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1. Introduction

The warped product M xz N, of a 1-dimensional manifold (M, 3),3,, = —1,
with a warping function F and a 3-dimensional Riemannian manifold (N,g) is
said to be a generalized Robertson-Walker spacetime (cf. [32)). In particular,
when the manifold (N,g§) is a Riemannian space of constant curvature, the
warped product M xr N is called a Robertson-Walker spacetime. In it was
shown that at every point of a generalized Robertson-Walker spacetime M xp N
the following condition is satisfied:

(%), the tensors R-R— Q(S,R) and Q(g,C) are linearly dependent.

This condition is equivalent to the relation

on the set % ¢ consisting of all points of the manifold M xr N at which its Weyl
tensor C is non-zero, where L; is a certain function on % ¢. For precise definitions
of the symbols used, we refer to the Sections 2 and 3. (x); is a curvature
condition of pseudosymmetry type. In this paper we will investigate generalized
Robertson-Walker spacetimes realizing a condition of pseudosymmetry type
introduced in [25]. Namely, semi-Riemannian manifolds (M,g), n > 4, fulfilling
at every point of M the following condition

(%) the tensors R-C and Q(S,C) are linearly dependent.
were considered in [25]. This condition is equivalent to the relation

R-C=LQ(S,C) (2)
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on the set % = {x e M|Q(S,C) # 0 at x}, where L is a certain function on #%.
We note that every semisymmetric manifold (R- R = 0) as well as every Weyl-
semisymmetric manifold (R- C = 0) realizes (x) trivially (see [25]). There exist
also non semisymmetric and non Weyl-semisymmetric manifolds realizing (*)
([25]). We mention that warped products realizing curvature conditions of
pseudosymmetry type were studied in: [7], [8], [9] [11], [13], [14], [15], [16], [17],
[19], [20], [2T], [24], 26}, [28] and [29].

In Section 2 we present a review of the family of curvature conditions of
pseudosymmetry type. In the next section we give results on warped products
which we apply in the last two sections. In Section 4 we find necessary and
sufficient conditions for a warped product to be a manifold satisfying (2). Finally,
in Section 5 we present our main results.

Let (M,g) be a semi-Riemannian manifold satisfying (x). We denote by %,
the set of all points of the set  — M at which the function L is non-zero. It is
clear that the tensors R- C and Q(S, C) are non-zero at every point of the set
Ur. Moreover, let (M, g) be a 4-dimensional warped product M xz N, dim M =
1. We denote by % the subset of % consisting of all non-critical points of F.
Our main result states (see [Theorem 5.1) that if the 4-dimensional warped
product M xr N, dim M = 1, satisfies (x) and the set Zf is a dense subset of %
then the open submanifold U; of the manifold M xz N is a pseudosymmetric
warped product of the 1-dimensional manifold, with the function F, defined by
F(x') = aexp(bx!), a = const. >0, b= const. #0, and a 3-dimensional semi-
Riemannian manifold such that its Ricci tensor is of rank one and its scalar
curvature vanishes identically. From this statement it follows immediately (see
Corollary 5.1) that if a generalized Robertson-Walker spacetime M xr N realizes
above assumptions then at every point of M xr N at least one of the tensors
R - C or Q(S, C) must vanish. Finally, using this fact we prove (see

that every Robertson-Walker spacetime satisfying (%) is a pseudosymmetric
manifold.

2. Curvature Conditions of Pseudosymmetry Type

Let (M,g) be a connected n-dimensional, semi-Riemannian manifold of class
C® and let V be its Levi-Civita connection. We define on M the endomorphisms
XAY ZX,Y) and 4(X,Y) by

(X AY)Z=g(Y,Z2)X —g(X,2)Y, R(X,Y)Z=[Vx,Vy|Z-Vx yZ,

1

€(X,Y) = R(X, Y)—n—_—z(XAyY+yXA ) g

n—lXA Y)’
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respectively, where X, Y,Z € E(M),E(M) being the Lie algebra of vector fields
of M. The Ricci operator & is defined by S(X,Y) = g(X,¥Y), where S is the
Ricci tensor and x the scalar curvature of (M,g), respectively. Next, we define
the tensors U, G, the Riemann-Christoffel curvature tensor R and the Weyl
conformal tensor C of (M,g), by

U(X1, X3, X3, Xs) = g(X1, X4)S(X32, X3) + g(X3, X3)S(X1, X4)
— g(X1, X3)S(X2, Xu) — 9(X2, X4)S(X1, X3),
G(X1, X2, X3, Xy) = g((X7 A X2) X3, Xa),
R(X1, X2, X3, X4) = g(R(X1, X2) X3, Xy),
C(X1, X2, X3, Xa) = g(6 (X1, X2) X3, Xa),

respectively. Now we can present the Weyl tensor C in the following form

1 K '
CZR_n—2U+(n—2)(n—l)G' (3)

For a (0,k)-tensor field 7,k > 1, we define the (0,k + 2)-tensors R-T and
Q(g,T) by
(R T)(le"'an;X’ Y) = (%(X7 Y) ’ T)(Xla'“’Xk)
=-T(R(X,Y)X1,Xa,...,Xz)
- =T(X1,.. ., Xp—1, B(X, V) Xy),
Q(g) T)(X],...,Xk;X, Y) = ((X A Y) : T)(Xl?""Xk)
= —T((X A Y)Xl,Xz,. .. ,Xk)
— o =T(X1,. ., Xp—1, (X A Y)XG).
Putting in the last formulas T =R, T =S or T = C, we obtain the tensors
R-R,R-S,R-C,Q(g,R),Q(g,S) and Q(g, C), respectively. The tensor C - C we
define in the same way as the tensor R- R.

Let (M,g) be a Riemannian manifold covered by a system of charts {#7; x"}.
We denote by rs r;t, Risii, Sty Grsm = Grudst — Grt9su and

1
Crstu = Rrstu - m (gruSst - grtSsu + gstSru - gsuSrt) + Grstu;

(n=2)(n—1)
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the local components of the metric g, the Levi-Civita connection V, the Riemann-
Christoffel curvature tensor R, the Ricci tensor S, the tensor G, and the Weyl
conformal curvature tensor C of (M,g), respectively, where p,g,r,s,t,u,v,we
{1,2,...,n}. The local components of the tensors R- R and Q(g, R) are given by
the following formulas

(R : R) = VwVerstu - VvaRrstu

rstuow
= gpq(RpstuRqrvw - RprtuRqsuw + Rpurqutvw - Rptrquuvw)a
Q(g ) R)rstuvw = grvastu + gszrwtu + gthrswu + guerstw

- grvastu - gszrvtu - gtersvu - guerstv-

A semi-Riemannian manifold (M,g), n > 2, is said to be an Einstein manifold if
the following condition

K

holds on M. According to (p. 432), (4) is called the Einstein metric condition.
Einstein manifolds form a natural subclass of various classes of semi-Riemannian
manifolds determined by a curvature condition imposed on their Ricci tensor ([4],
Table, pp. 432-433). For instance, every Einstein manifold belongs to the class of
semi-Riemannian manifolds (M, g) realizing the following relation

K K

v(s—mg)(x, Y;Z):V(S—z—(n—jl—)g>(X,Z; Y), (5)

which means that S — (x/(2(n—1)))g is a Codazzi tensor on M. Manifolds of
dimension >4 fulfilling (5) are called manifolds with harmonic Weyl tensor ([4],
p. 440). It is known that every warped product S! xr M of the sphere S!, with a
positive smooth function F, and an Einstein manifold (M, g), dim M > 2, realizes
(5) ([4], p. 433). Such warped product is a non-Einstein manifold, in general. We
say that (5) is a generalized Einstein metric condition ([4], chapter XVI). On the
other hand, such warped product realizes a condition of pseudosymmetry type
too. Namely, the warped product S! xr M of the sphere S!, with a positive
smooth function F, and an Einstein manifold (M,g), dimM > 2, is a Ricci-
pseudosymmetric manifold ([24], Corollary 3.2). Thus, in particular, the warped
product S! xz CP" of S!, with a positive smooth function %, and the complex
projective space CP" (considered with its standard Riemannian locally symmetric
metric) is a Ricci-pseudosymmetric manifold.
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A semi-Riemannian manifold (M, g),n > 3, is said to be Ricci-pseudosymmetric
([14], [24]) if at every point of M the following condition is satisfied:

(%), the tensors R-S and Q(g,S) are linearly dependent.

Evidently, any Einstein manifold is Ricci-pseudosymmetric. Thus we see that
(), is a generalized Einstein metric condition. The manifold (M,g) is Ricci-
pseudosymmetric if and only if

R-S=L3Q(Q,S) (6)

holds on the set Us = {xe M |S — (x/n)g # 0 at x}, where Lg is some function
on Us. Warped products realizing (x), were considered in [14], [17], [24] and [26].
Certain examples of compact and non-Einstein Ricci-pseudosymmetric manifolds
were found in and [30] For instance, in [30] (Theorem 1) it was shown that
the Cartan hypersurfaces M in the spheres S7, S'7 or S are non-pseudosymmetric,
Ricci-pseudosymmetric manifolds with non-pseudosymmetric Weyl tensor. The
Cartan hypersurfaces M in S* are non-semisymmetric, pseudosymmetric mani-
folds. Ricci-pseudosymmetric hypersurfaces immersed isometrically in a semi-
Riemannian manifolds of constant curvature were investigated in [10].

A very important subclass of the class of Ricci-pseudosymmetric manifolds
form pseudosymmetric manifolds. The semi-Riemannian manifold (M,g),n > 3,
is said to be pseudosymmetric ([21]) if at every point of M the following
condition is satisfied:

(%); the tensors R- R and Q(g,R) are linearly dependent.
The manifold (M,g) is pseudosymmetric if and only if
R-R=LrQ(9,R) (7)

holds on the set Ugp = {x e M|R — (x/(n(n — 1)))G # 0 at x}, where Ly is some
function on Ug. It is clear that any semisymmetric manifold (R- R =0, [36])
is pseudosymmetric. Very recently the theory of Riemannian semisymmetric
manifolds has been presented in [6] The condition (x); arose during the study of
totally umbilical submanifolds of semisymmetric manifolds ([1]) as well as when
we consider geodesic mappings of semisymmetric manifolds ([I8], [37]). There
exist many examples of pseudosymmetric manifolds which are not semisymmetric
(13], [19], [21], [28]). Among these examples we can distinguish also compact
pseudosymmetric manifolds (for instance, see [19], Example 3.1 and Theorem
4.1). Another example of a compact pseudosymmetric manifold is the warped
product S! xz S"1, with a positive smooth function F, as well as n-dimensional
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tori 7" with a certain metric (see [19], Examples 4.1 and 4.2). It is clear that if
at a point x of a manifold (M,g) (*); is satisfied then also (x), holds at x. The
converse statement is not true. E.g. every warped product M| xp M;, dim M, =
1, dim M; > 3, of a manifold (M;,§) and a non-pseudosymmetric, Einstein
manifold (M5, g) is a non-pseudosymmetric, Ricci-pseudosymmetric manifold (cf.
[24], Remark 3.4 and [21], Theorem 4.1).

It is easy to see that if (x); holds on a semi-Riemannian manifold (M,g),
n > 4, then at every point of M the following condition is satisfied:

(%)4 the tensors R- C and Q(g,C) are linearly dependent.

Manifolds fulfilling (*), are called Weyl-pseudosymmetric. Weyl-pseudosymmetric
manifolds has been studied in [15], and [22]. The manifold (M, g) is a Weyl-
pseudosymmetric manifold if and only if the relation R- C = L,Q(g, C) holds
on the set #c ={xe M|C #0 at x}, where L, is some function on %c.

A semi-Riemannian manifold (M,g), n > 4, is said to be a manifold with

pseudosymmetric Weyl tensor ([29]) if at every point of M the following condition
is satisfied:

(%)s the tensors C-C and Q(g,C) are linearly dependent.

Thus (M, g) is a manifold with pseudosymmetric Weyl tensor if and only if the
relation C - C = L3Q(g, C) holds on the set %, where L3 is a certain function on
% c. The condition (*)s arose during the study of 4-dimensional warped products
([17]). Namely, in [T7] (Theorem 2) it was shown that at every point of a warped
product M xr M,, with dim M| = dim M, = 2, (*), is fulfilled. Many examples
of manifolds satisfying (*); are presented in [9]. For instance, the Cartesian
product of two manifolds of constant curvature is a manifold realizing (*).
Warped products satisfying (*); were considered in [29]. In [9] it was shown that
the classes of manifolds realizing (*); and (*); do not coincide. However, there
exist pseudosymmetric manifolds fulfilling (*)s, €.g. Einsteinian pseudosymmetric
manifolds ([9], Theorem 3.1). Curvature properties of pseudosymmetric manifolds
with pseudosymmetric Weyl tensor were obtained in [31]

For a (0,k)-tensor field 7,k > 1, and a symmetric (0,2)-tensor field 4, we
define the (0,k + 2)-tensor Q(A4,T) by

A, T)(X1,..., X; X, Y) = (X A4 Y) - T)(Xi,..., X)
= ——T((X A4 Y)X[,Xz,...,Xk)

— - =T(Xy,..., Xpo1, (X A4 Y)Xk),



On curvature properties of certain 119

where X A4 Y is the endomorphism defined by
X AuY)Z=A4A(Y,Z)X —A(X,2)Y.

In particular, we have X A, Y = X A Y. Putting in the above formula 4 =S
and T=R,T=C or T=G, we obtain the tensors Q(S,R),Q(S,C) and
0(S, G), respectively.

A semi-Riemannian manifold (M,g) is said to be Ricci-generalized pseudo-
symmetric ([7]) if at every point of M the following condition is satisfied:

(%)g the tensors R-R and Q(S,R) are linearly dependent.

A very important subclass of Ricci-generalized pseudosymmetric manifolds form
manifolds fulfilling the following relation R-R = Q(S,R) ([7], [8], [23]). Every
3-manifold (M,g) as well as every hypersurface M immersed isometrically in
an (n+ 1)-dimensional semi-Euclidean space E;’“, of index s,n > 3, fulfils the
last equality, see (Theorem 3.1) and (Corollary 3.1), respectively.

As it was shown in [27], every hypersurface M in a semi-Riemannian space
of constant curvature M"t!(c),n > 4, fulfils (1). More precisely, we have the
following

ReEMARK 2.1 ([27], Proposition 3.1). Every hypersurface M immersed iso-
metrically in a semi-Riemannian space of constant curvature M"1(c), n >4,
satisfies the equality R-R — Q(S,R) = —(((n —2)K)/(n(n +1)))Q(g, C), where K
is the scalar curvature of M"*'(c) and R, S and C are the curvature tensor, the
Ricci tensor and the Weyl tensor of M, respectively.

Using Theorem 3.1 of [16], which was mentioned above, and the fact that the
Weyl tensor of every 3-dimensional semi-Riemannian manifold vanishes identi-
cally, we conclude that (%), is trivially satisfied on any 3-dimensional semi-
Riemannian manifold. Recently, warped products realizing (), were considered
in [11].

The relations (x), (x),—(*), are called conditions of pseudosymmetry type. We
refer to [12], and [37] as the review papers on semi-Riemannian manifolds
satisfying such conditions. A hypersurface fulfilling a curvature conditon of
pseudosymmetry type is said to be a hypersurface of pseudosymmetry type ([12]).
We finish this section with the following

LEMMA 2.1. Let (M,g), n=dim M > 3, be a semi-Riemannian manifold.
(1) ([13], Lemma 1.2; [23], Lemma 2) If the Weyl tensor C of (M,g) vanishes
at a point x € M then at x any of the following three identities is equivalent to each
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other:

RRZQQ(g,R), RS=on(g,S),

(-t (1—22) (- %g) =52~ Lus)g,

where o € R.

(i1) ([3], Lemma 3.1) The following identity is fulfilled on M : Q(S,G) =
—0Q(g,U).

(iii) ([16], Theorem 3.1) If dimM =3 then R- R = Q(S,R) holds on M.

(iv) If the following conditions are fulfilled at a point xe M :C =0,
rank(S) =1 and k =0, then R- R=0 holds at x.

PrOOF. (iv) The condition rank(S) = 1 we can present in the following form
S,j = ﬂuiuj, uce T;(M), ﬂ € R, (8)

where u; are the local components of ». From (8), by x =0, it follows that
Bg¥uiui = 0. Transvecting now (8) with u'=g"u, we get u’S; =0. Next,
transvecting (8) with S} and using the last relation we get Sijz. = 0 which, in view
of (i), completes the proof.

3. Warped Products

Let now (M,g) and (N,§),dimM = p,dimN =n— p,1 < p < n, be semi-
Riemannian manifolds covered by systems of charts {%;x?} and {¥7; y*}, re-
spectively. Let F be a positive smooth function on M. The warped product
M xp N of (M,3) and (N,§) ([5], [33)) is the product manifold M x N with the
metric g = g Xr g defined by

gxrg=mng+ (Fom)n,g,

where 1 : M x N - M and 7, : M x N — N are the natural projections on M
and N, respectively. Let {# x ¥';x!,...,x?,xP*1 =yl .. x"=yp"P} be a
product chart for M x N. The local components of the metric g = § x pg with
respect to this chart are the following g, = g, if r =a and s = b,g,; = Fg,z if
r=a and s = B, and g,; = 0 otherwise, where a,b,c,... € {1,...,p}, a,B,7,... €
{p+1,...,n} and r,s,¢,... € {1,2,...,n}. We will denote by bars (resp., by
tildes) tensors formed from g (resp., g). The local components I';, of the Levi-
Civita connection V of M xp N are the following ([34]):
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a T o I 1 —ab  ~ 1
rbc = rgc, rﬁy = r/?y, r:ﬂ = —"z‘g Fbgdﬂ? raﬂ 2FF 5ﬂ’

ok
oxa’ Tt oxa’

ab=Lap =0, Fa=0.F=

The local components

0
ox#’

Ry = grwR;;u = grw(aurs - atr;z + r:trw r;}url‘; y Oy=
of the Riemann-Christoffel curvature tensor R and the local components S;; of
the Ricci tensor S of the warped product M xr N which may not vanish

identically are the following:

— 1 ~ ~ 1 ~
Rabcd = Rabcda Raabﬂ = ‘5 ab9up> Roc,By(S = FRaﬂyé - ZAIFGaﬂyéa (9)

s n-pl e 1 n—p-1 -
Sab = Sa D) FTa ’ Szx = Szxﬁ 2 (tr(T) + F AIF)gaﬂ’ (10)
where
T = VyF, — —l—Fan, tir(T) = g’“bTab, AF = AyF =g° b Fy, (11)

2F

and T is the (0,2)-tensor with the local components 7,,. The scalar curvature x
of M xp N satisfies the following relation

., 1_ n-p n—p-—1
K—K‘+FK— 7 (tr(T)+ AR AlF). (12)

From now we assume that dim M xz N =4 and dim M = 1. Then (9), (10) and

turn into

| S - 1 ~
Rallﬁ = _ETllgaﬂ’ Rocﬁyé = FRaﬂy(S - ZAIFGaﬂyJa (13)
3 ~ 1 A F
Su=—55Ti, Su =S ~§(IY(T)+ 7 )gaﬂa (14)
1. 3 1 A/F
K-—FK—F(I(T)—G- F)' (15)

respectively. Further, by making use of [13), and [I5), we obtain the fol-
lowing relations (see [17], Lemma 6):
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1_ /- 1 __
Callﬂ = _Egll Sotﬁ _§Kgaﬂ y
1. = . A . = . = 1 =
Capyo = 5 F(Gu5Spy + GpySas = GuySps — GpoSuy) — 3 FRGapys. (16)
On the other hand, from (3) it follows that
- - - 1_ -
Copys = Rapys — Upys + 5KGoupys. (17)

2

Since Cy,5 = 0, the last identity reduces to

5 _ 1 -
Uagys = Rupys + EKGaﬂya- (18)
Now turns into
| 1. 1 - 1 =~
Cuip = _Egll(sa - gkgaﬂ), Copys = EFRaﬁyé — EFKGaﬂyrS- (19)

4. Preliminary Results

Let M xr N be a 4-dimensional warped product with 1-dimensional base

manifold (M, ). Using [13), [14), (18] and (19), we can verify that the local
components of the tensors R- C and Q(S,C) of the manifold M xr N, which
may not vanish identically are the following:

1. 1 .
(R ) C)aﬁyﬂ/l = —F(R ) R)aﬁy&ly - _AlFQ(g’ R)aﬂy&).,u’ (20)
2 8

1 AF N
Q(S’ C)aﬂy&l,u =~ ZF(tr(T) + _71;-— ) Q(g’ R)aﬂyé/l/t

1~ =
+ EFQ(Sa R).gys0u — 1—2FKQ(S, G)opyoruw (21)
11 1 .. = 1 . = - =
(R- C)laﬂyw =57 T11Coapy + EKTllGéaﬁy 2 T11(Gy65up — GpoSay)s (22)

31 1_ (s & O 1_ .. = R
(S, C)mﬂyw ="3F Ty Goupy + 5911 (Saysaﬂ — SspSay — §K(gaﬁsay - gay&iﬂ))

1 . MFN _ -~
+EK(tr(T)+—F_)g“G§aﬂy

1_ MFY . & JEpS
— 300 () + 557 ) @ Sop = S, (23)
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11 o 1 o
(R ) C)acllﬂyé = _5 Fgll (F(R ’ S)fxﬁy& - ZAIFQ(ga S)aﬁyé)’ (2’4)
1 1 1 AF R
0(S, Chapys = = 30 (555 (M + 557 ) ) 06 S)pse €9

From Lemma 2.1(ii) it follows that Q(S,G),g,51, = —Q(d, U)ygys1,, Which by
making use of [I8), turns into Q(S, G) 4,61, = —Q(d, R),p,57, Now takes the
form

O(S, C)upyory = %F(Q(S’, R)aﬂyély + (é" - ( rT)+ A—>) o(g, )aﬂy&l,u)'

(26)

In view of Lemma 2.1(iii) we have also (R - R) 5,5, = Q(S, R),p,,, Substituting
this in (26) we obtain

1 ~ 1. 1 AF . =
O(S, O)upyosy = §F(R *R)opyoru + (g’c 5 ("(T) + ”%5‘) (g, R)aﬁyéﬂ.,u)’

whence
1. 1 .
Q(S’ C)ocﬁyc?i,u = EF(R ’ R)cxﬂy&l,u - EFTQ(97 R)aﬂy&i/u (27)
1 1 AF
= (-3 +50). (28)
Now, the equality (R - C),4,51, = LO(S, C)yp,55, in virtue of and [27), gives
- 1 AF - |
(1= L)(R- R)yppi1, = (z - TIL) 0(9, R)agysiy- (29)

By (22) and the relation (R C)j,5,15 = LO(S, C)y,4,15 is equivalent to

11 e T T
“3F T11 Csupy + EKTIIGJaﬁy - ZTll(gyésaﬂ — GpsSwy)
31 1. e e & & 1 AF
=73 ‘F‘LTIIC(Saﬂy +§L911(Sy(5Sa,8 — 885Say) + 12 (tr(T) +T) Lg“G‘S“ﬂV

1 1 A F . 1 -
+2L911(“‘§(”(T )+ = )(géy B gaﬁSay)—gk(gaﬁséy—gayséﬂ))- (30)

Further, we can check that the relation (R:C),j15,56 = L(S, C),15,5 turns into

(R ) S)aﬂyé = (_1- 'AI_F - TIL> Q(ga S)aﬂy&' . (31)
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This, in view of [Lemma 2.1(iii), is equivalent to

(R ) R)aﬁyél# - (Z F TIL) o9 R)“ﬂ)’ﬂu' (32)
Thus we have the following

PROPOSITION 4.1. A 4-dimensional warped product M xy N,dim M = 1,
satisfies the condition R-C = LQ(S,C) if and only if (29), (30) and (32) hold
on %.

5. Main Results

ExAMPLE 5.1. (i) We present an example of a 4-dimensional warped product,
with 1-dimensional base manifold, realizing (x) and (x);. Let (N, §),dim N = 3, be
a semi-Riemannian manifold such that its Ricci tensor S is of rank one and its
scalar curvature K vanishes identically on N. Then, in view of Lemma 2.1(iv), (N, §)
is a semisymmetric manifold. Furthermore, let F, defined by F(x') = aexp(bx!),
a = const. > 0,b = const. # 0, be a function on a 1-dimensional manifold (M, g,).
It is easy to check, that M xp N realizes (29), (30) and (32), with L = 1/3. Thus,
in view of Proposition 4.1, M xg N fulfils R- C = (1/3)Q(S, C). From Corollary
4.2 of [21] it follows that the manifold M xp N is pseudosymmetric too. Next,
using (3.12) of [21] and (15), we get R- R = (1/12)xQ(g, R), where k is the scalar
curvature of M xg N.

(i) We present an example of a 3-dimensional semisymmetric warped product
such that the rank of its Ricci tensor is one and its scalar curvature vanishes
identically. Let M, = {(x*>,x3):x?,x3€ R} be a connected, non-empty, open
subset of R®, equipped with the metric tensor g defined by gy = g2 33 =0,
9223 =ga32 = 1, and let H = H(x?) be a smooth function on M,. Moreover, let
(M3,93) be a 1-dimensional manifold. In [35] (see p. 177) it was shown that the
rank of the Ricci tensor S of the warped product M, xy M3 is equal to one and
that the scalar curvature of this manifold vanishes identically. Moreover, we have
(ef- [35]), p. 177)

= 1 /0H, 1 oH ~ -
S22-—ﬁ(—_—H2H2)a Hz—gp, S33 =0, Su=0.

Furthermore, from Lemma 2.1 (iv) it follows that M, xy M3 is a semi-
symmetric manifold. (iii) We consider the warped product M xp N, where dim M
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= 1, the warping function F is defined by F(x') = aexp(bx'),a = const. >0, b=
const. # 0, and (N, g) is a semisymmetric manifold defined in (ii). We can verify
that the tensor S — (x/4)g is of rank one, ie. the warped product M xp N is a
quasi-Einstein manifold.

In this section we prove, that under certain assumptions every 4-dimensional
warped product M xr N,dim M = 1, realizing () is the manifold described in
Example 5.1(1).

Symmetrizing (30) in «,0 we obtain

1 _ s
(5 Th - TLQM) 0(g, S)aﬂy& =0, (33)
where
_ 1 2. A F

From (19) it follows that the Weyl tensor C of every 4-dimensional warped
product M xyz N,dim M = 1, vanishes at a point x € M, xr N if and only

Sup = 5 Riiup- (35)

wli—

holds at x. We note also that Q(§, S) vanishes at x if and only if is satisfied
at x. So, if the tensor C is non-zero at the point x € M} X N then from it
follows that

1 _
‘Z—T“ —_—TLg” (36)

holds at x. Applying in (30) we obtain
T T _~ T,. & . &
7 Coapy + i Gosupy — 5 (G5, Sup — GspSay)

T 1 < & PR | AF\ -
= —3—F— Csupy + 3 (S5ySap — Sapsay) + EK(”(T) + T) Gsapy

1

AF . = 1., = . =
4( r(T) + )(géy B — gaﬁSay)—gK(ga/iSya“gaysdﬂ)- (37)

If x e Uy then the last equality reduces to
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1 1./ 1 A\ -
FT(3L - l)Cgaﬂy +8K<T 3 (tr(T) + T)) Gsupy

I U
(Sy(SSa — SéﬂSay) - g’c(gaﬁséy - gaySﬂ6 + gyésa - g&ﬂSay)a

N —

which, by [34], turns into

2 1 5= s & & &
FTBL = 1)Coopy - §x2c;5a,gy = 8,68:p — SopSuy —

On the other hand and (19) give

% Uspy- (38)

(e

1 ~ 2 _~
Coupy =5 I (Uéaﬂy —3 Gaaﬁy)-

Applying this in (38) we obtain

tBL ~ 1) Usagy — 3 2(3L ~ 1)&Gigy ~ 55 Goapy = $y5525 — SipSey — 5 Uspy
whence
S,5Su5 — SpsSey = pUsupy + UGsapy, (39)
where
p=‘L’(3L—1)+%I€, ,u=—%—1€(21(3L—1)+%1€). (40)
We put Ays = Sup — Pdys- Thus, by [39), we have
/iyéfiaﬂ - z‘fﬂax‘fay = ~y(5§aﬂ - Sﬂégay + pzééaﬂy
- P(gy(sgaﬂ + gaﬂgyé — gﬂéga}' - gaygﬂé)
= (p* + 1) Gsupy» (41)

which leads to
0(4,4) = (p* + w)Q(4, G),
where the (0,4)-tensor A is defined by
Aupys = AwsAgy — Aoy Aps.

Since the tensor Q(A,A) vanishes identically, we have (p2?+ u)Q(4,G) =0,
whence we get easily (p2 + u)(4 — (1/3)tr(4)§) = 0. Since S # (1/3)%§ holds at
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x, the last relation yields
p+u=0. (42)
Further, using and we deduce that

(@ (R R)yp52,=0, (b) %é—‘ﬁf =1L, (43)

hold at x € #,. Further, contracting with §%¥ we obtain
S3s = (& = p)Sys + 21+ pR)G

which, by making use of (42), can be rewritten in the following form

- 1 - ® ~ K K K
Sv2 S«z ~ S ~ ~
V5-§tr( )gy5—<§+cx)( yé_ggyé)’ OC~(K“p)_z_z p- (44)

From (44), in view of [Lemma 2.1(i), it follows that (R-S’)aﬂy(; = aQ(g, S’)aﬁya

holds at xe %, and in a consequence, (R:R),g,5,, = 2Q(g, R),p,5, The last
relation, by [43)(a), implies « = 0, i.e. p = K/2. Applying the last equality and
(42) in (40) we find

Z, §E(3L — )= —%k% (45)
which gives (5/6)k? = —(13/36)x2, whence ¥ = 0. Now reduces to (3L — 1)1 =
0 and in a consequence, from (40) we get p=u=0. So, reduces to
rank(S) = 1. Since & = 0, and leads to 7; =7 = (1/2)(tr(T)+ (A F/F)).
Further, we denote by % the set consisting of all points of % at which F’ # 0.
We suppose that 7 vanishes at x € r. Then [43)(b) implies F' =0, a contra-
diction. Thus L = 1/3 holds on #r. We note that if L =1/3 then only the
functions F, defined by F(x!) = aexp(bx'),a = const. > 0,b = const. # 0, are
non-constant solutions of and [43)(b). Thus we have the following.

(3L - 1)z =

N W

THEOREM 5.1. Let the set 9Ur be a dense subset of the set WU; of a 4-
dimensional warped product M x g N,dim M = 1. Then the warped product M xr N
satisfies the condition R- C = LQ(S, C) on the set Uy < % = M x N if and only
if L=1/3,F(x!) = aexp(bx!),a = const. > 0,b = const. #0, and (N,g) is a 3-
dimensional semi-Riemannian manifold fulfilling rank(S) =1 and k = 0.

ReMark 5.1. Let (N,g),dimN =3, be a semisymmetric manifold with
vanishing identically on N scalar curvature ¥. Suppose that § is a Riemannian
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metric. Using this fact we can easily deduce that the condition rank S < 1 implies
S = 0. Therefore, if the assumption rank S =1 is fulfilled on (N,§) then the
metric § must be necessary indefinite, more precisely, g is a Lorentzian metric.

Now from [Theorem 5.1, in view of the above remark, follows the following

COROLLARY 5.1. If a generalized Robertson-Walker spacetime satisfies (x)

then at every point of this spacetime at least one of the tensors R- C or Q(S,C)
must vanish.

Let x be a point of a 4-dimensional warped product M xy N,dim M = 1. If
at x the conditions: C # 0 and R- C = 0 are satisfied then R- R =0 holds at x
(17}, Theorem 3). If at x the conditions: C # 0,5 #0 and Q(S,C) =0 are
satisfied then R- R = (k/3)Q(g, R) holds at x ([25], Theorem 3.1). If at x the
condition S = 0 is satisfied then C = 0 holds at x. This statement is an immediate
consequence of and [32). Finally, if at x the condition C = 0 is satisfied then
R-R=00Q(g,R),x € R, holds at x ([I3], Lemma 3.1). These facts, together with
Corollary 5.1, leads to the following

THEOREM 5.2. Every generalized Robertson-Walker spacetime satisfying (x) is
a pseudosymmetric manifold.

REMARK 5.2. (i) Theorem 2 of implies that the warped product
M xp N, of a 1-dimensional base manifold (M, 3), a warping function F and a
3-dimensional manifold (N,§) with the Ricci tensor S of rank one realizes (%)s,
ie. M xp N is a manifold with pseudosymmetric Weyl tensor.

(i1) We can also check that the Weyl tensor of the warped product defined
above is not of harmonic curvature.
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