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ON HYPERSPACES AND HOMEOMORPHISM GROUPS
HOMEOMORPHIC TO PRODUCTS OF ABSORBING SETS

AND $R^{\infty}$

By

Taras BANAKH

Abstract. Two theorems are proven:
1) For a topological space $X$ the pair $(\exp(X), \exp_{\omega}(X))$ of hyper-

spaces of compact and finite subsets of $X$ is homeomorphic to
$(Q\times R^{\infty}, \sigma\times R^{\infty})$ if and only if $X$ is a direct limit of a tower
$ X_{1}\subset X_{2}\subset\cdots$ of strongly countable-dimensional Peano continua
such that each $X_{n}$ is nowhere dense in $X_{n+1}$ ;

2) The triple $(\mathscr{H}^{c}(R), \mathscr{H}_{L^{C}IP}(R),$ $\mathscr{H}_{P^{C}L}(R))$ of homeomorphism groups
of the line, endowed with the Whitney topology, is homeomorphic
to $(s\times R^{\infty}, \Sigma\times R^{\infty}, \sigma\times R^{\infty})$ .

In last decades two main kinds of infinite-dimensional manifolds were
investigated: manifolds modeled on complete or incomplete “nice” subsets of the
Hilbert cube $Q$ (like $s,$

$\Sigma,$ $\sigma$), and nonmetrizable manifolds modeled on the
$k_{\omega}$ -spaces $R^{\infty}=\lim R^{n}$ or $Q^{\infty}=\lim Q^{n}[Sa_{1}]$ . Many works are devoted to detect-
ing such $manifo\vec{lds}$ in “nature” (see

$\rightarrow$

the survey [Ca]).
In this paper we would like to tum the reader attention to spaces homeo-

morphic to products $\Omega\times R^{\infty}$ , where $\Omega$ is a “nice” subset in the Hilbert cube.
It tums out that many natural constructions of topology and analysis supply
us with examples of such spaces. To illustrate this statement we consider two
construction: hyperspaces of $k_{\omega}$ -spaces and homeomorphism groups of the line.

For a topological space $X$ by $\exp(X)$ the hyperspace of all nonempty
compact subsets of $X$, endowed with the Vietoris topology is denoted; $\exp_{\omega}(X)$

is the subspace of $\exp(X)$ consisting of all nonempty finite subsets of $X$. In
[CP] D. W. Curtis and D. S. Patching proved that $\exp(X)$ is homeomorphic to
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$Q^{\infty}$ , provided $X$ is a direct limit of a tower $ X_{1}\subset X_{2}\subset\cdots$ of Peano continua
such that each $X_{n}$ is nowhere dense in $X_{n+1}$ . Recall that a Peano continuum is a
connected locally connected metrizable compact space.

THEOREM 1. For a topological space $X$ the pair $(\exp(X), \exp_{\omega}(X))$ is homeo-
morphic to $(Q\times R^{\infty}, \sigma\times R^{\infty})$ if and only if $X$ is a direct limit of a tower $ X_{1}\subset$

$ X_{2}\subset\cdots$ of strongly countable-dimensional Peano continua such that each $X_{n}$ is
nowhere dense in $X_{n+1}$ .

Here $s=(-1,1)^{\omega}$ is the pseudo-interior of the Hilbert cube $Q=[-1,1]^{\omega}$ ,
$\Sigma=\{(q_{i})\in Q:\sup_{i}|q_{j}|<1\}$ is its radial interior, and $\sigma=\{(q_{i})\in\Sigma$ : $q_{i}=0$ for
almost all $i$ }.

Next, we consider the homeomorphism group $\mathscr{H}(R)$ of the real line endowed
with the Whitney topology whose neighborhood base at the identity consists of
sets $U(\epsilon)=\{f\in \mathscr{H}(R):|f-id|<\epsilon\}$ , where $\epsilon$ : $R\rightarrow R$ runs over all continuous
positive functions. Unlike to the compact-open topology (which was considered in
[Ya]), the Whitney topology on $\mathscr{H}(R)$ is not locally connected. Nonetheless we
can consider the connected component $\mathscr{H}^{c}(R)$ of the identity. It tums out that
$\mathscr{H}^{c}(R)$ coincides with the set of all homeomorphisms with compact support (that

is homeomorphisms which are identity outside of some compact subset of $R$). Let
$\mathscr{H}_{LIP}^{C}(R)$ and $H_{PL}^{C}(R)$ be subgroups in $\mathscr{H}^{c}(R)$ consisting of Lipschitz and piece-
linear homeomorphisms, respectively.

THEOREM 2. The triple $(\mathscr{H}^{c}(R), \mathscr{H}_{LIP}^{c}(R),$ $\mathscr{H}_{PL}^{c}(R))$ is homeomorphic to
$(s\times R^{\infty}, \Sigma\times R^{\infty}, \sigma\times R^{\infty})$ .

We begin with

Topological characterization of the pair $(Q\times R^{\infty}, \sigma\times R^{\infty})$

First, we recall the definition of the direct limit topology. It is defined on a
union $X=\bigcup_{n=1}^{\infty}X_{n}$ of an incresing sequence $ X_{1}\subset X_{2}\subset\cdots$ of topological spaces
and is denoted by $\lim_{\rightarrow}X_{n}$ . A subset $U\subset X$ is open in $\lim_{\rightarrow}X_{n}$ if the intersection
$U\cap X_{n}$ is open in $X_{n}$ for every $n$ .

Recall that $R^{\infty}$ denotes the direct limit of the tower $ R^{1}\subset R^{2}\subset\cdots$ , where
each $R^{n}$ is identified with the subset $R^{n}\times\{0\}$ of $R^{n+1}$ . A topological charac-
terization of the space $R^{\infty}$ was given in $[Sa_{1}]$ . This characterization implies that
$R^{\infty}$ is homeomorphic to the direct limit $\lim I^{n}$ of the sequence I $\subset I^{2}\subset\cdots$ ,

where $I=[0,1]$ and each cube $I^{n}$ is identified with the subset $I^{n}\times\{0\}$ in $I^{n+1}$ .
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All maps considered in this paper are continuous. Writing (X, $Y$ ) we always
understand that $Y$ is a subspace of $X$. Saying that $f:(K, C)\rightarrow(X, Y)$ is an
embedding of a pair $(K, C)$ into a pair (X, $Y$ ) we understand that $f$ : $K\rightarrow X$ is
an embedding with $f^{-1}(Y)=C$ . Two pairs (X, $Y$ ) and $(X^{\prime}, Y^{\prime})$ are homeo-
morphic if $h(Y)=Y^{\prime}$ for some homeomorphism $h:X\rightarrow X^{\prime}$ . The symbol $‘‘\cong$

means “is homeomorphic to”.
A closed subset $A$ of a topological space $X$ is called a Z-set in $X$ if every map

$f:Q\rightarrow X$ can be uniformly approximated by maps whose image misses the set
$A$ . An embedding $f$ : $A\rightarrow X$ is a Z-embedding, provided $f(A)$ is a Z-set in $X$.

Below $\mathscr{M}_{0},$ $\mathscr{M}_{1},$ $\mathscr{A}_{1}$ , and $\mathscr{A}_{1}$ (s.c.d.) denote respectively the classes of met-
rizable compacta, Polish spaces, metrizable $\sigma$-compact spaces, and metrizable $\sigma-$

compact strongly countable-dimensional spaces. Recall that a space $X$ is strongly
countable-dimensional if $X$ can be written as a countable union $X=\bigcup_{n=1}^{\infty}X_{n}$ ,
where each $X_{n}$ is a closed finite-dimensional subset of $X$.

By $(\mathscr{M}_{0}, \mathscr{A}_{1}(s.c.d.))$ we denote the class of pairs $(K, C)$ such that $\mathscr{A}_{1}(s.c.d)\ni$

$C\subset K\in \mathscr{M}_{0}$ . Evidently, $(Q, \sigma)\in$ ( $\mathscr{M}_{0},$ $\mathscr{A}_{1}$ (s.c.d.)). Moreover, this pair has the
following

UNIVERSAL PROPERTY OF $(Q, \sigma)$ . For every pair $(K, C)\in$ ( $\mathscr{M}_{0},$ $\mathscr{A}_{1}$ (s.c.d.)) and
every closed subset $B\subset K$ every Z-embedding $f$ : $(B, B\cap C)\rightarrow(Q, \sigma)$ extends to a
Z-embedding $\overline{f}:(K, C)\rightarrow(Q, \sigma)$ .

This property of $(Q, \sigma)$ is well known and can be derived from the strong
( $\mathscr{M}_{0},$ $\mathscr{A}_{1}$ (s.c.d.))-universality of $(Q, \sigma)$ (see [BRZ]).

THEOREM 3 (characterizing the pair $(Q\times R^{\infty},$ $\sigma\times R^{\infty})$ ). For a pair (X, Y) of
topological spaces the following conditions are equivalent:

(1) (X, $Y$ ) is homeomorphic to $(Q\times R^{\infty}, \sigma\times R^{\infty})$ ;
(2) (X, $Y$ ) satisfies the conditions:

a) the space $X$ is a direct limit of metrizable compacta and $Y$ is $\sigma$-compact
and strongly countable-dimensional;

b) for every pair $(K, C)\in$ ( $\mathscr{M}_{0},$ $\mathscr{A}_{1}$ (s.c.d.)) and a closed subset $B\subset K$

every embedding $f:(B, B\cap C)\rightarrow(X, Y)$ extends to an embedding
$\overline{f}:(K, C)\rightarrow(X, Y)$ ;

(3) $X$ can be written as a direct limit $\lim_{\rightarrow}X_{n}$ of a sequence $ X_{1}\subset X_{2}\subset\cdots$ such
that $X=\bigcup_{n=1}^{\infty}X_{n}$ and for every $n\in N$ the pair $(X_{n}, X_{n}\cap Y)$ is homeo-
morphic to $(Q, \sigma)$ and $X_{n}$ is a Z-set in $X_{n+1}$ .
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PROOF. We will verify the implications (1) $\Rightarrow(3)\Rightarrow(2)\Rightarrow(1)$ .
(1) $\Rightarrow(3)$ As we mentioned, $R^{\infty}$ is homeomorphic to the direct limit $\lim_{\rightarrow}I^{n}$ .

Then $Q\times R^{\infty}$ can be identified with the direct limit of the sequence

$ Q\times I\subset Q\times I^{2}\subset Q\times I^{3}\subset\cdots$ ,

where each $Q\times I^{n}$ is a Z-set in $Q\times I^{n+1}$ and the pair $(Q\times I^{n}, Q\times I^{n}\cap\sigma\times R^{\infty})$

$=(Q\times I^{n}, \sigma\times I^{n})$ is homeomorphic to $(Q, \sigma)$ . Hence the pair $(Q\times R^{\infty}, \sigma\times R^{\infty})$

as well as each its topological copy satisfies the third condition of Theorem 3.
(3) $\Rightarrow(2)$ Suppose $X=\lim_{\rightarrow}X_{n}$ where for every $n\in N$ the pair $(X_{n}, X_{n}\cap Y)$ is

homeomorphic to $(Q, \sigma)$ and $X_{n}$ is a Z-set in $X_{n+1}$ . We show that the pair (X, Y)
satisfies the condition (2). Evidently, $X$ is a direct limit of Hilbert cubes and
$Y=\bigcup_{n=1}^{\infty}(Y\cap X_{n})$ is a $\sigma$-compact strongly countable-dimensional space. Fix a
pair $(K, C)\in$ ( $\mathscr{M}_{0},$ $\mathscr{A}_{1}$ (s.c.d.)), a closed subset $B\subset K$ , and an embedding $f$ :
$(B, B\cap C)\rightarrow(X, Y)$ . Because of the compactness of $B,$ $f(B)\subset X_{n}$ for some $n$ .
Since $X_{n}$ is a Z-set in $X_{n+1}$ , the map $f$ : $B\rightarrow X_{n}\subset X_{n+1}$ is a Z-embedding. The
universal property of $(Q, \sigma)\cong(X_{n+1}, X_{n+1}\cap Y)$ allows us to extend $f$ to a
Z-embedding $f:(K, C)\rightarrow(X_{n+1}, X_{n+1}\cap Y)\subset(X, Y)$ . Hence the pair (X, $Y$)
satisfies the condition (2).

(2) $\Rightarrow(1)$ By the standard “back-and-forth” argument (see $[Sa_{1}]$ ), it can be
shown that a pair (X, $Y$ ) satisfying the condition (2) is unique up to homeo-
morphism. Since the pair $(Q\times R^{\infty}, \sigma\times R^{\infty})$ satisfies the condition (2) (the
implications (1) $\Rightarrow(3)\Rightarrow(2))$ , each pair satisfying the second condition of
Theorem 3 is homeomorphic to $(Q\times R^{\infty}, \sigma\times R^{\infty})$ . $\square $

Proof of Theorem 1

Suppose $X=\lim X_{n}$ is a direct limit of a tower $ X_{1}\subset X_{2}\subset\cdots$ of strongly
$countable- dimensi\vec{ona}l$ Peano continua such that each $X_{n}$ is nowhere dense in
$X_{n+1}$ . Without loss of generality, each $X_{n}$ contains more that one point. To show
that the pair $(\exp(X), \exp_{\omega}(X))$ is homeomorphic to $(Q\times R^{\infty}, \sigma\times R^{\infty})$ we will
verify the third condition of Theorem 3. According to [CP, 2.4], the hyperspace
$\exp(X)$ has the direct limit topology with respect to the tower $\exp(X_{1})\subset\exp(X_{2})$

$\subset\cdots$ Next, by [CN, 5.1], for every $n\geq 1$ the pair $(\exp(X_{n}), \exp(X_{n})\cap\exp_{\omega}(X))$

$=(\exp(X_{n}), \exp_{\omega}(X_{n}))$ is homeomorphic to $(Q, \sigma)$ . It is remarked in the proof of
[CP, 3.1] that the nowhere density of $X_{n}$ in $X_{n+1}$ implies that $\exp(X_{n})$ is a Z-set in
$\exp(X_{n+1})$ . Thus, the pair $(\exp(X), \exp_{\omega}(X))$ satisfies the third equivalent con-
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dition of Theorem 3 what allows us to conclude that this pair is homeomorphic
to $(Q\times R^{\infty}, \sigma\times R^{\infty})$ . Hence, the “if“ part of Theorem 1 is proven.

To prove the “only if” part, assume that $X$ is such that the pair
$(\exp(X), \exp_{\omega}(X))$ is homeomorphic to $(Q\times R^{\infty}, \sigma\times R^{\infty})$ .

CLAIM. Every compact subset $C\subset X$ is contained in a Peano continuum
$P\subset X$ such that $C$ is nowhere dense in $P$ .

Let $f$ : $\exp(X)\rightarrow Q\times R^{\infty}$ be a homeomorphism such that $ f(\exp_{\omega}(X))=\sigma\times$

$R^{\infty}$ . To prove the claim, we shall construct a Peano continuum $M\subset\sigma\times R^{\infty}$

such that $M\cap f(\exp(C))=f(C)$ and $f(C)$ is nowhere dense in $M$. Write $R^{\infty}=$

$\lim I^{n}$ . Since $\exp(C)$ is compact, $f(\exp(C))\subset Q\times I^{n-1}$ for some $n$ . Then
$\vec{f(e}xp(C))\subset Q\times I^{n-1}$ is a Z-set in $Q\times I^{n}$ . It follows from [BRZ, \S 1.2. Ex. 4,
12, 13] that the set $(\sigma\times I^{n})\backslash f(\exp(C))$ is homotopy dense in $Q\times I^{n}$ , i.e., there
exists a homotopy $h:Q\times I^{n}\times[0,1]\rightarrow Q\times I^{n}$ such that $h(Q\times I^{n}\times(0,1$ ]) $\subset$

$(\sigma\times I^{n})\backslash f(\exp(C))$ and $h(x, O)=x$ for every $x\in Q\times I^{n}$ . Let $d\leq 1$ be any
admissible metric on $Q\times I^{n}$ and consider the map $g:Q\times I^{n}\rightarrow Q\times I^{n}$ defined
for $x\in Q\times I^{n}$ by $g(x)=h(x,$ $dist(x, f(C))$ . Set $M=g(Q\times I^{n})$ and remark that
$M\subset f(C)\cup\sigma\times I^{n}\subset\sigma\times R^{\infty}$ and $M\cap f(\exp(C))=f(C)$ . Next, $M$ is a Peano
continuum and $f(C)$ is nowhere dense in $M$, i.e., $M$ is a required set.

Since $f$ is a homeomorphism, we get $f^{-1}(M)$ is a Peano continuum in
$\exp_{\omega}(X)$ such that $f^{-1}(M)\cap\exp(C)=C$ and $C$ is nowhere dense in $f^{-1}(M)$ .
Let $P=\cup f^{-1}(M)=\cup\{A:A\in f^{-1}(M)\}$ . By [CN, 2.2], the set $P\subset X$ is a
Peano continuum. Evidently, $C\subset P$ . Furthermore, the set $C$ is nowhere dense in
$P$ . Assuming the converse, we would find a nonempty open set $U\subset P$ such that
$U\subset C$ . Then $\exp(U)$ is an open set in $\exp(P)\supset f^{-1}(M)$ such that $\exp(U)\subset$

$\exp(C)$ . Consequently, $\exp(U)\cap f^{-1}(M)=\exp(U)\cap f^{-1}(M)\cap\exp(C)=\exp(U)$

$\cap f^{-1}(M)\cap C=\exp(U)\cap C$ is an open set in $f^{-1}(M)$ contained in $C$, i.e., $C$ is
somewhere dense in $f^{-1}(M)$ , a contradiction with the choice of the set $M$. Thus
the claim is proven.

Since $X$ is a closed subspace in $\exp(X)$ and $\exp(X)$ is homeomorphic to $ Q\times$

$R^{\infty}$ , we get $X$ is a direct limit of a tower $ C_{1}\subset C_{2}\subset\cdots$ of metrizable compacta.
Using Claim, by induction, construct a tower $ X_{1}\subset X_{2}\subset\cdots$ of Peano continua in
$X$ such that $C_{n}\subset X_{n}$ and each $X_{n}$ is nowhere dense in $X_{n+1}$ . Obviously, $X$ has the
direct limit topology $\lim X_{n}$ . Next, the space $X$ is strongly countable-dimensional,
as a subspace of $\exp_{\omega}(X)$ , a topological copy of $\sigma\times R^{\infty}$ . This yields that each
Peano continuum $X_{n}$ is strongly countable-dimensional. $\square $
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Characterizing the quadmple $(Q, s, \Sigma, \sigma)\times R^{\infty}$

To simplify denotations, we denote by $(Q,s, \Sigma, \sigma)\times R^{\infty}$ the quadruple
$(Q\times R^{\infty}, s\times R^{\infty}, \Sigma\times R^{\infty}, \sigma\times R^{\infty})$ . More generally, for an n-tuple $(X_{1}, \ldots, X_{n})$ ,

a space $Y$, a subset $B\subset X_{1}$ and a map $f:Z\rightarrow X_{1}$ let $(X_{1}, \ldots, X_{n})\times Y=$

$(X_{1}\times Y, \ldots, X_{n}\times Y),$ $B\cap(X_{1}, \ldots, X_{n})=(B\cap X_{1}, \ldots, B\cap X_{n})$ , and $f^{-1}(X_{1},$
$\ldots$ ,

$X_{n})=(f^{-1}(X_{1}), \ldots,f^{-1}(X_{n}))$ . Saying that $f:(X_{1}, \ldots, X_{n})\rightarrow(Y_{1}, \ldots, Y_{n})$ is an
embedding of n-tuples we understand that $f:X_{1}\rightarrow Y_{1}$ is an embedding with
$f^{-1}(Y_{j})=X_{i}$ for all $1\leq i\leq n$ .

By ( $\mathscr{M}_{0},$ $\mathscr{M}_{1},$ $\mathscr{A}_{1},$ $\mathscr{A}_{1}$ (s.c.d.)) we denote the class of quadruples (X, $Y,$ $Z,$ $T$ )
such that $T\subset Z\subset Y\subset X$ , $X\in \mathscr{M}_{0}$ , $Y\in \mathscr{M}_{1},$ $Z\in \mathscr{A}_{1}$ , and $T\in \mathscr{A}_{1}$ (s.c.d.).
Evidently, $(Q, s,\Sigma, \sigma)\in$ ( $\mathscr{M}_{0},$ $\mathscr{M}_{1},$ $\mathscr{A}_{1},$ $\mathscr{A}_{1}$ (s.c.d.)). Like the pair $(Q, \sigma)$ the qua-
druple $(Q,s, \Sigma, \sigma)$ has the following

UNIVERSAL PROPERTY OF $(Q, s, \Sigma, \sigma)$ (see [CDM, \S 2]). For every
quadruple $(K, M, A, C)\in$ ( $\mathscr{M}_{0},$ $\mathscr{M}_{1},$ $\mathscr{A}_{1},$ $\mathscr{A}_{1}$ (s.c.d.)) and every closed subset $B\subset K$

every Z-embedding $f$ : $B\cap(K, M, A, C)\rightarrow(Q, s, \Sigma, \sigma)$ extends to a Z-embedding
$\overline{f}:(K, M, A, C)\rightarrow(Q, s, \Sigma, \sigma)$ .

Using this property and repeating the argument of Theorem 3, we may prove

THEOREM 4 (characterizing the quadruple $(Q,s,$ $\Sigma,$ $\sigma)\times R^{\infty}$ ). For a quadruple
(X, $Y,$ $Z,$ $T$ ) of topological spaces the following conditions are equivalent:

(1) (X, $Y,$ $Z,$ $T$ ) is homeomorphic to $(Q, s,\Sigma, \sigma)\times R^{\infty}$ ;
(2) (X, $Y,$ $Z,$ $T$ ) satisfies the conditions:

a) the space $X$ can be written as a direct limit $\lim_{\rightarrow}X_{n}$ of a tower $ X_{1}\subset$

$ X_{2}\subset\cdots$ such that $ X_{n}\cap(X, Y, Z, T)\in$ ( $\mathscr{M}_{0},$ $\mathscr{M}_{1},$ $\mathscr{A}_{1},$ $\mathscr{A}_{1}$ (s.c.d.)) for
every $n$ ;

b) for every quadruple $(K, M, A, C)\in$ ( $\mathscr{M}_{0},$ $\mathscr{M}_{1},$ $\mathscr{A}_{1},$ $\mathscr{A}_{1}$ (s.c.d.)) and
a closed subset $B\subset K$ every embedding $ f:B\cap(K, M, A, C)\rightarrow$

(X, $Y,$ $Z,$ $T$ ) extends to an embedding $\overline{f}$ : $(K, M, A, C)\rightarrow(X, Y, Z, T)$ ;
(3) $X$ can be written as a direct limit $\lim_{\rightarrow}X_{n}$ of a sequence $ X_{1}\subset X_{2}\subset\cdots$ such

that $X=\bigcup_{n=1}^{\infty}X_{n}$ and for every $n\in N$ the quadruple $X_{n}\cap(X, Y, Z, T)$ is
homeomorphic to $(Q, s, \Sigma, \sigma)$ and $X_{n}$ is a Z-set in $X_{n+1}$ .

To apply Theorem 4 to the proof of Theorem 2 we need a notion of a small
box product.

The small box-product $\coprod_{l\in J}(X_{i}, *j)$ of a family of pointed spaces $(X_{j}, *i)$ ,
$i\in J$ , is the subspace
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$\coprod_{i\in \mathscr{J}}(X_{i}, *l)=$ { $(x_{j})_{i\in J}\in\coprod_{i\in J}X_{i}$ : $x_{j}=*i$ for all but finitely many indices $l$ }

of the box product $\coprod_{i\in J}X_{i}$ . Recall that a base of the box topology on $\coprod_{i\in \mathscr{J}}X_{i}$

consists of products $\prod_{i\in \mathscr{J}}U_{i}$ , where $U_{i}$ are open sets in $X_{i}$ .
If the fixed points $*i$ in $X_{i}$ are clear from the context (for example, if $X_{j}$ are

groups) we write $\square _{i\in J}X_{i}$ is place of $\square _{i\in J}(X_{i}, *j)$ . If all $X_{i}$ are equal to $X$ we use
the symbol $\square _{i\in \mathscr{J}}X$ for $\square _{i\in J}X_{i}$ .

Let $Y$ be a subspace of a space $X$ and $*\in Y\subset X$ be a fixed point. Observe
that $\square _{i\in J}Y$ can be identified with a subspace $\square _{i\in J}X$ , so it is legal to say about
the pair $(\square _{i\in \mathscr{J}}X, \Pi_{i\in J}Y)$ which will be denoted by $\square _{i\in J}(X, Y)$ . Analogously
for a quadruple (X, $Y,$ $Z,$ $T$ ) and a fixed point $*\in T\subset Z\subset Y\subset X$ we introduce
a quadruple $\coprod_{i\in J}(X, Y, Z, T)$ .

PROPOSITION. For any fixed point $*\in\sigma$ the quadruple $\coprod_{i\in N}(Q, s, \Sigma, \sigma)$ is
homeomorphic to $(Q, s, \Sigma, \sigma)\times R^{\infty}$ .

PROOF. The principal observation is that the box topology on $\square _{i\in N}Q$

coincides with the direct limit topology $\lim_{\rightarrow}Q^{n}$ with respect to the tower $Q^{1}$

$\subset Q^{2}\subset\cdots$ , where each $Q^{n}$ is identified with the subset { $(q_{j})_{i\in N}\in$ $i\in NQ$ :
$q_{j}=*fori>n\}$ of $\square _{i\in N}Q$ . This fact can be easily proven using the com-
pactness of $Q$ . Evidently, each $Q^{n}$ is a Z-set in $Q^{n+1}$ . Next, the quadruple $ Q^{n}\cap$

$\coprod_{i\in N}(Q, s, \Sigma, \sigma)=(Q^{n},s^{n}, \Sigma^{n}, \sigma^{n})$ is homeomorphic to $(Q, s, \Sigma, \sigma)$ (by any coor-
dinate permutating homeomorphism between $Q$ and $Q^{n}$ ). It this setting it is legal
to apply Theorem 4 to conclude that the quadruple $\coprod_{i\in N}(Q, s, \Sigma, \sigma)$ is homeo-
morphic to $(Q, s, \Sigma, \sigma)\times R^{\infty}$ . $\square $

Proof of Theorem 2

First we verify that the connected component of the identity in the group
$\mathscr{H}(R)$ coincides with the set $\mathscr{H}^{c}(R)=\{f\in \mathscr{H}(R):f|_{R\backslash [-M,M]}\equiv id$ for some
$M\geq 0\}$ . For this, remark that $\mathscr{H}^{c}(R)$ is path-connected: elements $f,$ $g\in \mathscr{H}^{c}(R)$

can be linked by the path $\{(1-t)f+tg\}_{t\in[0,1]}$ in $\mathscr{H}^{c}(R)$ . Now it suffices to show
that each element $f\in \mathscr{H}(R)\backslash \mathscr{H}^{c}(R)$ can be separated from the identity by an
open-and-closed neighborhood. Since $f\not\in \mathscr{H}^{c}(R)$ , there is a sequence $(x_{n})\subset R$

such that $Iim_{n\rightarrow\infty}|x_{n}|=\infty$ and $f(x_{n})\neq x_{n}$ for every $n\in N$ . Then

$U(f)=\{h\in \mathscr{H}(R)$ : $\lim_{n\rightarrow\infty}\frac{|h(x_{n})-f(x_{n})|}{|x_{n}-f(x_{n})|}=0\}$
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is the required closed-and-open neighborhood separating $f$ from the identity of
$\mathscr{H}(R)$ .

To prove that the triple $(\mathscr{H}^{C}(R), \mathscr{H}_{LIP}^{C}(R),$ $\mathscr{H}_{P^{C}L}(R))$ is homeomorphic to
$(s, \Sigma, \sigma)\times R^{\infty}$ we represent $\mathscr{H}^{c}(R)$ as the product $PL^{C}(R;Z)\times \mathscr{H}^{c}(R;Z)$ of the
closed subspace

$PL^{c}(R;Z)=$ {$f\in \mathscr{H}^{c}(R)$ : $f$ is linear on each interval $[i,$ $i+1],$ $i\in Z$ }

and the closed subgroup

$\mathscr{H}^{c}(R;Z)=$ { $h\in \mathscr{H}^{c}(R)$ : $f(i)=i$ for each $i\in Z$}

of $\mathscr{H}^{c}(R)$ . An obvious homeomorphism $F$ between $PL^{c}(R;Z)\times \mathscr{H}^{c}(R;Z)$ can
be defined by $F(g, h)=g\circ h$ for $(g, h)\in PL^{c}(R;Z)\times \mathscr{H}^{c}(R;Z)$ . Its inverse $F^{-1}$

acts as $F^{-1}(f)=(g, g^{-1}\circ f)$ for $f\in \mathscr{H}^{c}(R)$ , where $g\in PL^{c}(R;Z)$ is a unique
map with $g(i)=f(i)$ for all $i\in Z$ .

Let $\mathscr{H}_{L^{c}IP}(R;Z)=\mathscr{H}^{c}(R;Z)\cap \mathscr{H}_{L^{C}IP}(R)$ and $\mathscr{H}_{P^{C}L}(R;Z)=\mathscr{H}^{c}(R;Z)\cap$

$\mathscr{H}_{P^{C}L}(R)$ . Clearly, the homeomorphism $F^{-1}$ maps the triple $(\mathscr{H}^{C}(R), \mathscr{H}_{L^{C}JP}(R)$ ,
$\mathscr{H}_{P^{C}L}(R))$ onto the triple

$PL^{c}(R;Z)\times(\mathscr{H}^{c}(R;Z), \mathscr{H}_{L^{C}IP}(R;Z),$ $\mathscr{H}_{P^{C}L}(R;Z))$ .

Thus, to prove Theorem 2, it suffices to verify that the latter triple in homeo-
morphic to $R^{\infty}\times(s, \Sigma, \sigma)$ .

Observe that the triple $(\mathscr{H}^{c}(R;Z), \mathscr{H}_{L^{C}IP}(R;Z),$ $\mathscr{H}_{P^{C}L}(R;Z))$ is homeomorphic
to the triple of small box-products $\coprod_{i\in Z}(\mathscr{H}(I), \mathscr{H}_{LIP}(I),$ $\mathscr{H}_{PL}(I))$ , where $\mathscr{H}(I)$ is
the group of increasing homeomorphisms of the interval $I=[0,1]$ , endowed with
the compact-open topology and $\mathscr{H}_{LIP}(I),$ $\mathscr{H}_{PL}(I)$ are subgroups of $\mathscr{H}(I)$ con-
sisting of Lipschitz and piece-linear homeomorphisms, respectively. By $[Sa_{2}]$ , the
triple $(\mathscr{H}(I), \mathscr{H}_{LIP}(I),$ $\mathscr{H}_{PL}(I))$ is homeomorphic to $(s, \Sigma, \sigma)$ . Hence, by Propo-
sition, the triple of small box products $\square _{i\in Z}(\mathscr{H}(I), \mathscr{H}_{LIP}(I),$ $\mathscr{H}_{PL}(I))$ is homeo-

morphic to $R^{\infty}\times(s, \Sigma, \sigma)$ .
Thus to finish the proof it rests to verify that the space $PL^{c}(R;Z)$ is

homeomorphic to $R^{\infty}$ . This can be easily done using the Sakai characterization
$[Sa_{1}]$ and observing that the topology of the space $PL^{c}(R;Z)$ coincides with the
direct limit topology $\lim_{\rightarrow}PL_{n}^{c}(R;Z)$ , where for $n\in N$

$PL_{n}^{c}(R;Z)=$ {$f\in PL^{c}(R;Z)$ : $f(x)=x$ for $|x|\geq n$ }

is a closed subspace in $PL^{c}(R;Z)$ , which can be naturally identified with a locally
compact $(2n-1)$ -dimensional convex subset of $R^{Z}$ . $\square $
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Some questions and comments

Remark that examples of spaces homeomorphic to $\Omega\times R^{\infty}$ already appeared
in literature. For example, in [Ma] P. Mankiewicz has proved that each separable
non-metrizable strict (LF)-space is homeomorphic either to $R^{\infty_{\backslash }}$ or to $s\times R^{\infty}$ . In
particular for any countable collection of infinite-dimensional separable Fr\’echet
spaces $X_{n},$ $n\in N$ , the locally convex sum $\oplus_{n\in N}X_{n}$ is homeomorphic to $s\times R^{\infty}$ .
Since the topology of $\oplus_{n\in N}X_{n}$ coincides with the box topology of $\coprod_{n\in N}X_{n}$ (this
follows from [Sch, II. \S 6]), Mankiewicz result implies that $\coprod_{n\in N}s$ is homeo-
morphic to $s\times R^{\infty}$ (this is a part of our Proposition). Thus the topological
equivalence of $\mathscr{H}^{c}(R)$ and $s\times R^{\infty}$ could be derived from Mankiewicz Theorem
[Ma] (we have however chosen a purely topological proof).

Observe that in our cases, to prove that some space $X$ is homeomorphic to a
product $\Omega\times R^{\infty}$ we first found a “nice” embedding of $X$ into a $k_{\omega}$ -space $\overline{X}$ and
then proved that the pair (X, $X$ ) was homeomorphic to $(Q\times R^{\infty}, \Omega\times R^{\infty})$ .
However there are cases, when it is not clear how to construct such a “nice”
embedding $X\subset\overline{X}$ . This rises the following

PROBLEM 1. Give a topological characterization of spaces $\Omega\times R^{\infty}$ . In par-
ticufar, characterize topologically the spaces $s\times R^{\infty}$ and $\sigma\times R^{\infty}$ .

PROBLEM 2. Characterize topological spaces $X$ whose hyperspace $\exp_{\omega}(X)$ of
finite subsets is homeomorphic to $\sigma\times R^{\infty}$ .

Remark that by methods developed in this paper many results on topological
equivalence of hyperspaces can be proven. For example, it can be shown that
$\exp(s\times R^{\infty})\cong s\times R^{\infty}$ , $\exp(Q\times R^{\infty})\cong\Sigma\times R^{\infty}$ , $\exp(\sigma\times R^{\infty})\cong\exp(\sigma)\times R^{\infty}$ ,
etc.

PROBLEM 3. Find interesting examples of spaces homeomorphic to products
$\Omega\times R^{\infty}$ , where $\Omega$ is a “nice” subset in $Q$ .

In [Ba] the author has found a natural example of a space homeomorphic to
the countable power $(R^{\infty})^{\omega}$ of $R^{\infty}$ –this is the space $\mathscr{D}^{\prime}$ of distributions on an
open set in $R^{n}$ .

PROBLEM 4. Find a natural example of a space homeomorphic to a product
$\Omega\times(R^{\infty})^{\omega}$ , where $\Omega\subset Q$ . In particular, is $\exp(\mathscr{D}^{\prime})$ homeomorphic to $(R^{\infty})^{\omega}$? Is
$\exp_{\omega}(\mathscr{D}^{\prime})$ homeomorphic to $\sigma\times(R^{\infty})^{\omega}$?
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