j-1}\}$ such that $\alpha_{j}\neq\beta_{j}$ , by choosing $X=e_{2j-1},$ $Y=$

$Je_{2j-1}$ , we have
$2+2\alpha_{j}\beta_{j}=2(\alpha_{j}+\beta_{j})$ ,

$\alpha_{j}+\beta_{j}=2$ .

Hence, we have $\alpha_{j}=\beta_{j}=1$ . This is a contradiction. Therefore, for any $k$

$(k=1, \ldots, n),$ $\alpha_{k}=\beta_{k}=1$ and $\mu_{2n+2}=2$ . $\square $

6. Proof of the Main Theorem

Let $U$ be a domain of $C^{n}$ and $\Psi$ : $U\rightarrow C^{m-1}$ be a holomorphic isometric
immersion in $C^{m-1}$ satisfying the equality case of (1.4). Define $ z:R^{2}\times U\rightarrow$

$C_{1}^{m+1}$ by

(6.1) $z(u, t, w_{1}, \ldots, w_{n})=(-1-\frac{1}{2}|\Psi|^{2}+iu,$ $-\frac{1}{2}|\Psi|^{2}+iu,$ $\Psi)e^{it}$ .
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Then $\langle z, z\rangle=-1$ . Thus, the image $z(R^{2}\times U)$ of $R^{2}\times U$ under $z$ is contained in
the anti-de Sitter space time $H_{1}^{2m+1}(-1)$ .

Let $(w_{1}, \ldots, w_{n})=(x_{1}+iy_{1}, \ldots, x_{n}+iy_{n})$ denote the standard coordinates of
$U\subset C^{m-1}$ . Then

(6.2) $\frac{\partial}{\partial x_{r}}=\frac{\partial}{\partial w_{r}}+\frac{\partial}{\partial\overline{w}_{r}}$ , $\frac{\partial}{\partial y_{r}}=i\frac{\partial}{\partial w_{r}}-i\frac{\partial}{\partial\overline{w}_{r}}$ ,

where $r=1,$ $\ldots,n$ .
We obtain from (6.1) and (6.2) that

$z_{u}=(i, i, 0)e^{il}$ , $z_{t}=iz$ ,

$z_{X_{\gamma}}=(-\frac{1}{2}(\frac{\partial\Psi}{\partial w_{r}}\overline{\Psi}+\Psi\frac{\partial\overline{\Psi}}{\partial\overline{w}_{r}}),$ $-\frac{1}{2}(\frac{\partial\Psi}{\partial w_{r}}\overline{\Psi}+\Psi\frac{\partial\overline{\Psi}}{\partial\overline{w}_{r}}),\frac{\partial\Psi}{\partial w_{r}})e^{il}$ ,

(6.3)
$z_{y_{r}}=(-\frac{i}{2}(\frac{\partial\Psi}{\partial w_{r}}\overline{\Psi}-\Psi\frac{\partial\overline{\Psi}}{\partial\overline{w}_{r}}),$ $-\frac{i}{2}(\frac{\partial\Psi}{\partial w_{r}}\overline{\Psi}-\Psi\frac{\partial\overline{\Psi}}{\partial\overline{w}_{r}}),$ $i\frac{\partial\Psi}{\partial w_{r}})e^{it}$ ,

$z_{uu}=0$ , $z_{ut}=iz_{u}$ , $z_{\mathcal{U}X,}=z_{uy_{r}}=0$ ,

$z_{tt}=-z$ , $z_{tx_{r}}=iz_{x_{r}}$ , $z_{ty_{r}}=iz_{y_{r}}$ .

Let $E_{1}^{\prime},$

$\ldots,$
$E_{2n}^{\prime}$ be an orthonormal basis of $U$ mentioned in Proposition 4.3

for an n-tuple $(2, \ldots, 2)\in \mathscr{S}(2n)$ such that $E_{2r}^{\prime}=iE_{2r-1}^{\prime}(r=1, \ldots, n)$ . Here we
put

$E_{k}=E_{k}^{\prime}e^{i}‘+(E_{k}^{\prime}, \Psi)iz_{u}$ , $k=1,$ $\ldots,$
$2n$

(6.4) $E_{2n+1}=z_{t}+z_{u}$ ,

$E_{2n+2}=z_{l}$ .

Then $E_{1},$
$\ldots,$

$E_{2n}$ are orthonormal tangent vector fields such that $E_{2r}=iE_{2r-1}$

$(r=1, \ldots, n)$ and $iE_{2n+1},$ $iE_{2n+2}$ are normal vector fields.
If we put

(6.5) $E_{k}^{\prime}=\sum_{r=1}^{n}(f_{r}z_{x_{r}}+g_{r}zy_{r})$ ,

then from (6.4) we have

(6.6) $E_{k}=\sum_{r=1}^{n}\{f_{r}z_{X_{r}}+g_{r}z_{y_{r}}+\frac{f_{r}}{2}i(\frac{\partial\Psi}{\partial w_{r}}\overline{\Psi}-\Psi\frac{\partial\overline{\Psi}}{\partial w_{r}})z_{u}$

$-\frac{g_{r}}{2}(\frac{\partial\Psi}{\partial w_{r}}\overline{\Psi}+\Psi\frac{\partial\overline{\Psi}}{\partial w_{r}})z_{u}$ ,
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where $f_{r}$ and $g_{r}$ are functions. By virtue of (6.6), the second fundamental form $\tilde{h}$

of $z(R^{2}\times U)$ in $C_{1}^{m+1}$ satisfies

(6.7) $\tilde{h}(E_{k}, E_{l})=(\tilde{\nabla}_{E_{k}}E_{l})^{\perp}=-\frac{1}{2}(\tilde{\nabla}_{E_{k}}E_{T}, (-1,1,0, \ldots, 0))iz_{u}+(\tilde{\nabla}_{E_{k}^{\prime}}E_{l}^{\prime})^{\perp}e^{it}$

where $k,$ $l=1,$
$\ldots,$

$2n$ and $\{\cdots\}^{\perp}$ denotes the normal component of $\{\cdots\}$ and $\tilde{\nabla}$ is
the standard covariant differential in $C_{1}^{m+1}$ .

From (6.3), (6.4), (6.6), (6.7) and Proposition 4.3 for an n-tuple $(2, \ldots, 2)\in$

$\mathscr{S}(2n)$ we have

$\tilde{h}(E_{2r-1}, E_{2r-1})+\tilde{h}(E_{2r}, E_{2r})\in Span\{iE_{2n+2}-iE_{2n+1}\}$ ,

$\tilde{h}(E_{2r-1}, E_{p})\in Span\{iE_{2n+2}-iE_{2n+1}\}$ ,
(6.8)

$\tilde{h}(E_{2r}, E_{q})\in Span\{iE_{2n+2}-iE_{2n+1}\}$ ,

$\tilde{h}(E_{l}, E_{2n+1})=0$ , $\tilde{h}(E_{2r+1}, E_{2n+1})=2iE_{2n+1}-iE_{2n+2}$

where $r=1,$ $\ldots,$
$n,$ $l=1,$

$\ldots,$
$2n$ and $p,$ $q\not\in\{2r-1,2r\}$ .

On the other hand, from $(6.3)-(6.7)$ we have

$\langle\tilde{h}(E_{2r-1}, E_{2r-1}), iE_{2n+1}\rangle=1$ , $\langle\tilde{h}(E_{2r-1}, E_{2r-1}), iE_{2n+2}\rangle=1$ ,

$\langle\tilde{h}(E_{2r}, E_{2r}), iE_{2n+1}\rangle=1$ , $\langle\tilde{h}(E_{2r}, E_{2r}), iE_{2n+2}\rangle=1$ ,
(6.9)

$\langle\tilde{h}(E_{2r-1}, E_{p}), iE_{2n+1}\rangle=0$ , $\langle\tilde{h}(E_{2r-1}, E_{p}), iE_{2n+2}\rangle=0$ ,

$\langle\tilde{h}(E_{2r}, E_{q}), iE_{2n+1}\rangle=0$ , $\langle\tilde{h}(E_{2r}, E_{q}), iE_{2n+2}\rangle=0$ ,

where $r=1,$
$\ldots,$

$n$ and $p,$ $q\not\in\{2r-1,2r\}$ .
Therefore, we have

$\tilde{h}(E_{2r-1}, E_{p})=0$ ,

$\tilde{h}(E_{2r}, E_{q})=0$ ,
(6.10)

$\tilde{h}(E_{2r-1}, E_{2r-1})=iE_{2n+1}-iE_{2n+2}+\phi_{r}\tilde{\xi}_{r}$ ,

$\tilde{h}(E_{2r}, E_{2r})=iE_{2n+1}-iE_{2n+2}-\phi_{r}\tilde{\xi}_{r}$ ,

where $r=1,$
$\ldots,$

$n,$ $p,$ $q\not\in\{2r-1,2r\}$ and $\phi_{r}$ are functions and $\tilde{\xi}_{r}$ are unit normal
vector fields perpendicular to $iE_{2n+1},$ $iE_{2n+2}$ . Moreover, from (6.7) and (6.10), we
have

(6.10‘) $\tilde{h}(E_{2r-1}, E_{2r})=\phi_{r}i\tilde{\xi}_{r}$ .
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Since $iz$ is always tangent to $z(R^{2}\times U)$ , the image $z(R^{2}\times U)$ in $H_{1}^{2m+1}(-1)$ is
invariant under the group action of $H_{1}^{1}$ . Hence, $z(R^{2}\times U)$ is projectable via the
Hopf’s fibration $\pi$ : $H_{1}^{2m+1}(-1)\rightarrow CH^{m}(-4)$ . It is known that the Hopf fibration
$\pi$ is a Riemannian submersion. The image $\pi(z(R^{2}\times U))$ is a $(2n+1)$ -dimensional
CR-submanifold of $CH^{m}(-4)$ whose holomorphic distribution $\mathscr{D}$ is spanned by
$\pi_{*}(E_{1}),$

$\ldots,$
$\pi_{*}(E_{2n})$ and whose totally real distribution $\mathscr{D}^{\perp}$ is spanned by

$\pi_{*}(E_{2n+1})$ .
It follows from (6.8), (6.10) and (6.10‘) that the second fundamental form $h$

of $\pi(z(R^{2}\times U))$ in $CH^{m}(-4)$ satisfies

$h(e_{2r-1}, e_{2r-1})=Je_{2n+1}+\phi_{r}\xi_{r}$ , $h(e_{2r}, e_{2r})=Je_{2n+1}-\phi_{r}\xi_{r}$ ,

(6.11) $h(e_{2r-1}, e_{p})=0$ , $h(e_{2r}, e_{q})=0$ , $h(e_{2r-1}, e_{2r})=\phi_{r}J\xi_{r}$ ,

$h(e_{l}, e_{2n+1})=0$ , $h(e_{2n+1}, e_{2n+1})=2Je_{2n+1}$ ,

where $r=1,$ $\ldots,$ $n,$ $l=1,$
$\ldots,$

$2n$ and $p,$ $q\not\in\{2r-1,2r\}$ and $\xi_{r}=\pi_{*}(\tilde{\xi}_{r})$ are normal
vector field perpendicular to $Je_{2n+1},$ $e_{1}=\pi_{*}(E_{1}),$

$\ldots,$
$e_{2n}=\pi_{*}(E_{2n})$ . Therefore, by

applying Lemma 5.2, we conclude that the $(2n+1)$ -dimensional CR-submanifold
$\pi(z(R^{2}\times U))$ in $CH^{m}(-4)$ satisfies the equality case of (5.4).

Conversely, we suppose that $M$ is a $(2n+1)$ -dimensional CR-submanifold
of $CH^{m}(-4)$ with $\dim \mathscr{D}^{\perp}=1$ which satisfies the equality case of (5.4). Then,
with respect to some suitable orthonormal frame field $\{e_{1}, \ldots, e_{2m}\}$ , the second
fundamental form satisfy (5.7).

Let $\hat{M}=\pi^{-1}(M)$ denote the inverse image of $M$ via the Hopf fibration
$\pi$ : $H_{1}^{2m+1}\rightarrow CH^{m}(-4)$ . Then $\hat{M}$ is a principal circle bundle over $M$ with time-
like totally geodesic fibers. Let $z:\hat{M}\rightarrow H_{1}^{2m+1}(-1)\subset C_{1}^{m+1}$ denote the immer-
sion of $\hat{M}$ in $C_{1}^{m+1}$ . Let $\tilde{\nabla}$ and $\hat{\nabla}$ denote the metric connections of $C_{1}^{m+1}$ and
$H_{1}^{2m+1}(-1)$ , respectively. We denote by $X^{*}$ the horizontal lift of a tangent vector
$X$ of $CH^{m}(-4)$ . Then we have (cf. [11, 17])

(6.12) $\tilde{\nabla}_{X^{*}}Y^{*}=(\nabla_{X}Y)^{*}+(h(X, Y))^{*}+\langle JX, Y\rangle V+\langle X, Y\rangle z$ ,

(6.13) $\tilde{\nabla}_{X}*V=\tilde{\nabla}_{V}X^{*}=(JX)^{*}$ ,

(6.14) $\tilde{\nabla}_{V}V=-z$ ,

for vector fields $X,$ $Y$ tangent to $M$, where $z$ is the position vector of $\tilde{M}$ in $C_{1}^{2m+1}$

and $V=iz\in T_{Z}H_{1}^{2m+1}(-1)$ .
Let $E_{1},$

$\ldots,$
$E_{2n+1},$ $\xi_{r}^{*}$ be the horizontal lifts of $e_{1},$

$\ldots,$ $e_{2n+1},$ $\xi_{r}$ , respectively and
let $E_{2n+2}=iz$ , and let $\{\omega_{i}^{j}\}$ be connection forms of $\tilde{M}$ . Then, in same say as [12],
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from (5.1), (6.12) (6.13) and (6.14), we obtain

(6. 15) $\tilde{\nabla}_{E_{2r- 1}}E_{2r-1}=\sum_{j=1}^{2n}\omega_{2r-1}^{j}(E_{2r-1})E_{j}+iE_{2n+1}+\phi_{r}\xi_{r}^{*}-iE_{2n+2}$ ,

(6.16) $\tilde{\nabla}_{E_{2r- 1}}E_{2r}=\sum_{j=1}^{2n}\omega_{2r}^{j}(E_{2r-1})E_{j}-E_{2n+1}+i\phi_{r}\xi_{r}^{*}+E_{2n+2}$ ,

(6.17) $\tilde{\nabla}_{E_{2r}}E_{2r-1}=\sum_{j=1}^{2n}\omega_{2r-1}^{j}(E_{2r})E_{j}+E_{2n+1}+i\phi_{r}\xi:-E_{2n+2}$ ,

(6. 18) $\tilde{\nabla}_{E_{2r}}E_{2r}=\sum_{j=1}^{2n}\omega_{2r}^{j}(E_{2r})E_{j}+iE_{2n+1}-\phi_{r}\xi_{r}^{*}-iE_{2n+2}$ ,

(6.19) $\tilde{\nabla}_{E_{2r- 1}}E_{2n+1}=E_{2r}$ ,

(6.20) $\tilde{\nabla}_{E_{2r}}E_{2n+1}=-E_{2r-1}$ ,

(6.21) $\tilde{\nabla}_{E_{2n+1}}E_{2n+1}=2iE_{2n+1}-iE_{2n+2}$ ,

(6.22) $\tilde{\nabla}_{E_{2r- 1}}E_{2n+2}=\tilde{\nabla}_{E_{2n+2}}E_{2r-1}=E_{2r}$ ,

(6.23) $\tilde{\nabla}_{E_{2r}}E_{2n+2}=\tilde{\nabla}_{E_{2n+2}}E_{2r}=-E_{2r-1}$ ,

(6.24) $\tilde{\nabla}_{E_{2n+1}}E_{2n+2}=\tilde{\nabla}_{E_{2n+2}}E_{2n+1}=iE_{2n+1}$ ,

(6.25) $\tilde{\nabla}_{E_{2n+2}}E_{2n+2}=iE_{2n+2}$ ,

(6.26) $\tilde{\nabla}_{E_{2r- 1}}E_{p},\tilde{\nabla}_{E_{\rho}}E_{2r-1},\tilde{\nabla}_{E_{2r}}E_{q},\tilde{\nabla}_{E_{q}}E_{2r}\in Span\{E_{1}, \ldots, E_{2n}\}$ ,

where $r=1,$
$\ldots,$

$n$ and $p,$ $q\not\in\{2r-1,2r\}$ .
It follows from (6.16), (6.17) and $(6.19)-(6.25)$ that the distribution $\mathscr{D}_{1}$

spanned by $E_{1},$
$\ldots,$

$E_{2n},$ $E_{2n+1}-E_{2n+2}$ is integrable. The distribution $\mathscr{D}_{2}$ spanned
by $E_{2n+1}$ is clearly integrable, since it is of rank one. Hence, there exist
coordinates $\{s, t, x_{1}, y_{1}, \ldots, x_{n}, y_{n}\}$ such that $\partial/\partial s,$ $\partial/\partial x_{1},$

$\ldots,$
$\partial/\partial y_{n}$ are tangent to

integral submanifolds of $\mathscr{D}_{1},$ $\partial/\partial s=E_{2n+1}-E_{2n+2}$ and $\partial/\partial t=E_{2n+1}$ .
Applying $(6.19)-(6.25)$ , we get

$\tilde{\nabla}_{E_{1}}(E_{2n+1}-E_{2n+2})=\cdots=\tilde{\nabla}_{E_{2n}}(E_{2n+1}-E_{2n+2})$

$=\tilde{\nabla}_{E_{2n+1}-E_{2n+2}}(E_{2n+1}-E_{2n+2})=0$ .

Hence, along each integral submanifold of $\mathscr{D}_{1},$ $Z=:E_{2n+1}-E_{2n+2}$ is a constant
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light-like vector in $C_{1}^{m+1}$ . Moreover, from (6.21) and (6.24), we have $\tilde{\nabla}_{E_{2n+1}}Z=$

$iZ$ . Since $E_{2n+1}=\partial/\partial t$ , we get $\partial Z/\partial t=lZ$ . Solving this differential equation
yields

$Z=e^{il}Z_{0}$ on $\hat{M}$ ,

where $Z_{0}$ is a light-like constant vector. Without loss of generality, we may
assume $Z_{0}=(i, i, 0, \ldots, 0)\in C_{1}^{m+1}$ .

Let $M_{1}$ be an integral submanifold of $\mathscr{D}_{1}$ . Without loss of generality, we may
assume that $M_{1}$ is defined by $t=0$ . Then in the same way as [12], we can write

$z(s, 0, w_{1}, \ldots, w_{n})=f(s, w_{1}, \ldots, w_{n})(i, i, 0, \ldots, 0)+c(1, -1,0, \ldots, 0)$

$+(0,0, \Psi_{1}(w_{1}, \ldots, w_{n})\ldots, \Psi_{m-1}(w_{1}, \ldots w_{n}))$ ,

where $c$ is a constant determined by the initial conditions and $w_{r}=x_{r}+iy_{r}$ , and
$f,$ $\Psi_{1},$

$\ldots,$
$\Psi_{m-1}$ are functions.

Let $M_{1}$ be an integral submanifold of $\mathscr{D}_{1}$ and Let $\psi$ denote the map which
is the projection of $z:M_{1}\rightarrow C_{1}^{m+1}$ onto the complex Euclidean $(m-1)$ -subspace
$C^{m-1}$ spanned by the last $m-1$ standard coordinate vectors $\epsilon_{3},$

$\ldots,$
$\epsilon_{m+1}$ of $C_{1}^{m+1}$ .

In the same way as [12], we have

(6.27)

$z(s, t, w_{1}, \ldots, w_{n})=(c+\frac{1}{4c}(1+|\Psi|^{2})+i(s+t+k(w_{1}, \ldots, w_{n}))$ ,

$-c+\frac{1}{4c}(1+|\Psi|^{2})+i(s+t+k(w_{1}, \ldots, w_{n})),$ $\Psi(w_{1}, \ldots, w_{n}))e^{il}$ ,

where $k(w_{1}, \ldots, w_{n})$ is a real valued function. Moreover $\Psi(w_{1}, \ldots, w_{n}):\psi(M_{1})\rightarrow$

$C^{m-1}$ is a holomorphic isometric immersion. Since orthonormal tangent vector
fields $E_{1},$

$\ldots,$
$E_{2n}$ lie in $Span\{z_{x_{1}}, z_{y_{1}}, \ldots, z_{x_{n}}, z_{y_{n}}, z_{s}\}$ , we have

(6.28) $\tilde{\nabla}_{E_{k}}E_{l}=-\frac{1}{2}(\tilde{\nabla}_{E_{k}}E_{l}, (-1,1,0, \ldots, 0))iz_{s}+\tilde{\nabla}_{\psi_{*}(E_{k})}\psi_{*}(E_{l})$ ,

where $k,$ $l=1,$
$\ldots,$

$2n$ .
From (6.15), (6.18), (6.26) and (6.28) we have

$\tilde{\nabla}_{\psi_{*}(E_{2r- 1})}\psi_{*}(E_{2r-1})+\tilde{\nabla}_{\psi_{*}(E_{2r})}\psi_{*}(E_{2r})\in Span\{\psi_{*}(E_{1}), \ldots, \psi_{*}(E_{2n})\}$ ,

(6.29) $\tilde{\nabla}_{\psi_{*}(E_{2\leftarrow 1})}\psi_{*}(E_{p})\in Span\{\psi_{*}(E_{1}), \ldots, \psi_{*}(E_{2n})\}$ ,

$\tilde{\nabla}_{\psi_{*}(E_{2r})}\psi_{*}(E_{q})\in Span\{\psi_{*}(E_{1}), \ldots, \psi_{*}(E_{2n})\}$ ,

where $r=1,$
$\ldots,$

$n$ and $p,$ $q\not\in\{2r-1,2r\}$ .
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It follows from (6.29) that the second fundamental form $h^{\prime}$ of $\psi(M_{1})$ in $C^{m-1}$

satisfies
$h^{\prime}(\psi_{*}(E_{2k-1}), \psi_{*}(E_{2k-1}))+h^{\prime}(\psi_{*}(E_{2k}), \psi_{*}(E_{2k}))=0$ ,

(6.30) $h^{\prime}(\psi_{*}(E_{2k-1}), \psi_{*}(E_{p})=0$ ,

$h^{\prime}(\psi_{*}(E_{2k}), \psi_{*}(E_{q}))=0$ ,

where $r=1,$ $\ldots$ , $n$ and $p,$ $q\not\in\{2r-1,2r\}$ . Proposition 4.3 and (6.30) implies that
$\psi(M_{1})$ satisfies the equality case of (1.4). If we regard $s+t+k(w)$ as a new
variable and denote it by $u$ , then (6.27) yields

(6.31) $z(s, t, w_{1}, \ldots, w_{n})=(c+\frac{1}{4c}(1+|\Psi|^{2})+ui$ ,

$-c+\frac{1}{4c}(1+|\Psi|^{2})+ui,$ $\Psi(w))e^{il}$ .

By choosing the initial conditions $z(O, 0,0, \ldots, 0)=(-1,0, \ldots, 0)$ , we obtain from
(6.31) that $c=-1/2$ . Consequently, we obtain (3.5) from (6.31). This completes
the proof of theorem.

Finally, for $m=n+2$ , we have the following corollary to the main theorem
using Proposition 4.4.

COROLLARY 6.1. Let $U$ be a domain of $C^{n}$ and $\Psi$ : $U\rightarrow C^{n+1}$ be a holo-
morphic isometric immersion in $C^{n+1}$ . Define $z:R^{2}\times U\rightarrow C_{1}^{n+2}$ by

(6.32) $z(u, t, w_{1}, \ldots, w_{n})=(-1-\frac{1}{2}|\Psi|^{2}+iu,$ $-\frac{1}{2}|\Psi|^{2}+iu,$ $\Psi)e^{it}$ .

Then $\langle z, z\rangle=-1$ and the image $z(R^{2}\times U)$ in $H_{1}^{2n+3}$ is invariant under the group
action of $H_{1^{1}}$ . Moreover the quotient space $z(R^{2}\times U)/\sim is$ $a(2n+1)$ -dimensional
CR-submamfold with $\dim \mathscr{D}^{\perp}=1$ of $CH^{n+2}(-4)$ which satisfies the equality case
of (1.3) for $k=n$ .

Conversely, up to rigid motions of $CH^{n+1}(-4)$ , every linearly full $(2n+1)-$

dimensional CR-submamfold with $\dim \mathscr{D}^{\perp}=1$ of $CH^{n+2}(-4)$ satisfying the
equality case of (1.3) is obtained in such way with $k=n$ .
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