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GEODESIC TRANSFORMATIONS IN ALMOST HERMITIAN
GEOMETRY

By

Eduardo GARC\’IA-R\’IO1 and Lieven VANHECKE

Abstract. We treat partially conformal geodesic transformations
with respect to submanifolds in almost Hermitian manifolds. Non-
isometric ones only exist when the submanifold is a real hypersurface
or reduces to a point. In these two cases, we derive necessary and
sufficient conditions for the existence in terms of the Jacobi operator
and show how this existence influences the geometry of the
hypersurface and that of the ambient space. As an application, we
use these transformations to obtain a new characterization of
complex space forms.

1. Introduction

Local reflections with respect to points or submanifolds of a Riemannian
manifold have been studied intensively. The properties of these reflections have
been used to obtain several geometric properties and characterizations of special
classes of Riemannian manifolds and submanifolds. We refer to [4], [22] and [24]
for examples, basic material and further references. Local reflections are maps
which preserve tubular hypersurfaces about the point or submanifold $P$ . This kind
of transformations has been generalized to geodesic transformations with respect
to $P$ . These transformations map a tubular hypersurface about $P$ into another
tubular hypersurface by moving points along normal geodesics of $P$, but leaving
the points of $P$ invariant. Geodesic transformations were introduced in [18]
and studied also in [6]. Recently the authors begun a systematic study of
such transformations. (See [10], [11] and [12] for information about divergence-
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preserving and holomorphic geodesic transformations and [4], [5] for holomorphic
and symplectic geodesic reflections).

Homotheties and inversions with respect to spheres form a class of re-
markable transformations in Euclidean geometry. They are fundamental con-
formal transformations. In [9], we use conformal transformations with respect to
points and geodesic spheres to characterize real space forms, where non-Euclidean
similarities and inversions are introduced. The existence of conformal geodesic
transformations was investigated further in [13]. These studies show that con-
formality is a strong condition and this fact motivated the study, in [9], of the
closely related notion of a partially conformal geodesic $transfomlation$ .

In this paper, we focus on partially conformal geodesic transformations with
respect to submanifolds in almost Hermitian manifolds. In Section 2, we consider
the analytic description of these transformations by using Fermi coordinates and
derive the first results. We study the influence of the existence of a partially
conformal transformation with respect to a submanifold on the extrinsic geometry
of the submanifold and show that for codimension greater than one, the local
reflections are the only partially conformal geodesic transformations. This restricts
the study of partially conformal geodesic transformations to the case of points
and real hypersurfaces.

Section 3 is devoted to the study of partially conformal geodesic trans-
formations with respect to points. We derive the necessary and sufficient con-
ditions for the existence of such transformations. It tums out that such conditions
can be expressed in terms of the Jacobi operator and its derivatives. As a
consequence, we obtain a characterization of complex space forms as well as a
description of all the possible partially conformal geodesic transformations. In
Section 4, we make a similar study for partially conformal geodesic trans-
formations with respect to real hypersurfaces.

Manifolds are assumed to be connected and analytic, although $C^{\infty}$ is
sometimes sufficient.

2. Partially Conformal Geodesic Transformations. First Results

Let $(M, g, J)$ be an almost Hermitian manifold of real dimension $n>2,$ $\nabla$ its
Levi Civita connection and $R$ the associated Riemann curvature tensor taken with
the sign convention $R_{XY}=\nabla_{1^{\chi\gamma]}},-[\nabla_{X}, \nabla_{Y}]$ for all smooth vector fields $X,$ $Y$.
Moreover, put $R_{XYZW}=R(X, Y, Z, W)=g(R(X, Y)Z,$ $W$).

Let $B$ be a topologically embedded submanifold with $\dim B=q$ and let $\exp_{v}$

denote the exponential map of the normal bundle $v$ of $B$ .
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DEFINITION 2.1. A geodesic transformation $\varphi_{B}$ with respect to $B$ is a map
defined by

(2.1) $\varphi_{B}$ : $p=\exp_{v}(ru)\rightarrow\varphi_{B}(p)=\exp_{v}(s(r)u)$

which leaves $B$ invariant. Here $u$ is an arbitrary unit normal vector of $B$ and $r$

and $s$ are supposed to be sufficiently small such that $\varphi_{B}$ is a local diffeomorphism.
In all what follows, the function $r\mapsto s(r)$ is supposed to be analytic in a

neighborhood of $r=0$ .
Conformal geodesic transformations have been investigated by the authors in

[9], [13]. The existence of such transformations is closely related to the constancy
of the sectional curvature. In the present paper, we shall investigate the weaker
notion of partial conformality. The following observation is a key fact motivating
the definition of partially conformal geodesic transformations. Let $N$ denote the
gradient of the normal distance function. The almost complex structure $J$ gives
rise to the locally defined vector field $JN$. The properties of this distinguished
vector field strongly influence the geometry of the manifold. For example, when
$(M, g, J)$ is a nearly K\"ahler manifold (that is, $(\nabla_{X}J)X=0$ for all vector fields $X$ )
the constancy of the holomorphic sectional curvature of $(M, g, J)$ is equivalent to
the fact that $JX$ defines a distinguished eigenspace of the Jacobi operator $R_{X}$ , that
is, $R(X, JX)X$ is proportional to $JX[21]$ . When $B$ is a small geodesic sphere, $JN$

is a vector field tangent to $B$ and it defines a distinguished eigenspace of either the
shape or the Ricci operator for all sufficiently small geodesic spheres if and only
if the holomorphic sectional curvature is constant, provided that $(M, g,J)$ is a
nearly K\"ahler manifold [7], [23].

Next, let $\eta$ be the one-form induced by the metric and the vector field $JN$ and
defined by $\eta(X)=g(X, JN)$ .

DEFINITION 2.2. A geodesic transformation $\varphi_{B}$ with respect to a submanifold
$B$ is said to be partially conformal if and only if

(2.2) $\varphi_{B}^{*}g=e^{2\sigma}g+f(\eta\otimes\eta)$

for some function $f$ depending only on the normal distance function.
The function $f$ in (2.2) is assumed to be analytic although at some places this

condition can be weakened.

REMARK 2.1. A partially conformal transformation is conformal if and only
if the function $f$ vanishes. Note that our notion of partial conformality tallies with
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that of “special partial conformality” introduced by Tanno [20]. Such trans-
formations $\varphi$ are defined by

$(\varphi^{*}g)(X, Y)=e^{2\sigma}g(X, Y)$

for all vector fields $X,$ $Y$ on $M$, where at least one of them is tangent to the
distribution $ D=Ker\eta$ .

Note that the function $f$ in (2.2) is defined by $(\varphi^{*}g)(JN, JN)=$

$(e^{2\sigma}+f)g(JN, JN)$ .
To describe analytically a partially conformal geodesic transformation, we

introduce a system of Fermi coordinates adapted to the submanifold. See [16],

[22] for more detailed information. Let $m\in B$ and let $\{E_{1}, \ldots, E_{n}\}$ be a local
orthonormal frame field of $(M, g)$ defined along $B$ in a neighborhood of $m$ .
Furthermore, we specialize this moving frame such that $\{E_{1}, \ldots, E_{q}\}$ are tangent
vector fields and $\{E_{q+1}, \ldots, E_{n}\}$ are normal vector fields of $B$ . Let $(y^{1}, \ldots, y^{q})$ be
a system of coordinates in a neighborhood of $m$ in $B$ such that

$\frac{\partial}{\partial y^{i}}(m)=E_{i}(m)$ , $i=1,$ $\ldots,$ $q$

and define the Fermi coordinates $(x^{1}, \ldots, x^{n})$ with respect to $m,$ $(y^{1}, \ldots, y^{q})$ and
$\{E_{q+1}, \ldots, E_{n}\}$ by

$x^{i}(\exp_{v}(\sum_{q+1}^{n}t^{\alpha}E_{\alpha}))=y^{j}$ , $i=1,$ $\ldots,$
$q$ ,

$x^{a}(\exp_{v}(\sum_{q+1}^{n}t^{\alpha}E_{\alpha}))=\iota^{a}$ , $a=q+1,$ $\ldots,$
$n$

in a neighborhood of the zero section of $B$ in $v$ , taken sufficiently small such that
$\exp_{v}$ is a diffeomorphism.

Next, we derive an expression for the components of the metric tensor $g$ ,

$g_{ij}=g(\frac{\partial}{\partial x^{i}},\frac{\partial}{\partial x^{j}})$ , $g_{ia}=g(\frac{\partial}{\partial x^{i}},\frac{\partial}{\partial x^{a}})$ , $g_{ab}=g(\frac{\partial}{\partial x^{a}},\frac{\partial}{\partial x^{b}})$ .

Let $u$ be a normal unit vector, $u\in T_{m}^{\perp}B$ , and $\gamma(r)=\exp_{m}(ru)$ a normal geodesic
with $\gamma(0)=m,$ $\gamma^{\prime}(0)=u$ . We specialize the frame field $\{E_{1}, \ldots, E_{n}\}$ in such a way
that

$\gamma^{\prime}(0)=u=E_{n}(m)$ , $J\gamma^{\prime}(O)=Ju=(-dE_{q}+cE_{q+1})(m)$ ,



Geodesic transformations 155

for real numbers $c,$
$d$ with $c^{2}+d^{2}=1$ . Now consider the frame field $\{F_{1}, \ldots, F_{n}\}$

along $\gamma$ obtained by parallel translating the basis $\{E_{1}(m), \ldots, E_{n}(m)\}$ , and denote
by $Y_{\alpha}(r),$ $\alpha=1,$

$\ldots,$
$n-1$ , the Jacobi fields along $\gamma(r)$ with initial conditions

$Y_{i}(0)=E_{i}(0)$ , $Y_{i}^{\prime}(0)=\nabla_{u}\frac{\partial}{\partial x^{i}}$ ,
(2.3)

$Y_{a}(0)=0$ , $Y_{a}^{\prime}(0)=E_{a}(m)$

where the prime denotes covariant differentiation along $\gamma$ . These fields are related
to the Fermi coordinate vector fields by

(2.4) $Y_{i}(r)=\frac{\partial}{\partial x^{i}}(\gamma(r))$ , $Y_{a}(r)=r\frac{\partial}{\partial x^{a}}(\gamma(r))$ .

Using the parallel basis $\{F_{1}, \ldots, F_{n}\}$ , we identify the tangent spaces $\{\gamma^{\prime}(r)\}^{\perp}$

and write $Y_{\alpha}(r)=D_{u}(r)F_{\alpha}$ for $\alpha=1,$ $\ldots,n-1$ , where $D_{u}(r)$ is an endomorphism-
valued function. Then, the Jacobi equation yields

(2.5) $D_{u}^{\prime\prime}(r)+(R\circ D_{u})(r)=0$

where $R(r)X=R_{\gamma^{\prime}(r)X}\gamma^{\prime}(r)$ . To derive the initial values for $D_{u}(r)$ , we shall use the
Gauss and Weingarten equations for the submanifold $B[2]$ :

$\nabla_{X}Y=\tilde{\nabla}_{X}Y+T_{X}Y$ ,

$\nabla_{X}\xi=T(\xi)X+\nabla_{X}^{\perp}\xi$

where $X,$ $Y$ are tangent to $B$ and $\xi$ is a unit normal vector to B. $\tilde{\nabla}$ denotes
the induced metric connection on $B,$ $T_{X}Y$ is the second fundamental form, $T(\xi)$

the shape operator with respect to $\xi$ and $\nabla^{\perp}$ the normal connection along $B$ .
Furthermore, $T_{X}Y$ and $T(\xi)$ are related by

$g(T(\xi)X, Y)=-g(T_{X}Y, \xi)$ .

Now, using the initial conditions (2.3) for $Y_{\alpha}$ , we obtain the following initial
values in matrix form with respect to the basis $\{E_{1}(m), \ldots, E_{n-1}(m)\}$ of $ u^{\perp}\subset$

$T_{m}M$ :

$D_{u}(0)=\left(\begin{array}{ll}I & 0\\0 & 0\end{array}\right)$ , $D_{u}^{\prime}(0)=\left(\begin{array}{ll}T(u) & 0\\-f\perp(u) & I\end{array}\right)$

where
$T(u)_{ij}=g(T(u)E_{j}, E_{j})(m)$ ,

$\perp(u)_{ia}=g(t1_{E_{i}}E_{a}, E_{n})(m)$ ,



156 Eduardo $GARC\acute{I}A- R^{\prime}IO$ and Lieven VANHECKE

$\perp$ being an operator defined in [16]. It satisfies $ 1_{X}\xi=\nabla_{X}^{\perp}\xi$ . Using the gen-
eralized Gauss Lemma [16]

(2.6) $g_{nn}(p)=1$ , $g_{\alpha n}(p)=0$ , $\alpha=1,$
$\ldots,$

$n-1$ ,

and (2.4), we obtain at the point $p=\exp_{m}(ru)$ :

$g_{ij}(p)=(lD_{u}D_{u})_{ij}(r)$ ,

(2.7) $g_{ia}(p)=\frac{1}{r}({}^{t}D_{u}D_{u})_{ia}(r)$ ,

$g_{ab}(p)=\frac{1}{r^{2}}({}^{t}D_{u}D_{u})_{ab}(r)$ .

In order to describe analytically a geodesic transformation with respect to $B$ ,

we consider an adapted system of Fermi coordinates about $B$ as described before,
and put $s(r)=\rho(r)r$ in (2.1). Then one obtains the following analytic description
of the geodesic transformation:

$\varphi_{B}$ : $(x^{1}, \ldots, x^{q}, x^{q+1}, \ldots,x^{n})\mapsto(x^{1}, \ldots, x^{q},\rho(r)x^{q+1}, \ldots,\rho(r)x^{n})$

where $r$ denotes the normal distance function. Note that $r^{2}=\sum_{a=q+1}^{n}(x^{a})^{2}$ .
Hence, we have

LEMMA 2.1. A geodesic transformation $\varphi_{B}$ with respect to a submanifold $B$ is
partially conformal if and only if the following conditions are satisfied:

$g_{i/}(\varphi_{B}(p))=e^{2\sigma}g_{ij}(p)+f(r)(\eta\otimes\eta)_{ij}(p)$ ,

$\rho g_{ia}(\varphi_{B}(p))=e^{2\sigma}g_{ia}(p)+f(r)(\eta\otimes\eta)_{ia}(p)$ ,

$\rho^{2}g_{ab}(\varphi_{B}(p))=e^{2\sigma}g_{ab}(p)+f(r)(\eta\otimes\eta)_{ab}(p)$ ,

$e^{2\sigma}=(\frac{ds}{dr})^{2}$

for each point $p=\exp_{m}(ru)$ , where $i,j=1,$
$\ldots,$

$q$ and $a,$ $b=q+1,$ $\ldots,$
$n-1$ .

PROOF. Considering the previous expression of $\varphi_{B}$ with respect to an
adapted system of coordinates, we have

$(\varphi_{B})_{*}\frac{\partial}{\partial x^{i}}=\frac{\partial}{\partial x^{i}}$ , $j=1,$ $\ldots,q$ ,

(2.8)
$(\varphi_{B})_{*}\frac{\partial}{\partial x^{a}}=\rho\frac{\partial}{\partial x^{a}}+\sum_{k=q+1}^{n}\rho^{\prime}\frac{\partial r}{\partial x^{a}}x^{k}\frac{\partial}{\partial x^{k}}$ , $a=q+1,$ $\ldots,$

$n$ .
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Hence, along any normal geodesic $\gamma(r)=exp_{m}(m)$ , we get

$(\varphi_{B}^{*}g)_{ij}(\gamma(r))=g_{ij}(\gamma(s))$ , $(\varphi_{B}^{*}g)_{ia}(\gamma(r))=\rho(r)g_{ia}(\gamma(s))$ ,

$(\varphi_{B}^{*}g)_{ab}(\gamma(r))=\rho(r)^{2}g_{ab}(\gamma(s))$ , $(\varphi_{B}^{*}g)_{nn}(\gamma(r))=(\rho^{\prime}(r)r+\rho(r))^{2}g_{nn}(\gamma(s))$ ,

and the result follows from (2.6) and the partial conformality of $\varphi_{B}$ . $\square $

Since the submanifold $B$ remains fixed under the geodesic transformation, the
function $s(r)$ in (2.1) satisfies $s(O)=0$ and further, using the derived expressions
for the components of the metric tensor, we get the following

LEMMA 2.2. For any partially conformal transformation $\varphi_{B}$ with respect to a
submamfold $B$ , we have $f(0)=0$ . Moreover, $lf\dim B\geq 1$ , then $s^{\prime}(0)^{2}=1$ .

PROOF. Let $u\in T_{m}^{\perp}B$ and consider an adapted system of Fermi coordinates.
From the conditions in Lemma 2.1 we obtain

(2.9) $\rho g_{qq+1}(s)=e^{2\sigma}g_{qq+1}(r)+f(r)(\eta\otimes\eta)_{qq+1}(r)$

and taking limits for $r\rightarrow 0$ , we get

$s^{\prime}(0)\delta_{qq+1}=s^{\prime}(0)^{2}\delta_{qq+1}-f(0)dc$ ,

which shows that $f(O)=0$ unless $cd=0$ . If $d=0$ , from Lemma 2.1 we get

(2.10) $\rho^{2}g_{q+1q+1}(s)=e^{2\sigma}g_{q+1q+1}(r)+f(r)(\eta\otimes\eta)_{q+1q+1}(r)$

and taking limits for $r\rightarrow 0$ , we obtain $s^{\prime}(0)^{2}=s^{\prime}(0)^{2}+f(0)$ which shows that
$f(O)=0$ . (Note that this case shows also that $f(O)=0$ when $B$ reduces to a
single point.) Next, suppose $c=0$ , that is, $Ju$ is tangent to $B$ . Then we have

(2.11) $g_{ij}(s)=e^{2\sigma}g_{ij}(r)+f(r)(\eta\otimes\eta)_{ij}(r)$ .

Once again, taking limits for $r\rightarrow 0$ , one obtains

$\delta_{ij}=s^{\prime}(0)^{2}\delta_{ij}+f(0)\delta_{iq}\delta_{jq}$

and for $\dim B\geq 2$ , we must have $s^{\prime}(O)^{2}=1$ and hence, $f(O)=0$ .
Next, we show that $s^{\prime}(0)^{2}=1$ for $\dim B\geq 1$ . First, we obtain $f(O)=0$

since $\dim B\geq 2$ or $\dim B=1$ and $\dim M>2$ . Then, from this, (2.11) and by
taking limits for $r\rightarrow 0$ , it follows that $\delta_{qq}=s^{\prime}(0)^{2}\delta_{qq}$ , which shows the desired
result. $\square $
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In what follows, we put

(2.12) $g\delta\theta(\exp_{m}(ru))=\sum_{k\geq 0}\alpha_{k}(m, u,\delta, \theta)r^{k}$

for the power series expansions of the components $ g\delta\theta$ of the metric tensor $g$

along the normal geodesic $\gamma(r)=\exp_{m}(ru)$ , where $\delta,$ $\theta\in\{1,2, \ldots,n-1\}$ . Then,
from the Jacobi equation (2.5), the initial conditions (2.3) and the expressions
(2.7), one gets the following explicit description of the first few terms appearing in
(2.12):

$g_{ij}(\exp_{m}(ru))=g(E_{i}, E_{j})(m)+2rg(T(u)E_{j}, E_{j})(m)+O(r^{2})$ ,

$g_{ia}(\exp_{m}(ru))=-rg(l\perp(u)E_{i}, E_{a})(m)$

(2.13)
$-\frac{2}{3}r^{2}g(R(u)E_{i}, E_{a})(m)+O(r^{3})$ ,

$g_{ab}(\exp_{m}(ru))=g(E_{a}, E_{b})(m)-\frac{1}{3}r^{2}g(R(u)E_{a}, E_{b})(m)+O(r^{3})$ .

Also, for the one-form $\eta$ we shall write the formal power series expansion

(2.14) $\eta(\frac{\partial}{\partial x^{\delta}})(\exp_{m}(ru))=\sum_{k\geq 0}\eta_{k}(m, u,\delta)r^{k}$ .

Finally, let

(2.15) $s(r)=\sum_{k\geq 1}\beta_{k}r^{k}$
, $f(r)=\sum_{k\geq 1}\frac{1}{k!}f^{(k)}(0)r^{k}$

be the power series expansions of the functions $s(r)$ and $f(r)$ along the geodesic $\gamma$ ,

where $\beta_{k}=(1/k!)s^{(k)}(0)$ .
It is clear that the identity transformation satisfies $s^{\prime}(0)=1$ . We shall show

that the identity is the only partially conformal geodesic transformation such that
$s^{\prime}(0)=1$ holds. To prove this, we consider the following two cases: $\dim B\geq 1$

(see Theorem 2.1 below) or $B$ is a single point (see Theorem 3.1).

THEOREM 2.1. Let $\varphi_{B}$ be a partially conformal geodesic transformation with
respect to a submanifold $B$ with $\dim B\geq 1$ . Then $s^{\prime}(0)=-1$ unless $\varphi_{B}$ is the
identity transformation.

PROOF. From the previous lemma we have $s^{\prime}(0)^{2}=1$ . Now we show that
for $s^{\prime}(O)=1,$

$\varphi_{B}$ is the identity transformation. We proceed by induction. First,
we prove that $s^{\prime\prime}(0)=0,$ $f^{\prime}(0)=0$ .
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Since

(2.16) $p^{2}g_{ab}(s)=e^{2\sigma}g_{ab}(r)+f(r)(\eta\otimes\eta)_{ab}(r)$

and $\alpha_{1}(m, u, a, b)=0$ (see (2.13)), we obtain the expansion

(2.17) $\delta_{ab}+s^{\prime\prime}(0)\delta_{ab}r+O(r^{2})$

$=\delta_{ab}+(2s^{\prime\prime}(0)\delta_{ab}+c^{2}f^{\prime}(0)\delta_{aq+1}\delta_{bq+1})r+O(r^{2})$ .

Also, from Lemma 2.1 we have

(2.18) $g_{ij}(s)=e^{2\sigma}g_{ij}(r)+f(r)(\eta\otimes\eta)_{ij}(r)$

and hence,

(2.19) $\delta_{ij}+\alpha_{1}(m, u, i, j)r+O(r^{2})$

$=\delta_{ij}+(2s^{\prime\prime}(0)\delta_{ij}+\alpha_{1}(m, u, i, j)+d^{2}f^{\prime}(0)\delta_{iq}\delta_{jq})r+O(r^{2})$ .

Similarly, from

(2.20) $\rho g_{ia}(s)=e^{2\sigma}g_{ia}(r)+f(r)(\eta\otimes\eta)_{ia}(r)$

we get the expansion

(2.21) $\alpha_{1}(m, u, i, a)r+0(r^{2})=(\alpha_{1}(m, u, i, a)-cdf^{\prime}(0)\delta_{iq}\delta_{aq+1})r+O(r^{2})$ .

Now, if $Ju$ has tangential and normal component, if follows from (2.21) that
$f^{\prime}(0)=0$ and from (2.19) we then get $s^{\prime\prime}(0)=0$ . Next, suppose that $Ju$ is normal
to $B$ . Then from (2.19) we obtain $s^{\prime\prime}(0)=0$ and it follows then from (2.17) that
$f^{\prime}(0)$ also vanishes. Finally, suppose that $Ju$ is tangent to $B$ . From (2.17) it
follows that $s^{\prime\prime}(0)\delta_{ab}=2s^{\prime\prime}(0)\delta_{ab}$ and hence, if codim $B\geq 2,$ $s^{\prime\prime}(0)=0$ . In this
case, $f^{\prime}(0)=0$ as a consequence of (2.19).

Next, consider the case of a real hypersurface $B$ . From (2.19) we obtain
$2s^{\prime\prime}(0)\delta_{ij}=-f^{\prime}(0)\delta_{iq}\delta_{jq}$ . Since $\dim B\geq 3$ , it follows that $s^{\prime\prime}(0)=0$ and $f^{\prime}(0)=0$ .

Now, we proceed by induction. We suppose that the coefficients in the power
series expansions of the functions $s(r)$ and $f(r)$ satisfy

$\beta_{2}=\cdots=\beta_{k-1}=0$ ,

$f^{\prime}(0)=\cdots=f^{(k-2)}(0)=0$

and prove that $\beta_{k}=0$ and $f^{(k-1)}(0)=0$ . From (2.16), (2.18) and (2.20), using the
induction hypothesis, we get the expansions



160 Eduardo $GARci_{A}- Rio$ and Lieven VANHECKE

(2.22) $\delta_{ab}\sum_{l=1}^{k-2}\alpha_{l}(m, u, a, b)r^{l}+(2k\beta_{k}\delta_{ab}+\alpha_{k-1}(m, u, a, b)$

$+\frac{c^{2}}{(k-1)!}f^{(k-1)}(0)\delta_{aq+1}\delta_{bq+1})r^{k-1}+O(r^{k})$

$=\delta_{ab}+\sum_{l=1}^{k-2}\alpha_{l}(m, u, a,b)r^{l}+(2\beta_{k}\delta_{ab}+\alpha_{k-1}(m, u, a, b))r^{k-1}+O(r^{k})$ ,

(2.23) $\delta_{ij}+\sum_{l=1}^{k-2}\alpha_{l}(m, u, i,j)r^{/}+(2k\beta_{k}\delta_{ij}+\alpha_{k-1}(m, u, i,j)$

$+\frac{d^{2}}{(k-1)!}f^{(k-1)}(0)\delta_{iq}\delta_{jq})r^{k-1}+O(r^{k})$

$=\delta_{ij}+\sum_{l=1}^{k-2}\alpha_{l}(m, u, i,j)r^{/}+\alpha_{k-1}(m, u, l,j)r^{k-1}+O(r^{k})$ ,

(2.24) $\sum_{l=1}^{k-2}\alpha_{T}(m, u, i, a)r^{l}+(\alpha_{k-1}(m, u, i, a)$

$-\frac{cd}{(k-1)!}f^{(k-1)}(0)\delta_{iq}\delta_{aq+1})r^{k-1}+O(r^{k})$

$=\sum_{l=1}^{k-2}\alpha_{l}(m, u, i, a)r^{l}+\alpha_{k-1}(m, u, i, a)r^{k-1}+O(r^{k})$ .

Considering the terms of degree $k-1$ in the previous expansions, and
proceeding in the same way as before, we obtain that $\beta_{k}=0$ and $f^{(k-1)}(0)=0$ .
Hence, from the analyticity assumption of $s$ , it follows that $s(r)=r$ and hence $\varphi_{B}$

is the identity. $\square $

In the rest of this paper, $\varphi_{B}$ will always denote a non-trivial geodesic
transformation, that is, $\varphi_{B}$ is not the identity map.

In what follows we shall show that the study of partially conformal geodesic
transformations with respect to a submanifold $B$ is reduced to that of isometric
geodesic reflections, provided that $0<\dim B<\dim M-1$ .

Isometric geodesic reflections with respect to submanifolds are studied in [4]

where it is shown that submanifolds admitting such geodesic transformations are
necessarily totally geodesic. Now we shall determine some necessary conditions
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for the existence of partially conformal geodesic transformations relating to the
extrinsic geometry of the submanifold $B$ in $M$.

THEOREM 2.2. Let $(M, g, J)$ be an almost Hermitian manifold and $B$ an
arbitrary submamfold with $\dim B\geq 1$ . If there exists a non-trivial partially con-
formal geodesic transformation with respect to $B$, then

(i) $B$ is a totally geodesic submanifold, $or$

(ii) $B$ is a totally umbilical real hypersurface, $or$

(iii) $B$ is a real hypersurface with two distinct constant principal curvatures,

where that with multiplicity one corresponds to the principal direction $JN$.

PROOF. Since the geodesic transformation is non-trivial, we have $s^{\prime}(0)=-1$ .
Also, from the conditions in Lemma 2.1 we have

$g_{ij}(s)=e^{2\sigma}g_{ij}(r)+f(r)(\eta\otimes\eta)_{ij}(r)$ .

Using the power series expansions of the components of the metric tensor (2.13),

we have

$\delta_{ij}-2rT_{ij}(m)+O(r^{2})=\delta_{ij}+(2T_{ij}(m)-2s^{\prime\prime}(0)\delta_{ij}+d^{2}f^{\prime}(0)\delta_{iq}\delta_{jq})r+0(r^{2})$

and hence, the shape operator satisfies

(2.25) $T(u)=\frac{1}{2}(s^{\prime\prime}(0)I-\frac{1}{2}f^{\prime}(0)d^{2}\eta\otimes Ju)$ .

If $B$ is a real hypersurface, then $d=1$ and it is totally umbilical or it has
two distinct constant principal curvatures, namely $k_{1}=(1/2)s^{\prime\prime}(0)$ and $k_{2}=$

$(1/2)(s^{\prime\prime}(0)-(1/2)f^{\prime}(0))$ , the latter with multiplicity one and corresponding to
the principal direction $Ju$ .

Next, show that $B$ is a totally geodesic submanifold provided that codim $B>$

1. Using the relation

$\rho^{2}g_{ab}(s)=e^{2\sigma}g_{ab}(r)+f(r)(\eta\otimes\eta)_{ab}(r)$

of Lemma 2.1, we obtain

$\delta_{ab}-s^{\prime\prime}(0)\delta_{ab}r+O(r^{2})=\delta_{ab}-(2s^{\prime\prime}(0)\delta_{ab}-c^{2}f^{\prime}(0)\delta_{aq+1}\delta_{bq+1})r+O(r^{2})$ ,

from which we get

(2.26) $s^{\prime/}(0)=c^{2}f^{\prime}(0)\delta_{aq+1}$ .

First we show that $B$ is totally geodesic if codim $B>2$ . In this case, it is
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possible to choose $E_{a}\in T_{m}^{\perp}B$ such that $g(E_{a}, u)=0,$ $g(E_{a}, Ju)=0$ and hence, it
follows from (2.26) that $s^{\prime\prime}(0)=0$ . Also, from (2.26) and if $c\neq 0$ , it follows that
$f^{\prime}(0)=0$ and hence, (2.25) shows that $B$ is totally geodesic. Furthermore,
suppose that $c=0$ for each normal vector $u\in T_{m}^{\perp}B$ , that is, for each normal
vector $u,$ $Ju$ is tangent to $B$ . Hence, (2.25) becomes

(2.27) $T(u)X=-\frac{1}{4}f^{\prime}(0)g(X,Ju)Ju$

for each vector $X\in T_{m}B$ . Then take orthogonal unit vectors $u,$ $v\in T_{m}^{\perp}B$ . Since $Ju$ ,
$Jv$ are tangent to $B$, it follows from (2.27) that

$\tau(\frac{1}{\sqrt{2}}(u+v))J(\frac{1}{\sqrt{2}}(u+v))=-\frac{1}{4}f^{\prime}(O)\frac{1}{\sqrt{2}}J(u+v)$ .

Expanding the left-hand side of this equation and using again (2.27) gives

$\tau(\frac{1}{\sqrt{2}}(u+v))J(\frac{1}{\sqrt{2}}(u+v))=-\frac{1}{8}f^{\prime}(0)J(u+v)$ .

Comparing both expressions above, $f^{\prime}(0)=0$ follows at once and hence, $B$ is
totally geodesic.

For the remaining case codim $B=2$ we show that $B$ is totally geodesic too.
From Lemma 2.1, we have

$\rho g_{ia}(s)=e^{2\sigma}g_{ia}(r)+f(r)(\eta\otimes\eta)_{ia}(r)$

and hence, the expansion

$-g(l\perp(u)E_{l}, E_{a})r+O(r^{2})=-(g(’\perp(u)E_{i}, E_{a})+dcf^{\prime}(0)\delta_{iq}\delta_{aq+1})r+O(r^{2})$ .

Considering the terms of degree one, we obtain

(2.28) $cdf^{\prime}(0)=0$ .

If $B$ is a holomorphic submanifold, it follows from (2.25) that $B$ must be totally
umbilical with shape operator $T(u)=(1/2)s^{\prime\prime}(0)Id$ . Proceeding as in [13, The-
orem 3.1], it follows that $B$ is totally geodesic.

Next, suppose that $B$ is not a holomorphic submanifold and take an
orthonormal basis $\{u, v\}$ of $T_{m}^{\perp}B$ . Let $c_{u}$ (resp. $c_{v}$ ) and $d_{u}$ (resp. $d_{v}$ ) be the norm
of the normal and tangential components of $Ju$ (resp. $Jv$). Since $B$ is not
holomorphic, $d_{u}$ and $d_{v}$ cannot both be zero. Put $d_{u}\neq 0$ .

If $c_{u}=0$ , it follows from (2.26) that $s^{\prime\prime}(0)=0$ . Now, if $c_{v}=0$ , then both $Ju$ ,
$Jv$ are tangent vectors to $B$ and then, in the same way as for the case of
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codim $B>2$ , we get $f^{\prime}(0)=0$ . So, suppose $c_{v}\neq 0$ . If $d_{v}\neq 0$ , then from (2.28) it
follows that $f^{\prime}(0)=0$ and $B$ is totally geodesic. If $d_{v}=0$ , then $Jv$ is normal to $B$ .
Since we are assuming that codim $B=2,$ $Jv$ must be in the direction of $u$ . This
shows that $Ju$ cannot have a tangential component to $B$ , which contradicts
$d_{u}\neq 0$ .

Finally, if $c_{u}\neq 0$ , (2.28) yields $f^{\prime}(O)=0$ . Then (2.25) implies that $B$ is
totally umbilical with shape operator $T(u)=(1/2)s^{\prime\prime}(0)Id$ , and in the same way
as in [13, Theorem 3.1] we get that $B$ is totally geodesic. This finishes the
proof. $\square $

In this context we recall the following definition.

DEFINITION 2.3. Let $B$ be a real hypersurface in an almost Hermitian
manifold $(M, g, J)$ . $B$ is said to be a Hopf hypersurface if $JN$ is a principal
direction of $B,$ $N$ being a unit normal vector.

Hopf hypersurface form a nice class of real hypersurfaces in almost Her-
mitian spaces. Indeed, they are the only real hypersurfaces with two distinct
constant principal curvatures in non-flat complex space forms. We refer to Takagi
[19] for a classification of such hypersurfaces in the complex projective space and
to Montiel [17] for the hyperbolic case.

Now, we state the main theorem of this section. It shows that only the
partially conformal geodesic transformations with respect to points and real
hypersurfaces are essential.

THEOREM 2.3. Let $B$ be a q-dimensional submanifold in an almost Hermitian
mamfold $(M^{n}, g, J)$ . If $\varphi_{B}$ is a partially conformal geodesic transformation with
respect to $B$, then it must be the identity or the geodesic reflection provided $q$

satisfies $0<q<n-1$ .

PROOF. Let $\varphi_{B}$ be a non-trivial geodesic transformation with respect to $B$ .
Since codim $B\geq 2$ , it follows from the previous theorem that $B$ must be a totally
geodesic submanifold, and moreover from (2.25) it follows that $s^{\prime;}(0)=0,$ $f^{\prime}(0)=$

$0$ . Next, we proceed by induction. We suppose that

$s^{\prime\prime}(0)=\cdots=s^{(k-1)}(0)=0$ ,

$f^{\prime}(0)=\cdots=f^{(k-2)}(0)=0$
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and prove that $s^{(k)}(0)=0,$ $f^{(k-1)}(0)=0$ . Then, from the analyticity conditions,

it will follow that $s(r)=-r$ and hence, $\varphi_{B}$ must be the geodesic reflection. Note
also that this condition shows that the function $f(r)$ vanishes identically. Hence,

the geodesic transformation $\varphi_{B}$ must be conformal and from [13, Theorem 3.2],

$\varphi_{B}$ is an isometric transformation.
Using the induction hypothesis, from (2.16) we have the expansion

(2.29) $\delta_{ab}+\sum_{l=1}^{k-2}\alpha_{l}(m, u,a, b)r^{/}+(\alpha_{k-1}(m, u, a, b)-2k\beta_{k}\delta_{ab}$

$+\frac{c^{2}}{(k-1)!}f^{(k-1)}(0)\delta_{aq+1}\delta_{bq+1})r^{k-1}+O(r^{k})$

$=\delta_{ab}+\sum_{/=1}^{k-2}\alpha_{T}(m, u,a, b)(-1)^{/}r^{l}$

$+((-1)^{k-1}\alpha_{k-1}(m, u,a, b)-2\beta_{k}\delta_{ab})r^{k-1}+O(r^{k})$

and considering the terms of degree $(k-1)$ , it follows that

(2.30) $2(k-1)\beta_{k}\delta_{ab}=(1-(-1)^{k-1})\alpha_{k-1}(m, u, a, b)$

$+\frac{c^{2}}{(k-1)!}f^{(k-1)}(0)\delta_{aq+1}\delta_{bq+1}$ .

Also, if $\varphi_{B}$ is partially conformal, (2.18) must hold and hence,

(2.31) $\delta_{ij}+\sum_{l=1}^{k-2}\alpha_{T}(m, u, i,j)r^{l}+(\alpha_{k-1}(i,j)-2k\beta_{k}\delta_{ij}$

$+\frac{d^{2}}{(k-1)!}f^{(k-1)}(0)\delta_{iq}\delta_{jq})r^{k-1}+O(r^{k})$

$=\delta_{ij}+\sum_{l=1}^{k-2}\alpha_{l}(m, u,a, b)(-1)^{/_{\gamma^{l}}}$

$+(-1)^{k-1}\alpha_{k-1}(m, u, i,j)r^{k-1}+O(r^{k})$

and considering the terms of degree $(k-1)$ , it follows that

(2.32) $2k\beta_{k}\delta_{ij}=(1-(-1)^{k-1})\alpha_{k-1}(m, u, i, j)+\frac{d^{2}}{(k-1)!}f^{(k-1)}(0)\delta_{iq}\delta_{jq}$ .
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Furthermore, from (2.20) and using the induction hypothesis, we also have

(2.33) $\sum_{l=1}^{k-2}\alpha_{l}(m, u, i, a)r^{l}+(\alpha_{k-1}(m, u, i, a)$

$-\frac{cd}{(k-1)!}f^{(k-1)}(0)\delta_{iq}\delta_{aq+1})r^{k-1}+0(r^{k})$

$=\sum_{l=1}^{k-2}\alpha_{l}(m, u, i, a)(-1)^{l+1}r^{l}+(-1)^{k}\alpha_{k-1}(m, u, i, a)r^{k-1}+O(r^{k})$

and hence,

(2.34) $(1-(-1)^{k})\alpha_{k-1}(m, u, i, a)=\frac{cd}{(k-1)!}f^{(k-1)}(0)\delta_{iq}\delta_{aq+1}$ .

In order to show that $\beta_{k}=0$ , we consider the following possibilities:

Case 1. There exists a unit vector $u\in T_{m}^{\perp}B$ such that $Ju\in T_{m}^{\perp}B$ .
Considering an adapted system of Fermi coordinates and since $d_{u}=0$ , we

obtain from (2.32)

$2k\beta_{k}=(1-(-1)^{k-1})\alpha_{k-1}(m, u, i, i)$ .

Hence, if $k$ is an odd number, say $k=2l+1$ , we must have $\beta_{k}=0$ . Furthermore,
suppose $k=2l$ . Then one gets

(2.35) $\beta_{2l}=\frac{1}{2l}\alpha_{2l-1}(m, u, i, i)$ .

Consider the one-parameter family of unit normals $\omega_{\lambda}=u\cos\lambda+Ju\sin\lambda$ . Since
$J(Ju)$ is normal, $d_{Ju}=0$ and condition (2.35) remains valid for any normal unit-
speed geodesic $\gamma_{\lambda}(r)=exp_{m}(r\omega_{\lambda})$ . So, $\beta_{2l}=(1/2l)\alpha_{2l-1}(m, \omega_{\lambda}, i, i)$ . Taking the
limit for $\lambda\rightarrow\pi$ , it follows that

$\beta_{2l}=\frac{1}{2l}\alpha_{2l-1}(m, u, i, i)=\frac{1}{2l}\alpha_{2l-1}(m, -u, i, i)$ .

Since $\alpha_{2l-1}(m, -u, i, i)=-\alpha_{2l-1}(m, u, i, i)$ , we get $\alpha_{2l-1}(m, u, i, i)=0$ and hence,
$\beta_{2l}=0$ .

Next, we show that $f^{(k-1)}(0)=0$ . Since $d_{u}=0$ , we have $c_{u}=1$ and (2.30)
yields

(2.36) $\frac{1}{(k-1)!}f^{(k-1)}(0)=((-1)^{k-1}-1)\alpha_{k-1}(m, u, q+1, q+1)$ .
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Then, it is clear that $f^{(k-1)}(0)=0$ for odd $k$ . For even $k=2l$ , one gets

$\frac{-1}{2(2l-1)!}f^{(2l-1)}(0)=\alpha_{2l-1}(m, u, q+1, q+1)$ .

Now, since $Ju$ is also normal to $B$, for each normal $z_{\lambda\mu}=\lambda u+\mu Ju$ , it follows that

$\frac{-1}{2(2l-1)}(\nabla_{\tilde{4}\lambda\mu^{Z}}^{(2l-.1)_{\lambda\mu}}f)(0)=\alpha_{2l-1}(m, z_{\lambda\mu},Jz_{\lambda\mu}, Jz_{\lambda\mu})$ .

Both sides are polynomials in $\lambda$ and $\mu$ . Comparing coefficients yields
$\alpha_{2l-1}(m, u, Ju,Ju)=0$ and hence, $f^{(2l-1)}(0)$ vanishes.

Case 2. For each normal vector $u\in T_{m}^{\perp}B,$ $d_{u}\neq 0$ .
Consider the following possibilities:

(2.a) for each $u\in T_{m}^{\perp}B,$ $Ju$ is tangent to $B$, that is, $c_{u}=0$ .
Since codim $B\geq 2$ , take orthogonal unit vectors $u,$ $v\in T_{m}^{\perp}B$ and denote

$E_{q(u)}=Ju,$ $E_{q(v)}=Jv$ . Considering an adapted system of Fermi coordinates, it
follows from (2.32) that

$2k\beta_{k}=(1-(-1)^{k-1})\alpha_{k-1}(m, u, E_{q(v)}, E_{q(v)})$ .

This shows that $\beta_{k}=0$ for $k=2l+1$ . Also, if $k=2l$ , one gets $\beta_{2l}=$

$(1/2l)\alpha_{2/-1}(m, u, E_{q(v)}, E_{q(v)})$ . Consider now the one-parameter family of unit
normals

$\omega_{\lambda}=u\cos\lambda+v\sin\lambda$ , $ z_{\lambda}=-u\sin\lambda+v\cos\lambda$ .

For each value of $\lambda,$
$\omega_{\lambda}$ and $z_{\lambda}$ are orthogonal unit vectors in $T_{m}^{\perp}B$ and for the

normal geodesic $\gamma_{\lambda}(r)=\exp_{m}(r\omega_{\lambda})$ we have

$\beta_{2l}=\frac{1}{2l}\alpha_{2l-1}(m,\omega_{\lambda}, E_{q(z_{\lambda})}, E_{q(z_{\lambda})})$ .

Taking the limit for $\lambda\rightarrow\pi$ , we obtain $\beta_{2l}=(1/2l)\alpha_{2l-1}(m, -u, -E_{q(v)}, -E_{q(v)})$ ,
and this shows that $\alpha_{2l-1}(m, u, E_{q(v)}, E_{q(v)})=\alpha_{2l-1}(m, -u, E_{q(v)}, E_{q(v)})$ . Hence,
$\alpha_{2l-1}(m, u, E_{q(v)}, E_{q(v)})=0$ and so, $\beta_{2l}=0$ .

To show that $f^{(k-1)}(0)=0$ , we use (2.32) to get

(2.37) $\frac{1}{(k-1)!}f^{(k-1)}(0)=((-1)^{k-1}-1)\alpha_{k-1}(m, u, E_{q(u)}, E_{q(u)})$ ,

and the result follows proceeding as in the previous case.
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(2.b) There exists a unit normal $u\in T_{m}^{\perp}B$ such that $d_{u}\neq 0,$ $c_{u}\neq 0$ .
Considering an adapted system of Fermi coordinates, from (2.34) we get

(2.38) $\frac{c_{u}d_{u}}{(k-1)!}f^{(k-1)}(0)=(1-(-1)^{k})\alpha_{k-1}(m, u, E_{q(u)}, E_{q+1(u)})$ .

This shows that $f^{(k-1)}(0)$ vanishes for even $k$ . If $k$ is odd, say $k=2l+1$ , we
obtain from (2.30) and (2.32)

$4l\beta_{2l+1}\delta_{ab}=\frac{c_{u}^{2}}{(2l)!}f^{(2l)}(0)\delta_{aq+1}\delta_{bq+1}$

and

2 $(2l+1)\beta_{2l+1}\delta_{ij}=\frac{d_{u}^{2}}{(2l)!}f^{(2l)}(0)\delta_{iq}\delta_{jq}$ .

Since codim $B\geq 2$ and $\dim M\geq 4$ , it follows that $\beta_{2l+1}=0$ and hence, $f^{(2l)}(0)=$

$0$ . This shows that $f^{(k-1)}(0)$ vanishes. Also, since we have shown that $\beta_{2l+1}=0$,
we only have to prove that $\beta_{k}=0$ for even $k=2l$ . From (2.30) and (2.32), we
have

$(2l-1)\beta_{2l}=\alpha_{2l-1}(m, v, a, a)$ , $2l\beta_{2l}=\alpha_{2l-1}(m, v, i, i)$

for all normal $v\in T_{m}^{\perp}B$ and hence, the result follows as in the previous cases.
$\square $

In [13], it is shown that if a geodesic transformation with respect to a
submanifold is an isometry, then it must be the identity or the geodesic reflection.
Moreover, it is shown that the geodesic reflection is conformal if and only if it is
isometric. In what remains in this section, we show a similar result for partially
conformal geodesic reflections.

PROPOSITION 2.1. Let $B^{q}$ be a submamfold in an almost Hermitian manifold
$(M^{n}, g, J)$ with $0<q<n-1$ . Then the geodesic reflection with respect to $B$ is
partially conformal if and only $lf$ it is an isometry.

PROOF. As a consequence of the induction process in the proof of the
previous theorem, the function $f(r)$ vanishes identically, and this shows that the
geodesic reflection is partially conformal if and only if it is conformal. Hence
the result follows from [13, Theorem 3.2]. $\square $
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3. Transformations with Respect to Points

In this section, we shall derive the necessary and sufficient conditions for a
geodesic transformation $\varphi_{m}$ with respect to a point $m\in M$ to be partially
conformal. Note that, if the submanifold $B$ reduces to $B=\{m\}$ , the system of
Fermi coordinates in Section 2 becomes a system of normal coordinates in a
normal neighborhood of $m$ .

Unlike for the case of higher dimensional submanifolds, for partially con-
formal geodesic transformations with respect to points we do not have a fixed
initial condition $s^{\prime}(0)^{2}=1$ . In fact, the following theorem shows that such
condition occurs only for isometric transformations.

THEOREM 3.1. Let $\varphi_{m}$ be a partially conformal geodesic transformation with
respect to a point $m\in M$ . Then $\varphi_{m}$ is an isometry $lf$ and only $lfs^{\prime}(0)^{2}=1$ and this
occurs if $\varphi_{m}$ is the identity $(s^{\prime}(0)=1)$ or the geodesic reflection $(s^{\prime}(0)=-1)$ .

$PR\infty F$ . If $s^{\prime}(0)^{2}=1$ , then $s^{\prime}(0)=1$ or $s^{\prime}(0)=-1$ . Clearly, the identity
transformation satisfies $s^{\prime}(0)=1$ , and moreover, proceeding as for Theorem 2.1,
it follows that the identity is the only partially conformal geodesic transformation
satisfying $s^{\prime}(0)=1$ .

Next, assume $s^{\prime}(0)=-1$ . We show that $\varphi_{m}$ is the geodesic reflection. From
the conditions in Lemma 2.1 and using the fact that $\alpha_{1}(m, u,a,b)=0$ (see (2.13)),

one gets $s^{\prime\prime}(0)\delta_{ab}=f^{\prime}(0)\delta_{a1}\delta_{b1}$ and hence, $s^{\prime\prime}(0)=0,$ $f^{\prime}(0)=0$ .
Now we proceed by induction and assume that

$\beta_{2}=\cdots=\beta_{k-1}=0$ , $f^{\prime}(0)=\cdots=f^{(k-2)}(0)=0$ .

We shall prove that $\beta_{k}=0,$ $f^{(k-1)}(0)=0$ . Proceeding as in Theorem 2.3, it
follows that (see (2.30))

$2(k-1)\beta_{k}\delta_{ab}=(1-(-1)^{k-1})\alpha_{k-1}(m, u,a, b)+\frac{1}{(k-1)!}f^{(k-1)}\delta_{a1}\delta_{b1}$ .

This yields that $\beta_{k}=0,$ $f^{(k-1)}(0)=0$ for odd $k$ and, if we suppose $k$ to be even,
say $k=2l$ , we get

$2(2l-1)\beta_{k}=2\alpha_{2l-1}(m, u,a,a)+\frac{1}{(k-1)!}f^{(k-1)}(0)\delta_{a1}\delta_{b1}$ .

Proceeding further as for Theorem 2.3, it follows that $\beta_{k}=0$ and $f^{(k-1)}(0)=0$ ,
and then we obtain $s(r)=-r$ . So, $\varphi_{m}$ is the geodesic reflection. Also, it fol-
lows that $f(r)$ vanishes, and hence, the geodesic reflection is a conformal trans-
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formation. Thus, it must be an isometry as a consequence of the results in
[13]. $\square $

The geometrical significance of the existence of a partially conformal geodesic
transformation with respect to a point is expressed by the mutual existing
relations between the coefficients in the power series expansions of the com-
ponents $g_{ab}$ of the metric tensor and those of the one-form $\eta$ , jointly with those of
the functions $s(r)$ and $f(r)$ . The next lemma expresses such relation by means of
a recursion formula. Its proof is obtained directly from the conditions in Lemma
2.1, using the power series expansions (2.12), (2.14) and (2.15).

LEMMA 3.1. Let $\varphi_{m}$ be a geodesic transformation with respect to a point $ m\in$

M. Then $\varphi_{m}$ is partially conformal if and only if the coefficients in the power series
expansion of the function $s(r)$ satisfy the following recurrence formula:

$\beta_{1}^{2}(1-\beta_{1}^{k})\alpha_{k}(m, u, a, b)$

$=\delta_{ab}(\sum_{p+q=k+2}(1-pq)\beta_{p}\beta_{q})+\beta_{1}^{2}\sum_{l=1}^{k-1}\alpha_{l}(m, u, a, b)(\sum_{l}\beta_{p_{1}}\cdots\beta_{p\iota})$

$-\sum_{l=1}^{k-1}\alpha_{k-l}(m, u, a, b)(\sum_{p+q=l+2}pq\beta_{p}\beta_{q})$

$+\sum_{l=1}^{k-1}(\sum_{p+q=l+2}\beta_{p}\beta_{q})(\sum_{v\geq 1}\alpha_{v}(m, u, a, b)(\sum_{p_{1}+\cdots+p_{v}=k-l}\beta_{pl}\cdots\beta_{p_{v}}))$

$+\sum_{l+t+v=k}(\frac{1}{l!}f^{(l)}(0)\eta_{t}(m, u, a)\eta_{v}(m, u, b))$

for all $a,$ $b\in\{1,2, \ldots, n-1\}$ .

As a direct consequence of the previous expression, we have the following
necessary and sufficient conditions for the existence of partially conformal
geodesic transformations, expressed in terms of the Jacobi operators and their
derivatives.

THEOREM 3.2. Let $(M, g, J)$ be an almost Hermitian mamfold such that there
exists a non-isometric partially conformal geodesic transformation with respect to a
point $m\in M$ . Then the derivatives of the Jacobi operator satisfy
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(3.1) $\{_{R^{(2k)}(m)=(}R^{(2k+1)}(m)=0_{1}c’(m,k)0$

$c_{2}(m^{0_{k)I_{n-2}}}$

for some real numbers $c_{1},$ $c_{2}$ depending only on the base point $m\in M$ and the order
$k\geq 0$ . Moreover, if $\varphi_{m}$ is a conformal transformation, then $c_{1}(m, k)=c_{2}(m, k)$ for
all $k\geq 0$ . Conversely,

(i) if (3.1) holds with $c_{1}(m, k)=c_{2}(m, k)$ and for all $k\geq 0$ , then there exist
infinitely many geodesic conformal transformations with respect to $m$ ;

(ii) $lf(3.1)$ holds and $c_{1}(m, k)\neq c_{2}(m, k)$ for some $k$, then there exist infinitely
many non-conformal partially conformal geodesic transformations with respect to
$m$, provided that $(M, g, J)$ is a nearly Kahler manifold.

PROOF. First we show that (3.1) are necessary conditions for the existence of
a non-isometric partially conformal geodesic transformation with respect to $m$ . If
$\varphi_{m}$ is conformal, the result is shown in [13, Theorem 4.1]. So, we suppose that $\varphi_{m}$

is a non-conformal partially conformal geodesic transformation with respect to $m$ .
This occurs if and only if the function $f$ in (2.2) does not vanish identically.
Hence, assume $f^{(k_{0})}(0)$ to be the first non-vanishing derivative of $f(r)$ at the
point $r=0$ .

As a first step, we show that the coefficients in the power series expansion of
the components of the metric tensor are independent of the direction $u\in T_{m}M$ ,

and furthermore, that they satisfy

(3.2) $\left\{\begin{array}{l}\alpha_{k}(m,u,a,b)=0, a,b\in\{1,\ldots,n-1\},\\\alpha_{k}(m,u,a,a)=\alpha_{k}(m,u,b,b), a,b\in\{2,\ldots,n-l\}\end{array}\right.$

$a\neq b$ ,

for all $k\geq 0$ . (Note that $E_{1}=Ju,$ $E_{n}=u.$ )

So, let $f^{(k_{0})}(0)$ be the first non-vanishing derivative of $f(r)$ . Then the ex-
pression in Lemma 3.1 yields

$\beta_{1}^{2}(1-\beta_{1}^{k})\alpha_{k}(m, u, a, b)$

$=\delta_{ab}(\sum_{p+q=k+2}(1-pq)\beta_{p}\beta_{q})$

$+\beta_{1}^{2}\sum_{l=1}^{k-1}\alpha_{l}(m, u, a, b)(\sum_{\prime}\beta_{pl}\cdots\beta_{pl})$
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$-\sum_{l=1}^{k-1}\alpha_{k-l}(m, u, a, b)(\sum_{p+q=l+2}pq\beta_{p}\beta_{q})$

$+\sum_{l=1}^{k-1}(\sum_{p+q=l+2}\beta_{p}\beta_{q})(\sum_{v\geq 1}\alpha_{v}(m, u, a, b)(\sum_{p_{1}+\cdots+p_{v}=k-l}\beta_{p1}\cdots\beta_{p_{v}}))$

for all $k<k_{0}$ . Hence, in the same way as in the proof of Theorem 4.1 in [13], we
obtain

(3.3) $\left\{\begin{array}{l}\alpha_{k}(m,u,a,b)=0, a,b\in\{1,\ldots,n-1\},\\\alpha_{k}(m,u,a,a)=\alpha_{k}(m,u,b,b), a,b\in\{2,\ldots,n-1\}\end{array}\right.$

$a\neq b$ ,

for all $k<k_{0}$ , and furthermore, such coefficients are independent of the direction
$u\in T_{m}M$ .

Also, since $\eta_{0}(m, u, a)=g(E_{a}, Ju)(m)=0$ , from the expression in Lemma 3.1,
it follows that (3.2) also holds for $k=k_{0}$ . Now, we proceed by induction.
Suppose (3.2) holds for $k=0,$ $\ldots,$

$t+k_{0}$ and also that $\eta_{0}(m, u, a)=\cdots=$

$\eta_{t}(m, u, a)=0$ for all $a\in\{2, \ldots, n-1\}$ . We prove that

$\left\{\begin{array}{l}\alpha_{t+k_{0}+1}(m,u,a,b)=0, a,b\in\{1,2,\ldots,n-1\},\\\alpha_{t+k_{0}+1}(m,u,a,a)=\alpha_{t+k_{0}+1}(m,u,b,b), a,b\in\{2,\ldots,n-1\},\\\eta_{t+1}(m,u,a)=0, a\in\{2,\ldots,n-1\}\end{array}\right.$

and that they are independent of the direction $u\in T_{m}M$ .
From the expression in Lemma 3.1 it follows that (3.2) holds for $k=n+$

$k_{0}+1$ and $a,$ $b\in\{2, \ldots, n-1\}$ . Hence, we have to show that $\eta_{t+1}(m, u, a)=0$ .
To do this, we consider the expression in Lemma 3.1 and, using the induction
hypothesis, it follows that

(3.4) $\beta_{1}^{2}(\beta_{1}^{t+k_{0}+1}-1)\alpha_{t+k_{0}+1}(m, u, a, 1)=\frac{1}{k_{0}!}f^{(k_{0})}(0)\eta_{t+1}(m, u, a)$ .

Consider the unit vectors $z_{\lambda\mu}=\lambda u+\mu Ju$ , $\lambda^{2}+\mu^{2}=1$ . Since $E_{a}$ remains
orthogonal to both $z_{\lambda\mu}$ and $Jz_{\lambda\mu}$ , it follows that

$\beta_{1}^{2}(\beta_{1}^{t+k_{0}+1}-1)\alpha_{t+k_{0+1}}(m, z_{\lambda\mu}, a, Jz_{\lambda\mu})=(\nabla_{z_{\lambda\mu},\ldots,z_{\lambda\mu}}^{(k_{0})}f)(0)\eta_{t+1}(m, z_{\lambda\mu},E_{a})$ .

The usual procedure then yields $\alpha_{t+k_{0}+1}(m, u, a, Ju)=0$ .
Next, we will use (3.2) to show the necessary conditions (3.1). Since the

components $g_{ab}$ of the metric tensor are given by (2.7), it follows that the
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coefficients in the power series expansion of $g_{ab}(\gamma(r))$ satisfy

(3.5) $\alpha_{k+4}(m, u, a, b)=\frac{1}{(k+2)!}({}^{t}D_{u}D_{u})_{ab}^{(k+2)}(0)$ .

It follows from the power series expansion (2.13) that $(1/3)g(R(u)E_{a}, E_{b})(m)=$

$-\alpha_{2}(m, u, a, b)$ , and using the recursion formula in Lemma 3.1, $R(u)$ is a diagonal
matrix with two constant eigenvalues independent of the direction $u\in T_{m}M$ ,

$\beta_{1}^{2}(1-\beta_{1}^{2})R_{uaub}(m)=2(6\beta_{1}\beta_{3}\delta_{ab}+\frac{1}{4}f^{\prime\prime}(0)\delta_{a1}\delta_{b1})$ .

(Note that $2\beta_{1}\beta_{2}\delta_{ab}=-f^{\prime}(0)\delta_{a1}\delta_{b1}$ and thus $\beta_{2}=f^{\prime}(0)=0$ provided $\dim M>$

$2.)$ Since the endomorphism-valued function $D_{u}(r)$ is a solution of the Jacobi
equation (2.5) with initial conditions $D_{u}(0)=0,$ $D_{u}^{\prime}(0)=I$ , it follows that $D_{u}^{\prime\prime\prime}(0)$

$=-R(m)$ , and hence, it is diagonal with at most two distinct eigenvalues, one
with multiplicity one corresponding to the eigenvector $Ju$ . We now use induction.
Suppose that the matrices

$D_{u}^{\prime\prime\prime}(0),$

$\ldots,$
$D_{u}^{(k+1)}(0)$ , $R(m),$

$\ldots,$
$R^{(k-2)}(m)$

are diagonal with at most two distinct eigenvalues, one having $Ju$ as corre-
sponding eigenvector, and show that the same holds for $D_{u}^{(k+2)}(0)$ and $R^{(k-1)}(m)$ .
Since

(3.6) $D_{u}^{(k+2)}(0)=-\sum_{l=0}^{k}C_{k}^{l}R^{(k-l)}(m)D_{u}^{(/)}(0)$ ,

it follows from the hypothesis of induction that $D_{u}^{(k+2)}(0)$ is a symmetric matrix
and hence, (3.5) shows that it is diagonal with two eigenvalues, one corresponding
to the distinguished eigenvector $Ju$ . Coming back to (3.6), the corresponding
result holds for $R^{(k-1)}(m)$ . Moreover, since those eigenvalues are independent of
the direction, it follows that the odd derivatives of the Jacobi operator vanish
[14], which shows the necessity of (3.1).

Next we prove the converse. If $c_{1}(m, k)=c_{2}(m, k)$ for all $k\geq 0,$ $(3.1)$ shows
that the Jacobi operator and its higher order derivatives are diagonal with only
one constant eigenvalue. Then the result follows from [13, Theorem 4.1]. Next,
we suppose that $c_{1}(m, k)\neq c_{2}(m, k)$ for some $k\geq 0$ and assume $(M, g, J)$ to be
a nearly K\"ahler manifold. Then it follows that $Ju$ is also parallel along the
geodesic $\gamma(r)=\exp_{m}(ru)$ . Using (3.6), it follows that the endomorphism-valued
function $D_{u}(r)$ can be diagonalized with respect to an orthonormal parallel basis
$\{Ju, E_{2}, \ldots, E_{n-1}\}$ . Moreover, from (3.1) it follows that the eigenvalues are in-
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dependent of the direction $u\in T_{m}M$ , and it also follows that the coefficients in the
power series expansion of the metric tensor satisfy (3.2). This shows that the
recursion formula in Lemma 3.1 defines a partially conformal geodesic trans-
formation with respect to $m$ for each initial value $\beta_{1}=s^{\prime}(0)\in R-\{0\}$ . $\square $

REMARK 3.1. Note, as follows from (3.1), that the existence of a non-
isometric partially conformal geodesic transformation with respect to a point is a
more restrictive condition than that of an isometric local reflection. If there exists
a non-isometric partially conformal geodesic transformation with respect to a
single point, then for each value of $C\in R-\{0\}$ , there exists a partially conformal
geodesic transformation with initial condition $s^{\prime}(0)=C$ (in particular, the local
reflection for $C=-1$ ). Moreover, by making use of the curvature conditions in
Theorem 3.2, it follows that if there exists a non-conformal, partially conformal
geodesic transformation with respect to a point $m\in M$ , then any conformal
geodesic transformation with respect to $m$ must be isometric. Moreover, if there
exists a non-isometric conformal geodesic transformation with respect to $m$ , then
any partially conformal geodesic transformation with respect to $m$ must be
conformal.

As a consequence of the previous theorem, we can now state the following
characterization of complex space forms. Note that this result generalizes [9,
Theorem 4.5] since we do not assume here that the manifold is K\"ahlerian.

THEOREM 3.3. Let $(M, g, J)$ be an almost Hermitian manifold. Then $M$ is
a Kahler manifold of constant holomorphic sectional curvature $c\neq 0lf$ and only if
for each point $m\in M$ there exists a non-conformal partially conformal geodesic
transformation.

PROOF. If $\varphi_{m}$ is a non-conformal partially conformal geodesic transfor-
mation, the function $f$ does not vanish identically. Hence, assume $f^{(k_{0})}(0)$ to be
the first non-zero derivative of $f,$ $(k_{0}\geq 1)$ . Considering the recurrence formula in
Lemma 3.1 for $k=k_{0}+1$ and using the induction hypothesis considered in the
proof of the previous theorem, it follows that $f^{(k_{0})}(0)\eta_{1}(m, u, a)=0$ for all $a=$

$2,$
$\ldots,$

$n-1$ . Moreover, the first terms in the power series expansion of $\eta(\partial/\partial x^{a})$

along the geodesic $\gamma(r)$ are

$\eta(\frac{\partial}{\partial x^{a}})(\exp_{m}(ru))=g(E_{a}, Ju)(m)+rg(J^{\prime}u, E_{a})(m)+O(r^{2})$ .

This shows that $g((\nabla_{u}J)u, E_{a})=0$ for all $E_{a}$ orthogonal to both $u$ and $Ju$ . Hence,
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$(\nabla_{u}J)u=0$ for each unit $u$ , and this shows that $(M, g, J)$ is a nearly Kahler
manifold. Also, condition (3.1) in Theorem 3.1 for $k=0$ yields

$R(u, Ju)u\sim Ju$

for all unit vectors $u\in T_{m}M$ . Hence the holomorphic sectional curvature of $M$ is
constant at each point $m\in M[21]$ .

In [15], nearly K\"ahler manifolds of constant holomorphic sectional curvature
are classified, showing that they must be complex space forms or locally isometric
to the six-dimensional sphere with the nearly K\"ahler structure induced from the
product of the Cayley numbers. Now, since the geodesic transformation $\varphi_{m}$ is not
conformal, it follows from (3.1) that $c_{1}(m, 0)\neq c_{2}(m, 0)$ and hence, the Jacobi
operator $R(m)$ has two distinct constant eigenvalues. This shows that $M$ cannot
be a space of constant curvature. Hence, $M$ is a K\"ahler manifold of constant
holomorphic sectional curvature $c_{1}\neq 0$ . (Note that $c_{1}(m, 0),$ $c_{2}(m, 0)$ are constant
on each connected component of $M.$ )

The converse is proved in [9, Theorem 4.1] $\square $

The next theorem classifies the partially conformal geodesic transformations
occurring in an almost Hermitian manifold which admits a partially conformal
geodesic transformation with respect to each point. Also, it may be viewed as a
generalization of the results in [9] and [13].

THEOREM 3.4. Let $(M, g, J)$ be an almost Hermitian mamfold such that there
exists a non-trivial partially conformal geodesic transformation with respect to each
point $m\in M$ . Then $M$ is a locally symmetric space and further we have

(i) the geodesic transformation is the local reflection and hence, an isometry;
(ii) $M$ is locally flat if and only $lf$ there exists a non-isometric homothetic

geodesic transformation with respect to some point. Moreover, in this case the

transformation must be the Euclidean similarity $s(r)=Cr,$ $C^{2}\neq 0,1$ ;
(iii) $M$ is a space of constant curvature $c>0\iota f$ and only $\iota f$ it there exists a

non-homothetic geodesic conformal transformation with respect to some point. $In$

this case, only non-Euclidean similarities

$\tan s\frac{\sqrt{c}}{2}=C\tan r\frac{\sqrt{c}}{2}$ , $C^{2}\neq 0,1$ ,

occur;
(iv) $M$ is a Kahler mamfold of constant holomorphic sectional curvature $c>0$

$lf$ and only if there exists a non-conformal partially conformal geodesic trans-
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formation with respect to some point. In this case, the geodesic transformation must
be a non-Euclidean similarity

$\tan s\frac{\sqrt{c}}{4}=C\tan r\frac{\sqrt{c}}{4}$ , $C^{2}\neq 0,1$ .

PROOF. It is clear from Theorem 3.2 that the existence of a partially
conformal geodesic transformation with respect to each point implies local
symmetry. Furthermore, the existence of a homothetic, conformal or partially
conformal geodesic transformation with respect to a single point is equivalent
to the condition that the Jacobi operator has only zero constant eigenvalues, or
only non-zero equal constant eigenvalues, or two distinct constant eigenvalues
(one with multiplicity one), respectively.

Since $(M, g)$ is locally symmetric, the eigenvalues of the Jacobi operator are
constant on $M$, and hence, from Theorem 3.2 it follows that there exists a
homothetic, conformal or partially conformal geodesic transformation with re-
spect to each point. Hence, the results follow from previous theorems and
using those in [9]. The existence of non-Euclidean similarities as before is shown
in [9]. $\square $

REMARK 3.2. The corresponding cases to (iii) and (iv) in Theorem 3.4
for negative curvature $c<0$ are obtained by replacing the trigonometric by
hyperbolic functions.

4. Transformations with Respect to Real Hypersurfaces

In this final section we derive the sufficient conditions for the existence of a
partially conformal geodesic transformation with respect to a Hopf hypersurface
in an almost Hermitian manifold. Proceeding in an analogous way as in the
previous section, from the conditions in Lemma 2.1 we obtain the following
recursion formula for the coefficients in the power series expansions of the
functions $s(r)$ and $f(r)$ expressed in terms of the components of the metric tensor
$g$ and the one-form $\eta$ . Note also that for any partially conformal geodesic
transformation with respect to a hypersurface we have $s^{\prime}(0)=-1$ .

LEMMA 4.1. Let $\varphi_{B}$ be a geodesic transformation with respect to a real
hypersurface $B$ in an almost Hermitian mamfold $(M, g, J)$ . Then $\varphi_{B}$ is partially
conformal if and only $lf$ the coefficients in the power series expansion of the
function $s(r)$ satisfy the recursion formula
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(4.1) $2(k+1)\beta_{k+1}\delta_{ij}+((-1)^{k}-1)\alpha_{k}(m, u, i, j)-\frac{1}{k!}f^{(k)}(0)g(E_{i},Ju)g(E_{j}, Ju)(m)$

$=\delta_{ij}\sum_{p,q>1}pq\beta_{p}\beta_{q}+\sum_{v<k}\frac{1}{v!}f^{(v)}(0)\eta_{l}(m, u, i)\eta_{l}(m, u, j)p+q--k+2v+l+t=k$

$+\sum_{l=1}^{k-1}\alpha_{l}(m, u, i,j)(\sum_{p+q=k-/+2}pq\beta_{p}\beta_{q}-\sum_{lp_{1}+\cdots+p=k}\beta_{p\mathfrak{l}}\cdots\beta_{p/})$

for all $i,j\in\{1,2, \ldots, n-1\}$ .

Using this recursion formula, we shall investigate the sufficient conditions for
the existence of a partially conformal geodesic transformation with respect to a
real hypersurface $B$ . We recall (see Theorem 2.2) that $B$ must be totally umbilical
or a Hopf hypersurface with two distinct constant principal curvatures, one with
multiplicity one corresponding to the principal direction $Ju$ . We derive the
following sufficient conditions:

THEOREM 4.1. Let $B$ be a real hypersurface in an almost Hermitian manifold
$(M, g,J)$ . If the normal Jacobi operator satisfies

(4.2) $R^{(k)}(m)=\left(\begin{array}{lll}c_{l}(k, & u) & 0\\0 & & c_{2}(k,u)I_{n-2}\end{array}\right)$

for all $k\geq 0,$ $m\in B$, where $c_{1}(k, u),$ $c_{2}(k, u)$ are constant along $B$, then we have
(1) if $c_{1}(k, u)=c_{2}(k, u)$ for all $k\geq 0$ , then there exists a geodesic conformal

transformation with respect to $B$, provided that $B$ is totally umbilical;
(2) $lfc_{1}(k, u)\neq c_{2}(k, u)$ for some $k\geq 0$ and $B$ is a Hopf hypersurface with two

distinct constant principal curvatures, then there exists a non-conformal, partially
conformal geodesic transformation with respect to $B$, provided that $(M, g, J)$ is
nearly Kahlerian.

$PR\infty F$ . Part (1) has been proved in [13, Theorem 5.1]. In order to show (2),

consider the endomorphism-valued function $D_{u}(r)$ satisfying the Jacobi equation
with initial values $D_{u}(0)=I,$ $D_{u}^{\prime}(0)=T(u)$ . It follows that $D_{u}^{\prime}(0)$ is diago-
nalizable with respect to an orthonormal basis $\{E_{1}, \ldots, E_{n-2}, Ju\}$ of $T_{m}B$ .
Proceeding by induction and using the conditions for the normal Jacobi operator,
it follows that the higher order derivatives $D_{u}^{(k)}(0)$ are diagonal matrices with two
distinct eigenvalues, one with multiplicity one having $Ju$ as corresponding
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eigenvector. Note also, that since the principal curvatures of $B$ are constant and
the functions $c_{1}(k, u),$ $c_{2}(k, u)$ are independent of the point $m\in B$, those
eigenvalues are also constant along $B$ .

Now, let $\{F_{1}, \ldots,F_{n-2}\}$ be the parallel translated basis of $\{E_{1}, \ldots, E_{n-2}\}$

along the normal geodesic $\gamma(r)=\exp_{m}(ru)$ . Moreover, since $(M, g,J)$ is a nearly
K\"ahler manifold, $Ju$ is also parallel along the geodesic $\gamma$ . Hence, with respect to
the parallel basis $\{F_{1}, \ldots,F_{n-2},Ju\}$ , the components of the metric tensor are given
by

$g_{ij}(\gamma(r))=({}^{t}D_{u}D_{u})_{ij}(r)$

and hence, the coefficients in the power series expansion of the components of the
metric tensor are constant along $B$ and moreover, they satisfy

(4.3) $\left\{\begin{array}{l}\alpha_{k}(m,u,i,j)=0, i,j\in\{1,\ldots,n-1\},\\\alpha_{k}(m,u,i,i)=\alpha_{k}(m,u,j,j), i,j\in\{1,\ldots,n-2\}.\end{array}\right.$

$i\neq j$ ,

Also, for the one-form $\eta(X)=g(X,JN)$ along the normal geodesic $\gamma(r)=$

$\exp_{m}(m)$ , it follows that $\eta(\partial/\partial x^{\iota})=0$ for all $i\in\{1, \ldots, n-2\}$ . This, together with
(4.3), shows that the recursion formula in Lemma 4.1 defines a non-conformal,
partially conformal geodesic transformation with respect to B. $\square $

For nearly K\"ahler manifolds, the existence of a partially conformal geodesic
transformation with respect to each sufficiently small geodesic sphere charac-
terizes the constancy of the holomorphic sectional curvature, according to the
following

THEOREM 4.2. Let $(M, g,J)$ be a nearly K\"ah$ler$ manifold. Then it is a space
of constant holomorphic sectional curvature if and only $lf$ there exists a non-
isometric partially conformal geodesic transformation with respect to each suffi-
ciently small geodesic sphere, and moreover

(i) $M$ is locally isometric to $C^{n}$ or to the six-dimensional sphere $S^{6}$ if and only
$lf$ for each sufficienfly small geodesic sphere there exists a non-isometric geodesic

conformal transformation,
(ii) $M$ is locally isometric to a non-flat complex space form $\iota f$ and only $lf$ there

exists a non-conformal partially conformal geodesic transformation with respect to
each sufficiently small geodesic sphere.

PROOF. If there exists a partially conformal geodesic transformation with
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respect to each sufficiently small geodesic sphere, then $Ju$ is an eigenvector of the
shape operator $T(u)$ . From the results in [7] it then follows that the holomorphic
sectional curvature is constant. Now, (i) and (ii) follow from the classification of
the nearly K\"ahler manifolds of constant holomorphic sectional curvature [15]

together with the results in [13] and Theorems 2.2 and 4.1. $\square $

Note that the existence of a partially conformal geodesic transformation with
respect to any sufficiently small geodesic sphere implies that the mean curvature
function of the small geodesic spheres is a radial function, and hence, $M$ is a
harmonic space (see, for example, [3]). Using for example [8] and if $M$ is locally
symmetric, we have the following

THEOREM 4.3. Let $(M, g, J)$ be a locally symmetric space. If there exists a
partially conformal geodesic transformation with respect to each sufficiently small
geodesic sphere, then

(i) $M$ is locally isometric to a space of constant curvature if and only if each
geodesic transformation is conformal,

(ii) $M$ is locally isometric to a non-flat complex space form $\iota f$ and only $\iota f$ it
there exists a non-conformal, partially conformal geodesic transformation with
respect to each sufficiently small geodesic sphere.

PROOF. Any locally symmetric harmonic space is locally isometric to a two-
point homogeneous space. Moreover, from [23] it follows that $(M, g,J)$ must be
locally isometric to a complex space form or to a space of constant curvature.
Note that in any of these cases, $R(m)Ju$ is proportional to $Ju$ , and hence, the
result follows from the previous results (Theorem 4.2). $\square $

As already mentioned, the Hopf hypersurfaces with two distinct constant
principal curvatures in a non-flat complex space form of real dimension $\geq 4$ are
completely classified by Takagi [19] for $CP^{n/2}$ and by Montiel [17] for $CH^{n/2}$ ,
$n\geq 6$ . Actually, these hypersurfaces are characterized by the existence of a
partially conformal geodesic transformation with respect to them. Furthermore,
we have

THEOREM 4.4. Let $(M, g, J)$ be a Kahler manifold of constant holomorphic
sectional curvature $c$ and let $B$ be a real hypersurface. Then, $B$ is a Hopf
hypersurface with two constant principal curvatures if and only $lf$ there exists a
partially conformal geodesic transformation with respect to it. Moreover,
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(i) $B$ is locally isometric to a geodesic sphere of radius $\alpha$ and the geodesic

transformation is the Euclidean inversion $(s+\alpha)(r+\alpha)=\alpha^{2}\iota fc=0$ ;
(ii) $B$ is locally isometric to a geodesic sphere of radius $\alpha$ in the complex

projective space of constant holomorphic sectional curvature $c=4$ and the geodesic

transformation is the non-Euclidean inversion

$\tan\frac{(s+\alpha)}{2}\tan\frac{(r+\alpha)}{2}=\tan^{2}\frac{\alpha}{2}$ ;

(iii) $B$ is locally isometric to a geodesic sphere of radius $\alpha$ in the complex
hyperbo $lic$ space of constant holomorphic sectional curvature $c=-4$ , and the
geodesic transformation is the non-Euclidean inversion

$\tanh\frac{(s+\alpha)}{2}\tanh\frac{(r+\alpha)}{2}=\tanh^{2}\frac{\alpha}{2}$ ;

(iv) $B$ is locally isometric to a tube about $CH^{k}$ in the complex hyperbolic
space $CH^{n}(-4)$ and the geodesic transformation is defined by

arctan $\sinh(s+\alpha)+\arctan\sinh(r+\alpha)=2\arctan\sinh\alpha$ ;

(v) $B$ is locally isometric to a tube of radius $\log(2+\sqrt{3})$ about $RH^{n/2}$ in the
complex hyperbolic space $CH^{n}(-4)$ and the geodesic transformation is that of the
case (iv) above for $\alpha=\log(2+\sqrt{3})$ ;

(vi) $B$ is locally isometric to a horosphere in the complex hyperbolic space
$CH^{n}(-4)$ and the geodesic transformation is defined by

$e^{-s}+e^{-r}=2$ .

PROOF. According to Theorem 2.2, $B$ must be a totally umbilical hyper-
surface or a Hopf hypersurface with two distinct constant principal curvatures.
Since there are no totally umbilical hypersurfaces in a non-flat complex space
form, it follows that a geodesic conformal transformation occurs only when $M$ is
flat. Also, it follows directly from the classification of Hopf hypersurfaces with
two distinct constant principal curvatures in the projective and hyperbolic
complex spaces that $B$ must lie in one of the classes above. (See Bemdt [1] for a
table of the principal curvatures of the hypersurfaces above.) Finally, the result
follows proceeding as in [9] (see also [13]).
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