A CERTAIN GRAPH OBTAINED FROM A SET OF SEVERAL POINTS ON A RIEMANN SURFACE

By

Naonori Ishii

Introduction

0-1. Let M be a compact Riemann surface of genus $g \ge 2$, and let P_1, P_2, \ldots, P_n be distinct points on M. We define the Weierstrass gap set $G(P_1, P_2, \ldots, P_n)$ by

$$G(P_1, P_2, \dots, P_n) := \{(\gamma_1, \gamma_2, \dots, \gamma_n) \in \mathbb{N}_0 \times \dots \times \mathbb{N}_0 \mid \not\exists \text{ meromorphic}\}$$

function f on M whose pole divisor $(f)_{\infty}$ is $\gamma_1 P_1 + \gamma_2 P_2 + \cdots + \gamma_n P_n$,

where N_0 is the set of non-negative integers.

When n = 1, $G(P_1)$ is the set of Weierstrass gaps at P_1 . One of the essential differences between the case n = 1 and the case $n \ge 2$ is that the cardinarity $\#G(P_1)$ is the constant g but $\#G(P_1, \ldots, P_n)$ $(n \ge 2)$ depends on the choice of M and the set of points $\{P_1, \ldots, P_n\}$ on M.

Kim has given formulas for $\#G(P_1, P_2)$ and shown the following inequalities

$$\frac{(g^2+3g)}{2} \leq \#G(P_1,P_2) \leq \frac{(3g^2+g)}{2}.$$

Moreover he has proved that the upper bound $(3g^2+g)/2$ can be realized if and only if "M is hyperelliptic and $|2P_1|=|2P_2|=g_2^1$ " ([3]). The lower bound $(g^2+3g)/2$ can be attained by taking general points P_1 and P_2 on arbitrary M. This is stated in [1] without proof, and has been proved by Homma ([2]). He also has translated Kim's formulas into other practical ones, and added several interesting remarks in the case where M is a curve defined over a field of characteristic $p \ge 0$ ([2]). Through their works it seems to be helpful to use a certain type of graph $D^{(n)}$ defined as follows.

DEFINITION 0-2 (Riemann-Roch Graph). Fix positive integers g and n. Let \mathbf{e}_i be the n-tuple $(0, \dots, 0, 1, 0, \dots, 0)$ (i.e., the i-th component of \mathbf{e}_i is 1) in \mathbf{N}_0^n .

For an element $(\gamma_1, \ldots, \gamma_n) \in \mathbb{N}_0^n$, we also write $\sum_i \gamma_i \mathbf{e}_i$. Let $V^{(n)}$ denote the subset

$$\{\Gamma = (\gamma_1, \dots, \gamma_n) \mid \gamma_i \in \mathbb{N}_0, 0 \le \gamma_1 + \dots + \gamma_n \le 2g - 1\}$$

of \mathbb{N}_0^n .

For $\Gamma = \sum_{i} \gamma_{i} \mathbf{e}_{i} \in V^{(n)}$, define $\deg \Gamma$ by

$$deg \Gamma := \sum_{i} \gamma_{i}.$$

Let $\Gamma = \sum_i \gamma_i \mathbf{e}_i$ and $\Gamma' = \sum_i \gamma_i' \mathbf{e}_i$ be in $V^{(n)}$. Then we write

$$\Gamma' \leq \Gamma$$
 if $\gamma'_i \leq \gamma_i$ for $i = 1, 2, ..., n$.

Let $E^{(n)}$ denote the subset

$$\{(\Gamma - \mathbf{e}_i)\Gamma \mid \Gamma \in V^{(n)} \text{ and } \Gamma - \mathbf{e}_i \in V^{(n)}\}$$

of $V^{(n)} \times V^{(n)}$, where $\Gamma - \mathbf{e}_i = (\gamma_1, \dots, \gamma_i - 1, \dots, \gamma_n)$ with $\Gamma = (\gamma_1, \dots, \gamma_i, \dots, \gamma_n)$. Let $D^{(n)}$ denote the graph $\{V^{(n)}, E^{(n)}\}$ consisting of $V^{(n)}$ and $E^{(n)}$ as a set of vertices and a set of edges respectively. When $\Gamma' \leq \Gamma$, any chain of successive $(deg \Gamma - deg \Gamma')$ edges

$$\Gamma'\Gamma_1, \Gamma_1\Gamma_2, \Gamma_2\Gamma_3, \ldots, \Gamma_{deg\,\Gamma-deg\,\Gamma'-1}\Gamma$$

is called a path from Γ' to Γ . Of course these paths are not unique even though Γ and Γ' are fixed, but we write $\Gamma'\Gamma$ for them abusively. Moreover, each edge is labeled "0" or "1", which is called the weight of the edge, and the labeling has the following properties.

 $*_n - 1$) Let $\Gamma = \sum_i \gamma_i \mathbf{e}_i$ and $\tilde{\Gamma} = \sum_i \tilde{\gamma}_i \mathbf{e}_i$ be in $V^{(n)}$. Assume $\tilde{\Gamma} \geq \Gamma$ and $\gamma_i = \tilde{\gamma}_i > 0$ with some i. If the edge $(\Gamma - \mathbf{e}_i)\Gamma$ is of weight 1, then so is the edge $(\tilde{\Gamma} - \mathbf{e}_i)\tilde{\Gamma}$.

*_n)
*_n - 2) Let $O = \sum_{i} 0e_{i}$ and $\Gamma = \sum_{i} \gamma_{i}e_{i}$ be in $V^{(n)}$ with $deg \Gamma = 2g - 1$. The number of edges of weight 1 (resp. 0) on any path $O\Gamma$ is g-1(resp. g).

From now on, we will call the above type of graph $(D^{(n)}, *_n)$ a Riemann-Roch graph.

DEFINITION 0-3. Define the gap set $G^{(n)}$ of $(D^{(n)}, *_n)$ by $G^{(n)} := \{ \Gamma \in V^{(n)} \mid \exists i \text{ such that the edge } (\Gamma - \mathbf{e}_i) \Gamma \in E^{(n)} \text{ is of weight } 0 \}.$ $H^{(n)}$ denotes the compliment $V^{(n)} \setminus G^{(n)}$ of $G^{(n)}$ in $V^{(n)}$.

REMARK. $O = (0, ..., 0) \in H^{(n)}$.

- 0-4. Let M and $\{P_1, \ldots, P_n\}$ be as before. Then the following facts on an effective divisor $E = \gamma_1 P_1 + \gamma_2 P_2 + \cdots + \gamma_n P_n$ are known:
 - 1) if $deg E = \gamma_1 + \cdots + \gamma_n = 2g 1$, then $l(E) = h^0(\mathcal{O}(E)) = g$;
- 2) if P_i is not a base point of the linear system |E|, then P_i is not a base point of any linear system

$$|\tilde{\gamma}_1 P_1 + \tilde{\gamma}_2 P_2 + \cdots + \tilde{\gamma}_i P_i + \cdots + \tilde{\gamma}_n P_n|,$$

where $\tilde{\gamma}_k \geq \gamma_k$ (k = 1, ..., n) and $\tilde{\gamma}_i = \gamma_i$.

Identify each effective divisor $E = \sum_{i=1}^{n} \gamma_i P_i$ of degree $\leq 2g-1$ with the vertex $\Gamma = \sum_{i=1}^{n} \gamma_i \mathbf{e}_i$, and give 1 to the edges $(\Gamma - \mathbf{e}_i)\Gamma$ if and only if P_i is not a base point of $|\sum_{i=1}^{n} \gamma_i P_i|$. Then we get a Riemann-Roch graph. $D_M(P_1, \ldots, P_n)$ denotes this graph. Then the gap set $G^{(n)}$ obtained from $D_M(P_1, \ldots, P_n)$ coincides with the Weierstrass gap set $G(P_1, \ldots, P_n)$ in 0-1.

0-5. In this paper, we start studying Riemann-Roch graphs $D^{(n)}$ and their gap sets $G^{(n)}$ in general (i.e., they are not necessarily obtained from M and $\{P_1, \ldots, P_n\}$).

In particular we will prove that

$$\#G^{(n)} \ge \binom{n+g}{g} - 1$$

and there is a unique graph $D^{(n)}$ satisfying $\#G^{(n)}=\binom{n+g}{g}-1$, where $\binom{a}{b}=a!/(a-b)!b!$ for integers $a\geq b\geq 0$ (Theorem 2-3).

About upper bounds of $\#G^{(n)}$, we calculate in case n=3, and show that

$$\#\,G^{(3)} \leq \frac{g(7g^2+6g+5)}{6}$$

and there is a unique graph satisfying $\#G^{(3)} = g(7g^2 + 6g + 5)/6$. Moreover this graph is exactly equal to $D_M(P_1, P_2, P_3)$, where M is hyperelliptic and P_1, P_2, P_3 are satisfying $|2P_1| = |2P_2| = |2P_3| = g_2^1$ (Theorem 3-9).

Finally we try to replace $*_n$) with another set of conditions in order to study a Riemann-Roch graph in detail(Appendix).

§1

Fix a Riemann-Roch graph $(D^{(n)}, *_n)$. Then we can easily have the following lemma.

LEMMA 1-1. The condition *-2) is equivalent to the following set $\{A, B, C\}$ of conditions.

A) Let Γ and Γ' be in $V^{(n)}$ with $\Gamma \geq \Gamma'$. Evry path from Γ' to Γ has the same number of edges of weight 1.

We will write $[\Gamma'\Gamma]$ for the number of edges of weight 1 on a path $\Gamma'\Gamma$.

B) Let Γ, Γ' and Γ'' be in $V^{(n)}$ with $\Gamma' \leq \Gamma, \Gamma' \leq \Gamma''$, and $\deg \Gamma = \deg \Gamma'' = 2g - 1$. Then

$$[\Gamma'\Gamma'']=[\Gamma'\Gamma].$$

C) Let $\Gamma = (2g-1)\mathbf{e}_1$ and $O = (0, \dots, 0)$ be in $V^{(n)}$. Then

$$[O\Gamma] = g - 1.$$

DEFINITION 1-2. For $\Gamma \in V^{(n)}$, define non-negative integers $l(\Gamma)$ and $i(\Gamma)$ by $l(\Gamma) := [O\Gamma] + 1 (\geq 1)$ and by $i(\Gamma) := l(\Gamma) - 1 + g - deg \Gamma(\geq 0)$ respectively.

Then we have:

LEMMA 1-3. If Γ and Γ' are in $V^{(n)}$ satisfying $\deg \Gamma = 2g-1$ and $\Gamma' \leq \Gamma$, then $i(\Gamma')$ is equal to the number of edges of weight 0 on a path $\Gamma'\Gamma$, and this number does not depend on the choice of a path from Γ' to Γ .

Let $(D^{(n-1)}, *_{n-1})$ be the subgraph of $(D^{(n)}, *_n)$ obtained by identifying $(\gamma_1, \ldots, \gamma_{n-1}) \in V^{(n-1)}$ with $(\gamma_1, \ldots, \gamma_{n-1}, 0) \in V^{(n)}$ and restricting $*_n)$ to $V^{(n-1)}$. Then $G^{(n-1)}$ (resp. $H^{(n-1)}$) of this subgraph $(D^{(n-1)}, *_{n-1})$ is embedded in $G^{(n)}$ (resp. $H^{(n)}$) of $(D^{(n)}, *_n)$ by the same manner as above. We represent the element of $V^{(n-1)}$ by Γ_n (the index n of Γ_n suggests that Γ_n is obtained by omitting the n-th coordinate of some element Γ of $V^{(n)}$). For $\Gamma_n = (\gamma_1, \ldots, \gamma_{n-1}) \in V^{(n-1)}$ and $\gamma \in \mathbb{N}_0$, (Γ_n, γ) denotes $(\gamma_1, \ldots, \gamma_{n-1}, \gamma) \in \mathbb{N}_0^n$.

Definition 1-4. For $\Gamma_n=(\gamma_1,\ldots,\gamma_{n-1})\in V^{(n-1)},$ define a subset Δ_{Γ_n} of \mathbf{N}_0 by

$$\Delta_{\Gamma_n} := \{\delta \,|\, \delta \in \mathbb{N}_0, (\Gamma_n, \delta) \in H^{(n)}\},$$

and define a non-negative integer δ^{Γ_n} by

$$\delta^{\Gamma_n} := \left\{ egin{array}{ll} \min\{\delta \,|\, \delta \in \Delta_{\Gamma_n}\} & ext{if } \Delta_{\Gamma_n}
eq arnothing \ 2g - deg \, \Gamma_n (\geq 1) & ext{if } \Delta_{\Gamma_n} = arnothing. \end{array}
ight.$$

LEMMA 1-5. Let Δ_{Γ_n} and δ^{Γ_n} be as above. Then:

- i) δ^{Γ_n} satisfies $0 \le \delta^{\tilde{\Gamma}_n} \le 2g 1 deg \Gamma_n (\le 2g 1)$ if and only if $\Delta_{\Gamma_n} \ne \emptyset$;
- ii) if $\Delta_{\Gamma_n} = \emptyset$, then $\deg \Gamma_n > 0$ and $\delta^{\Gamma_n} = 2g \deg \Gamma_n \le 2g 1$;
- iii) δ^{Γ_n} satisfies $\delta^{\Gamma_n} > 0$ if and only if $\Gamma_n \in G^{(n-1)}$.

Moreover we have a surjective map

$$\{\Gamma_n \mid \Gamma_n \in G^{(n-1)}\} \to \{\gamma(>0) \mid (O_n, \gamma) \in G^{(n)}\}$$

defined by $\Gamma_n \mapsto (O_n, \delta^{\Gamma_n})$, where $O_n = (0, \dots, 0) \in V^{(n-1)}$.

PROOF. i) This follows from the fact that $\Delta_{\Gamma_n} \neq \emptyset$ is equivalent to $(\Gamma_n, \delta^{\Gamma_n}) \in V^{(n)}$.

- ii) If $\Delta_{\Gamma_n} = \emptyset$, then $\deg \Gamma_n \ge 1$. In fact, $\deg \Gamma_n = 0$ means $\Gamma_n = O_n$. But O_n is in $H^{(n-1)}$ and $\delta^{O_n} = 0$. Therefore we get ii) by Definition 1-4.
- iii) The first half of iii) follows from the fact that $\delta^{\Gamma_n} = 0$ is equivalent to $(\Gamma_n, 0) \in H^{(n)}$ (i.e., $\Gamma_n \in H^{(n-1)}$).

We will prove that the map in iii) is well-defined, that is, $(O_n, \delta^{\Gamma_n}) \in G^{(n)}$ for $\Gamma_n \in G^{(n-1)}$.

Assume that there is a $\Gamma_n \in V^{(n-1)}$ satisfying

$$\delta^{\Gamma_n} > 0$$
 and $(O_n, \delta^{\Gamma_n}) \in H^{(n)}$. $\cdots 1-5-1$

Then $[(O_n, \delta^{\Gamma_n}) - \mathbf{e}_n, (O_n, \delta^{\Gamma_n})] = 1.$

Thus, by $*_n - 1$), we have

$$[\{(\Gamma_n, \delta^{\Gamma_n}) - \mathbf{e}_i\} - \mathbf{e}_n, \{(\Gamma_n, \delta^{\Gamma_n}) - \mathbf{e}_i\}] = 1 \qquad \cdots 1-5-2)$$

for all i satisfying $\gamma_i > 0$ and $i \neq n$.

 \underline{case} $\Delta_{\Gamma_n} \neq \emptyset$

As $(\Gamma_n, \delta^{\Gamma_n}) \in H^{(n)}$, we have

$$[(\Gamma_n, \delta^{\Gamma_n}) - \mathbf{e}_i, (\Gamma_n, \delta^{\Gamma_n})] = 1 \qquad \cdots 1-5-3)$$

for all i satisfying $1 \le i \le n$ and $\gamma_i > 0$.

Define a subset Θ of \mathbb{N}_0 by

 $\Theta := \{ \delta \in \mathbb{N}_0 \mid [(\Gamma_n, \delta) - \mathbf{e}_i, (\Gamma_n, \delta)] = 1 \text{ for all } i \text{ satisfying } \gamma_i > 0 \text{ and } i \neq n \}.$

By 1-5-3, $\Theta \ni \delta^{\Gamma_n}$ and $\Theta \neq \emptyset$. Then we can define a non-negative integer $\tilde{\delta}$ by

$$\tilde{\delta} := \min\{\delta \in \mathbf{N}_0 \mid \delta \in \Theta\}.$$

On this $\tilde{\delta}$, we have

$$[(\Gamma_n, \tilde{\delta}) - \mathbf{e}_i, (\Gamma_n, \tilde{\delta})] = 1$$
 for all i satisfying $1 \le i \le n$ and $\gamma_i > 0$. $\cdots 1-5-4$)
(i.e., $\tilde{\delta} \in \Delta_{\Gamma_n}$.)

In fact, this is from the definition of Θ when i = 1, ..., n - 1.

If $[(\Gamma_n, \tilde{\delta}) - \mathbf{e}_n, (\Gamma_n, \tilde{\delta})] = 0$, then $[\{(\Gamma_n, \tilde{\delta}) - \mathbf{e}_n\} - \mathbf{e}_i, \{(\Gamma_n, \tilde{\delta}) - \mathbf{e}_n\}] = 1$ for all i satisfying $i \neq n$ and $\gamma_i > 0$ by Lemma 1-1 A). Therefore $\tilde{\delta} - 1 \in \Theta$, and this contradicts to the definition of $\tilde{\delta}$. Hence 1-5-4) is correct when i = n. By 1-5-4) and the definition of δ^{Γ_n} , we have $\tilde{\delta} \geq \delta^{\Gamma_n}$.

On the other hand, by Lemma 1-1 A), 1-5-2) and $(\Gamma_n, \delta^{\Gamma_n}) \in H^{(n)}$,

$$[\{(\Gamma_n, \delta^{\Gamma_n}) - \mathbf{e}_n\} - \mathbf{e}_i, \{(\Gamma_n, \delta^{\Gamma_n}) - \mathbf{e}_n\}] = 1$$

for all i satisfying $y_i > 0$ and $i \neq n$.

Hence $\delta^{\Gamma_n} - 1 \in \Theta$ and $\tilde{\delta} \leq \delta^{\Gamma_n} - 1$. This is a contradiction. Thus we get $(O_n, \delta^{\Gamma_n}) \in G^{(n)}$.

 \underline{case} $\Delta_{\Gamma_n} = \emptyset$

We have $\delta^{\Gamma_n} = 2g - deg \Gamma_n$ by Definition 1-4, and $(\Gamma_n, \delta^{\Gamma_n}) - \mathbf{e}_n \in V^{(n)}$. Assume

$$[\{(\Gamma_n, \delta^{\Gamma_n}) - \mathbf{e}_n\} - \mathbf{e}_i, \{(\Gamma_n, \delta^{\Gamma_n}) - \mathbf{e}_n\}] = 1$$

for all i satisfying $\gamma_i > 0$ and $i \neq n$.

Then by the same way as in the case $\Delta_{\Gamma_n} \neq \emptyset$, we can find a positive integer $\tilde{\delta}$ satisfying $\tilde{\delta} \leq 2g - 1 - deg \Gamma_n$ and $(\Gamma_n, \tilde{\delta}) \in H^{(n)}$. This contradicts to $\Delta_{\Gamma_n} = \emptyset$. So there is an i satisfying

$$[\{(\Gamma_n,\delta^{\Gamma_n})-\mathbf{e}_n\}-\mathbf{e}_i,\{(\Gamma_n,\delta^{\Gamma_n})-\mathbf{e}_n\}]=0.$$

By Lemma 1-1 B),

$$[\{(\Gamma_n, \delta^{\Gamma_n}) - \mathbf{e}_i\} - \mathbf{e}_n, \{(\Gamma_n, \delta^{\Gamma_n}) - \mathbf{e}_i\}] = 0.$$

Then, by $*_n - 1$,

$$[(O_n, \delta^{\Gamma_n}) - \mathbf{e}_n, (O_n, \delta^{\Gamma_n})] = 0$$
 and $(O_n, \delta^{\Gamma_n}) \in G^{(n)}$.

Thus our map is well-defined.

Next we will prove the surjectivity of our map.

Fix $(O_n, \gamma) \in G^{(n)}(\gamma > 0)$. Define a subset Δ of \mathbb{N}_0 and a positive integer $\tilde{\gamma}_1$ by

$$\Delta := \{ \gamma_1 \mid (\gamma_1, 0, \dots, 0, \gamma) \in H^{(n)} \}$$

and by

$$ilde{\gamma}_1 := \left\{ egin{array}{ll} \min\{\gamma_1 \,|\, \gamma_1 \in \Delta\} & ext{if } \Delta
eq \varnothing \ \\ 2g - \gamma & ext{if } \Delta = \varnothing \end{array}
ight.$$

respectively.

Let $\tilde{\Gamma}_n = (\tilde{\gamma}_1, 0, \dots, 0) \in V^{(n-1)}$. Let $\Delta_{\tilde{\Gamma}_n}$ and $\delta^{\tilde{\Gamma}_n}$ be as in Definition 1-4. We will show $\delta^{\tilde{\Gamma}_n} = \gamma$.

case $\Delta \neq \emptyset$

Since $(\tilde{\Gamma}_n, \gamma)$ is in $H^{(n)}$, we have $\gamma \in \Delta_{\tilde{\Gamma}_n}$. Now assume that γ satisfies

$$\delta^{\tilde{\Gamma}_n} = \min\{\gamma' \mid \gamma' \in \Delta_{\tilde{\Gamma}_n}\} < \gamma.$$

Then, by $*_n - 1$,

$$[\{(\tilde{\Gamma}_n, \gamma) - \mathbf{e}_n\} - \mathbf{e}_1, \{(\tilde{\Gamma}_n, \gamma) - \mathbf{e}_n\}] = 1. \qquad \cdots 1-5-5)$$

By 1-5-5), Lemma 1-1 A) and $(\tilde{\Gamma}_n, \gamma) \in H^{(n)}$, we have

$$[\{(\tilde{\Gamma}_n,\gamma)-\mathbf{e}_1\}-\mathbf{e}_n,\{(\tilde{\Gamma}_n,\gamma)-\mathbf{e}_1\}]=1. \qquad \cdots 1-5-6)$$

Define

$$\Phi := \{ \gamma_1 \mid [(\gamma_1, 0, \dots, 0, \gamma) - \mathbf{e}_n, (\gamma_1, 0, \dots, 0, \gamma)] = 1 \}.$$

By 1-5-6), $\tilde{\gamma}_1 - 1 \in \Phi$, and we can define a positive integer $\tilde{\gamma}_1'$ by $\tilde{\gamma}_1' = \min\{\gamma_1 \mid \gamma_1 \in \Phi\}$. Then $\tilde{\gamma}_1' \leq \tilde{\gamma}_1 - 1$. But $(\tilde{\gamma}_1', 0, \dots, 0, \gamma) \in H^{(n)}$ by the minimality of $\tilde{\gamma}_1'$ and Lemma1-1 A). This is a contradiction. Thus we get $\delta^{\tilde{\Gamma}_n} = \gamma$.

case $\Delta = \emptyset$

If $\Delta_{\tilde{\Gamma}_n} = \emptyset$, then $\delta^{\tilde{\Gamma}_n} = 2g - deg \, \tilde{\Gamma}_n = 2g - \tilde{\gamma}_1 = \gamma$ by the definition of $\delta^{\tilde{\Gamma}_n}$ and $\tilde{\gamma}_1$. Then it is sufficient to show $\Delta_{\tilde{\Gamma}_n} = \emptyset$.

If $\Delta_{\tilde{\Gamma}_n} \neq \emptyset$, then there exists γ' such that $(\tilde{\Gamma}_n, \gamma') \in H^{(n)}$.

Because of $\gamma' < 2g - \tilde{\gamma}_1 = \gamma$ and $*_n - 1$,

$$[\{(\tilde{\Gamma}_n, \gamma) - \mathbf{e}_n\} - \mathbf{e}_1, \{(\tilde{\Gamma}_n, \gamma) - \mathbf{e}_n\}] = 1.$$

By Lemma 1-1 B),

$$[\{(\tilde{\Gamma}_n,\gamma)-\mathbf{e}_1\}-\mathbf{e}_n,\{(\tilde{\Gamma}_n,\gamma)-\mathbf{e}_1\}]=1.$$

By the same argument in case $\Delta \neq \emptyset$, there exists an integer $\tilde{\gamma}_1'$ satisfying $\tilde{\gamma}_1' \leq \tilde{\gamma}_1 - 1$ and $(\tilde{\gamma}_1', 0, \dots, 0, \gamma) \in H^{(n)}$. This is a contradiction. Therefore we get $\Delta_{\tilde{\Gamma}_n} = \emptyset$.

DEFINITION 1-6. Let $\Gamma_n = (\gamma_1, \dots, \gamma_{n-1}) \in V^{(n-1)}$. Assume $\Delta_{\Gamma_n} = \emptyset$. By the definition of δ^{Γ_n} , $\deg \Gamma_n + \delta^{\Gamma_n} = 2g$. Hence the *n*-tuple $(\Gamma_n, \delta^{\Gamma_n})$ is not in $V^{(n)}$. But we define $i(\Gamma_n, \delta^{\Gamma_n})$ and $l(\Gamma_n, \delta^{\Gamma_n})$

by
$$i(\Gamma_n, \delta^{\Gamma_n}) = 0$$
 and by $l(\Gamma_n, \delta^{\Gamma_n}) = g + 1$

respectively (See Definition 1-2).

Using the above notations we have the following equalities on $\#G^{(n)}$.

THEOREM 1-7.

(1)

$$\#G^{(n)} = \sum_{\Gamma_n \in H^{(n-1)}} i(\Gamma_n) + \sum_{\Gamma_n \in G^{(n-1)}} i(\Gamma_n, \delta^{\Gamma_n}) + \sum_{\Gamma_n \in G^{(n-1)}} \delta^{\Gamma_n}.$$

(2)

$$\# G^{(n)} = \sum_{\Gamma_n \in H^{(n-1)}} l(\Gamma_n) + \sum_{\Gamma_n \in G^{(n-1)}} l(\Gamma_n, \delta^{\Gamma_n}) - \sum_{\Gamma_n \in V^{(n-1)}} deg \, \Gamma_n + (g-1) \times \# V^{(n-1)}$$

$$= \sum_{\Gamma_n \in H^{(n-1)}} l(\Gamma_n) + \sum_{\Gamma_n \in G^{(n-1)}} l(\Gamma_n, \delta^{\Gamma_n}) - \sum_{k=0}^{2g-1} k \binom{n+k-2}{k}$$

$$+ (g-1) \binom{n+2g-2}{2g-1}.$$

PROOF. (1) Take $\Gamma_n = (\gamma_1, \dots, \gamma_{n-1}) \in V^{(n-1)}$ and γ with $0 \le \gamma \le 2g - 1 - deg \Gamma_n$.

Suppose $\Gamma_n \in H^{(n-1)}$ first. By $*_n - 1$), we can see that $(\Gamma_n, \gamma) \in G^{(n)}$ if and only if " $\gamma > 0$ and $[(\Gamma_n, \gamma) - \mathbf{e}_n, (\Gamma_n, \gamma)] = 0$ ". Then, by Lemma 1-3,

$$\#\{\gamma \mid (\Gamma_n, \gamma) \in G^{(n)}\} = i(\Gamma_n) \quad \text{for} \quad \Gamma_n \in H^{(n-1)}.$$
 $\cdots 1-7-1$

Next suppose $\Gamma_n \in G^{(n-1)}$.

If $\gamma \geq \delta^{\Gamma_n}$, then $[(\Gamma_n, \gamma) - \mathbf{e}_i, (\Gamma_n, \gamma)] = 1$ for i = 1, ..., n-1. Thus we have

$$(\Gamma_n, \gamma) \in G^{(n)} \text{ if and only if } \begin{cases} \text{``} 0 \leq \gamma < \delta^{\Gamma_n}\text{'`} \\ \text{or} \\ \text{``} \gamma \geq \delta^{\Gamma_n} \quad \text{and} \quad [(\Gamma_n, \gamma - 1), (\Gamma_n, \gamma)] = 0\text{'`}. \end{cases}$$

Therefore, by Lemma 1-3,

$$\#\{\gamma \mid (\Gamma_n, \gamma) \in G^{(n)}\} = i(\Gamma_n, \delta^{\Gamma_n}) + \delta^{\Gamma_n} \quad \text{for } \Gamma_n \in G^{(n-1)}.$$
 $\cdots 1-7-2$

Thus we have the equation (1) by 1-7-1 and 1-7-2.

(2) This follows from $l(\Gamma)=i(\Gamma)+1+deg\,\Gamma-g,\,\#\,V^{(n-1)}=\binom{n+2g-2}{2g-1}$ and

$$\sum_{\Gamma_n \in V^{(n-1)}} \deg \Gamma_n = \sum_{k=0}^{2g-1} k \binom{n+k-2}{k}.$$

§ 2. The lower bound of $\#G^{(n)}$

In this section we will determine the lower bound of $\#G^{(n)}$, and show that there is a unique graph $(D^{(n)}, *_n)$ which attains the lower bound of $\#G^{(n)}$.

Let the notation be as in §1. First we will prove the following lemma.

LEMMA 2-1. Let $\Gamma = (\gamma_1, \dots, \gamma_n) \in V^{(n)}$. Assume $\gamma_i > 0$ and $[\Gamma - \mathbf{e}_i, \Gamma] = 1$ for some i. Then there exists $\Gamma' = (\gamma'_1, \gamma'_2, \dots, \gamma'_n) \in H^{(n)}$ that satisfies $\Gamma' \leq \Gamma$ and $\gamma'_i = \gamma_i$.

Proof. We may assume i = 1. Define

$$\gamma_2' := \min\{\gamma \mid [(\gamma_1, \gamma, \gamma_3, \dots, \gamma_n) - \mathbf{e}_1, (\gamma_1, \gamma, \gamma_3, \dots, \gamma_n)] = 1\}$$

for the above $\Gamma = (\gamma_1, \gamma_2, \gamma_3, \dots, \gamma_n)$.

Then

$$[(\gamma_1, \gamma_2', \gamma_3, \ldots, \gamma_n) - \mathbf{e}_2, (\gamma_1, \gamma_2', \gamma_3, \ldots, \gamma_n)] = 1.$$

In fact, if

$$[(\gamma_1, \gamma_2', \gamma_3, \dots, \gamma_n) -\mathbf{e}_2, (\gamma_1, \gamma_2', \gamma_3, \dots, \gamma_n)] = 0,$$

then $[\{(\gamma_1, \gamma_2', \gamma_3, \dots, \gamma_n) - \mathbf{e}_2\} - \mathbf{e}_1, \{(\gamma_1, \gamma_2', \gamma_3, \dots, \gamma_n) - \mathbf{e}_2\}] = 1$

by Lemma 1-1 A). This contradicts to the definition of γ'_2 .

Next define

$$\gamma_3' := \min\{\gamma \mid [(\gamma_1, \gamma_2', \gamma, \gamma_4, \dots, \gamma_n) - \mathbf{e}_1, (\gamma_1, \gamma_2', \gamma, \gamma_4, \dots, \gamma_n)] \\
= [(\gamma_1, \gamma_2', \gamma, \gamma_4, \dots, \gamma_n) - \mathbf{e}_2, (\gamma_1, \gamma_2', \gamma, \gamma_4, \dots, \gamma_n)] = 1\}.$$

Then

$$[(\gamma_1, \gamma_2', \gamma_3', \gamma_4, \dots, \gamma_n) - \mathbf{e}_3, (\gamma_1, \gamma_2', \gamma_3', \gamma_4, \dots, \gamma_n)] = 1$$

by the same reason as above. After repeating these procedures, we get the Γ' that we want.

Next we will define a filtration of $G^{(n)}$ by

$$G^{(n)}=A_0^{(n)}\supset A_1^{(n)}\supset A_2^{(n)}\supset\cdots\supset A_k^{(n)}\supset\cdots\supset A_{q-1}^{(n)}\supset A_q^{(n)}=\varnothing,$$

where

$$A_k^{(n)} := \{ \Gamma \mid i(\Gamma) \ge k, \Gamma \in G^{(n)} \}.$$

For each k, define subsets $B_k^{(n)}$ and $C_k^{(n)}$ of $A_k^{(n)}$ by

$$B_k^{(n)} = \{\Gamma \mid \Gamma = (\Gamma_n, \gamma) \in G^{(n)}, \Gamma_n \in H^{(n-1)}, i(\Gamma) \ge k\}$$

and by

$$C_k^{(n)} = \{ \Gamma \mid \Gamma = (0_n, \gamma) \in G^{(n)}, i(\Gamma) \ge k \}$$

respectively, where $0_n = (0, ..., 0) \in H^{(n-1)}$. Then we have

$$B_0^{(n)} \supset B_1^{(n)} \supset B_2^{(n)} \cdots \supset B_k^{(n)} \supset \cdots \supset B_{q-1}^{(n)} \supset B_q^{(n)},$$

$$C_0^{(n)}\supset C_1^{(n)}\supset C_2^{(n)}\cdots\supset C_k^{(n)}\supset\cdots\supset C_{q-1}^{(n)}\supset C_q^{(n)}$$

and

$$A_k^{(n)} \supset B_k^{(n)} \supset C_k^{(n)} \ (k = 0, \dots, g).$$

 $a_k^{(n)}$ and $b_k^{(n)}$ denote $\#A_k^{(n)}$ and $\#B_k^{(n)}$ respectively.

Then we have the following lemma.

LEMMA 2-2. i) $b_k^{(n)} \ge g - k$ for k = 0, ..., g. Moreover $b_k^{(n)} = g - k$ if and only if $B_k^{(n)} = C_k^{(n)}$.

- ii) The following conditions are equivalent:
- a) $b_0^{(n)} = g;$ b) $b_k^{(n)} = g k$ for k = 0, 1, ..., g;
- c) $i(\Gamma_n) = 0$ for $\Gamma_n \in H^{(n-1)} \setminus \{O_n\};$
- d) take $\tilde{\Gamma}_n \in V^{(n-1)}$ with $\deg \tilde{\Gamma}_n = 2g 1$. Then the first g edges of any path from O_n to $\tilde{\Gamma}_n$ are of weight 0;

e)
$$G^{(n-1)} = \{ \Gamma_n \in V^{(n-1)} \mid 0 < deg \Gamma_n \leq g \}.$$

PROOF. i) By Lemma 1-3, we have $\#C_k^{(n)} = g - k$ (k = 0, ..., g). Then i) follows from $B_k(n) \supset C_k(n)$ (k = 1, ..., g).

ii)
$$a$$
) \Leftrightarrow b)

We can easily see that

$$b_0^{(n)} = g \quad \Leftrightarrow \quad B_0^{(n)} = C_0^{(n)}$$

$$\Leftrightarrow \quad B_k^{(n)} = C_k^{(n)} (k = 0, \dots, g)$$

$$\Leftrightarrow \quad b_k^{(n)} = g - k.$$

 $b) \Leftrightarrow c$

If $b_k^{(n)} > g - k$ for some k, then there exists $\Gamma = (\Gamma_n, \gamma) \in G^{(n)}$ with $\Gamma_n \in H^{(n-1)} \setminus \{0_n\}$ and $i(\Gamma) \ge k$. By Lemma 1-3, $i(\Gamma_n) \ge k + 1$. Thus we have $b) \Leftarrow c$, and vice versa.

$$c) \Rightarrow d$$

Suppose c) to be true. Fix a path $0_n\tilde{\Gamma}_n$ with $deg\,\tilde{\Gamma}_n=2g-1$. We denote this path by \mathscr{P} . Take a vertex $\Gamma_n=(\gamma_1,\ldots,\gamma_i,\ldots,\gamma_{n-1})\neq 0_n$ on \mathscr{P} that satisfies $\gamma_i>0$ and $[\Gamma_n-\mathbf{e}_i,\Gamma_n]=1$ for some $1\leq i\leq n-1$. Then there exists $\Gamma'_n=(\gamma'_1,\ldots,\gamma'_i,\ldots,\gamma'_{n-1})\in H^{(n-1)}\setminus\{0_n\}$ that satisfies $\Gamma'_n\leq\Gamma_n$ and $\gamma_i=\gamma'_i$ by Lemma 2-1.

Since $i(\Gamma'_n) = 0$ by c), there is no edge of weight 0 on any path $\Gamma'_n\tilde{\Gamma}_n$. So there is no edge of weight 0 between Γ_n and $\tilde{\Gamma}_n$ on \mathscr{P} . By $*_n - 2$) we get d).

$$d) \Rightarrow e$$

By $*_n - 2$, d) implies that $\Gamma_n \in G^{(n-1)}$ if and only if $\deg \Gamma_n \leq g$.

- $e) \Rightarrow c$
- e) is equivalent to the fact that $\Gamma_n \in H^{(n-1)} \setminus \{0_n\}$ if and only if $\deg \Gamma_n > g$. This implies c).

Now we will show the main theorem of this section.

THEOREM 2-3. i) For $n \ge 2$, the following conditions are equivalent:

- (1) $G^{(n)} = \{ \Gamma \mid 0 < deg \Gamma \leq g \};$
- (2) $a_0^{(n)} = \# G^{(n)}$ is minimal for all types of $(D^{(n)}, *_n)$;
- (3) For each $k(=0,\ldots,g-1)$, $a_k^{(n)}$ is minimal for all types of $(D^{(n)},*_n)$.
- ii) The lower bound of $\#G^{(n)}$ is

$$\binom{n+g}{g}-1,$$

which is only attainable by a unique graph defined by (1).

PROOF. Let $(D^{(n)}, *_n)$ be an arbitrary Riemann-Roch graph, and let $(D^{(n-1)}, *_{n-1})$ be the subgraph of it as before. Since $i(\Gamma_n) = k$ for $\Gamma_n \in A_k^{(n-1)} \setminus A_{(k+1)}^{(n-1)}$, we have

$$\#\{\gamma > 0 \mid [(\Gamma_n, \gamma - 1), (\Gamma_n, \gamma)] = 0, deg \Gamma_n + \gamma \le 2g - 1\} = k.$$

Of course $(\Gamma_n, \gamma) \in G^{(n)}$ if $[(\Gamma_n, \gamma - 1), (\Gamma_n, \gamma)] = 0$. Watching $(\Gamma_n, 0) \in G^{(n)}$ for $\Gamma_n \in G^{(n-1)}$, we have

$$\#\{\gamma \ge 0 \mid i(\Gamma_n, \gamma) \ge 0, (\Gamma_n, \gamma) \in G^{(n)}\} = \#\{\gamma \mid (\Gamma_n, \gamma) \in G^{(n)}\} \ge k + 1$$

$$\#\{\gamma \ge 0 \mid i(\Gamma_n, \gamma) \ge 1, (\Gamma_n, \gamma) \in G^{(n)}\} \ge k$$

 I_k

#
$$\{ \gamma \ge 0 \mid i(\Gamma_n, \gamma) \ge k, (\Gamma_n, \gamma) \in G^{(n)} \} \ge 1$$
for $\Gamma_n \in A_k^{(n-1)} \setminus A_{(k+1)}^{(n-1)}$ $(k = 0, 1, \dots, g-1).$

By using I_k for $k = 0, \dots, g - 1$, we have

$$\begin{split} a_0^{(n)} & \geq (a_0^{(n-1)} - a_1^{(n-1)}) + 2(a_1^{(n-1)} - a_2^{(n-1)}) + \cdots \\ & + (g-1)(a_{g-2}^{(n-1)} - a_{g-1}^{(n-1)}) + ga_{g-1}^{(n-1)} + b_0^{(n)} \\ a_1^{(n)} & \geq (a_1^{(n-1)} - a_2^{(n-1)}) + \cdots + (g-2)(a_{g-2}^{(n-1)} - a_{g-1}^{(n-1)}) + (g-1)a_{g-1}^{(n-1)} + b_1^{(n)} \end{split}$$

$$a_{q-1}^{(n)} \ge a_{q-1}^{(n-1)} + b_{q-1}^{(n)},$$

and then

II
$$a_k^{(n)} \ge a_k^{(n-1)} + \dots + a_{g-1}^{(n-1)} + b_k^{(n)} \quad (k = 0, 1, \dots, g-1).$$

REMARK. All the equalities of II) hold if and only if all the equalities of I_k hold for all $\Gamma_n \in G^{(n-1)}$.

To prove the theorem we use the follwing Lemma.

Lemma 2-4. (1)
$$b_0^{(n)},\dots,b_{g-1}^{(n)}$$
 are minimal if and only if
$$G^{(n-1)}=\{\Gamma_n\,|\,0<\deg\Gamma_n\leq g\}.$$

(2) Assume $G^{(n-1)} = \{\Gamma_n \mid 0 < deg \Gamma_n \leq g\}$. Then the following conditions are equivalent:

- a) the first equality in each $I_k(0 \le k \le g-1)$ holds;
- b) all the equalities in each $I_k(0 \le k \le g-1)$ hold;
- c) $\delta^{\Gamma_n} = g + 1 deg \Gamma_n$ for $\Gamma_n \in G^{n-1}$;
- d) $G^{(n)} = \{ \Gamma \mid 0 < deg \Gamma \leq g \}.$

PROOF. (1) This follows from Lemma 2-2.

(2) $b) \Rightarrow c)$

Assume $\delta^{\Gamma_n} > g+1 - deg \Gamma_n$ for some $\Gamma_n \in A_k^{(n-1)} \setminus A_{k+1}^{(n-1)}$. $i(\Gamma_n) = k \ge 0$. By Lemma 2-2 d), $i(\Gamma_n) = g - deg \Gamma_n$.

Hence there is $\tilde{\gamma}$ satisfying

$$[(\Gamma_n, \tilde{\gamma} - 1), (\Gamma_n, \tilde{\gamma})] = 1$$
 and $0 < \tilde{\gamma} \le g + 1 - deg \Gamma_n$.

But $(\Gamma_n, \tilde{\gamma}) \in G^{(n)}$ because of $\delta^{\Gamma_n} > \tilde{\gamma}$. Then

$$\#\{\gamma \mid i(\Gamma_n, \gamma) \ge 0, (\Gamma_n, \gamma) \in G^{(n)}\} \ge k + 2.$$

$$c) \Rightarrow d$$

Suppose c) to be true. By Lemma 1-5 iii) and $\{\delta^{\Gamma_n} \mid \Gamma_n \in G^{(n-1)}\} = \{1, \dots, g\}$, we have

$$(O_n, k) \in G^{(n)}$$
 if and only if $1 \le k \le g$.

First we will show

$$[\Gamma - \mathbf{e}_n, \Gamma] = 1$$

for $\Gamma = (\gamma_1, \dots, \gamma_n) \in V^{(n)}$ with $deg \Gamma \ge g + 1$ and $\gamma_n > 0$.

If $\gamma_n \geq g+1$, then $[\Gamma - \mathbf{e}_n, \Gamma] = 1$ by $(O_n, \gamma_n) \in H^{(n)}$ and $*_n - 1$). When $\gamma_n \leq g$, take $\Gamma' = (\gamma_1', \dots, \gamma_{n-1}', \gamma_n) = (\Gamma_n', \gamma_n)$ with $\deg \Gamma' = g+1$ and $\Gamma' \leq \Gamma$. Then $\deg \Gamma_n' \leq g, \Gamma_n' \in G^{(n-1)}$ and $\gamma_n = g+1 - \deg \Gamma_n' = \delta^{\Gamma_n'}$ by c). Also by $*_n - 1$) and the definition of $\delta^{\Gamma_n'}$, we have $[\Gamma - \mathbf{e}_n, \Gamma] = 1$.

Next we will show

$$[\Gamma - \mathbf{e}_1, \Gamma] = 1$$

for $\Gamma = (\gamma_1, \dots, \gamma_n) \in V^{(n)}$ with $deg \Gamma \ge g + 1$ and $\gamma_1 > 0$.

When $\gamma_1 \geq g+1$, $[\Gamma-\mathbf{e}_1,\Gamma]=1$ as above. When $\gamma_1 \leq g$, take $\Gamma'=(\gamma_1,\gamma_2',\ldots,\gamma_n')$ satisfying $\Gamma' \leq \Gamma$ and $\deg \Gamma'=g+1$. Put $\Gamma'=(\tilde{\Gamma}_n,\gamma_n')$, then $\gamma_n'=\delta^{\tilde{\Gamma}_n}$ and $[\Gamma'-\mathbf{e}_1,\Gamma']=1$. Thus we have $[\Gamma-\mathbf{e}_1,\Gamma]=1$ by $*_n-1$).

This argument is also effective when the index 1 is replaced with $i \neq 1$. Thus if Γ satisfies $\deg \Gamma \geq g+1$, then $[\Gamma - \mathbf{e}_i, \Gamma] = 1$ $(0 \leq i \leq n)$.

The implications $d \Rightarrow a$ and $a \Rightarrow b$ are easy.

PROOF OF THEOREM 2-3. i)

We prove this theorem by induction on n.

Now we assume that

$$a_k^{(n-1)}(k=0,\ldots,g-1)$$
 are minimal if $G^{(n-1)} = \{\Gamma_n \,|\, 0 < deg \,\Gamma_n \leq g\}\ldots \star_{n-1})$

By our assumption \star_{n-1}) and Lemma 2-4 (1), the right hand side of each inequality of II is minimal if and only if

$$G^{(n-1)} = \{ \Gamma_n \mid 0 < \deg \Gamma_n \leq g \}.$$

Moreover, when $G^{(n-1)} = \{\Gamma_n \mid 0 < deg \Gamma_n \leq g\}$, all the equalities of II hold if and only if

$$G^{(n)} = \{ \Gamma \mid 0 < deg \ \Gamma \le g \}$$

by Lemma 2-4 (2) and Remark before Lemma 2-4. Thus $a_k^{(n)}(k=0,\ldots,g-1)$ are minimal if and only if

$$G^{(n)} = \{ \Gamma \mid 0 < deg \Gamma \le g \}$$

under the assumption \star_{n-1}).

When n = 2, $\# G^{(1)} = g$ and $a_k^{(1)} = g - k$ (k = 0, ..., g - 1) for any type of $D^{(1)}$. Then the assumption \star_1 is satisfied, and we get Theorem 2-3.

EXAMPLE 2-5. Let M be a hyperelliptic curve and P_1, P_2, \ldots, P_n be non-Wierestrass points satisfying $|P_i + P_j| \neq g_2^1 (1 \leq i, j \leq n)$. Then

$$G_M(P_1,\ldots,P_n) = \{\Gamma \mid 0 < deg \Gamma \leq g\}.$$

In fact this can be easily seen by the same calculation done by Kim([3]) in case n=2.

§ 3. The upper bound of $\#G^{(3)}$

In this section we determine the upper bound of $\#G^{(3)}$.

Let $(D^{(n)}, *_n)$ be a Riemann-Roch graph and let $(D^{(n-1)}, *_{n-1})$ be its subgraph as in §1. The subsets of vertices

$$V^{(n)}\supset V^{(n-1)}\supset\cdots\supset V^{(1)},$$

$$G^{(n)}\supset G^{(n-1)}\supset\cdots\supset G^{(1)}$$

and

$$H^{(n)}\supset H^{(n-1)}\supset\cdots\supset H^{(1)}$$

are also as in §1.

Define

$$G_i := \{x \mid xe_i \in G^{(n)}\}$$
 and $H_i := \{n \mid 0 \le n \le 2g-1\} \setminus G_i$ respectively.

REMARK. H_1 and G_1 coincide with $H^{(1)}$ and $G^{(1)}$ respectively.

LEMMA 3-1. Fix a Riemann-Roch graph $(D^{(2)}, *_2)$. For $\alpha \in V^{(1)}$, let $\beta(\alpha)$ be the non-negative integer δ^{α} defined in 1-4

$$\left(i.e., \ \beta(\alpha) = \delta^{\alpha} = \begin{cases} \min\{\beta \mid (\alpha,\beta) \in H^{(2)}\} \ (\leq 2g-1-\alpha) & \text{if } \{\beta \mid (\alpha,\beta) \in H^{(2)}\} \neq \varnothing \\ 2g-\alpha & \text{if } \{\beta \mid (\alpha,\beta) \in H^{(2)}\} = \varnothing \end{cases} \right).$$

Then

- i) For $\alpha \in G_1$, $\beta(\alpha)$ is in G_2 . Moreover the map $\beta(*): G_1 \to G_2$ defined by $\beta(\alpha)$ is one to one.
 - ii) For $\alpha \in G_1$, we have

$$\{\beta|[(\alpha-1,\beta),(\alpha,\beta)]=1\}\neq\emptyset$$
 if and only if $\{\beta|(\alpha,\beta)\in H^{(2)}\}\neq\emptyset$

and

$$\beta(\alpha) = \begin{cases} \min\{\beta \mid [(\alpha - 1, \beta), (\alpha, \beta)] = 1\} (\leq 2g - 1 - \alpha) & \text{if } \{\beta \mid [(\alpha - 1, \beta), (\alpha, \beta)] = 1\} \neq \emptyset \\ 2g - \alpha & \text{if } \{\beta \mid [(\alpha - 1, \beta), (\alpha, \beta)] = 1\} = \emptyset. \end{cases}$$

iii) For $\beta \in G_2$, we have

$$\{\alpha \mid [(\alpha, \beta - 1), (\alpha, \beta)] = 1\} \neq \emptyset$$
 if and only if $\{\alpha \mid (\alpha, \beta) \in H^{(2)}\} \neq \emptyset\}$.

If $\alpha(*):G_2\to G_1$ be the inverse map of $\beta(*)$ in i), then

$$\begin{split} \alpha(\beta) =_{*} \begin{cases} \min\{\alpha \mid (\alpha,\beta) \in H^{(2)}\} & \text{if} \quad \{\alpha \mid (\alpha,\beta) \in H^{(2)}\} \neq \emptyset \\ 2g - \beta & \text{if} \quad \{\alpha \mid (\alpha,\beta) \in H^{(2)}\} = \emptyset \end{cases} \\ =_{**} \begin{cases} \min\{\alpha \mid [(\alpha,\beta-1),(\alpha,\beta)] = 1\} & \text{if} \quad \{\alpha \mid [(\alpha,\beta-1),(\alpha,\beta)] = 1\} \neq \emptyset \\ 2g - \beta & \text{if} \quad \{\alpha \mid [(\alpha,\beta-1),(\alpha,\beta)] = 1\} = \emptyset. \end{cases} \end{split}$$

PROOF. i) This follows from Lemma 1-5 iii) and $\#G_1 = \#G_2 = g$.

ii) Fix $\alpha \in G_1$.

Put

$$\beta' = \begin{cases} \min\{\beta \,|\, [(\alpha-1,\beta),(\alpha,\beta)] = 1\} (\leq 2g-1-\alpha) & \text{if } \{\beta \,|\, [(\alpha-1,\beta),(\alpha,\beta)] = 1\} \neq \varnothing \\ 2g-\alpha & \text{if } \{\beta \,|\, [(\alpha-1,\beta),(\alpha,\beta)] = 1\} = \varnothing. \end{cases}$$

Assume
$$\{\beta \mid [(\alpha - 1, \beta), (\alpha, \beta)] = 1\} \neq \emptyset$$
.

Then we have

$$[(\alpha, \beta' - 1), (\alpha, \beta')] = 1.$$

In fact, if $[(\alpha, \beta' - 1), (\alpha, \beta')] = 0$, then

$$[(\alpha - 1, \beta' - 1), (\alpha, \beta' - 1)] = 1$$

by 1-1 A). This contradicts to the definition of β' . Thus

$$\beta' \in \{\beta \mid (\alpha, \beta) \in H^{(2)}\}.$$

Consequently we have

$$\{\beta \mid (\alpha, \beta) \in H^{(2)}\} \neq \emptyset$$
 and $\beta' \ge \beta(\alpha)$.

Conversely, if $\{\beta \mid (\alpha, \beta) \in H^{(2)}\} \neq \emptyset$, then obviously

$$\{\beta \mid [(\alpha - 1, \beta), (\alpha, \beta)] = 1\} \neq \emptyset$$
 and $\beta' \leq \beta(\alpha)$.

Thus we have

$$\{\beta \mid [(\alpha - 1, \beta), (\alpha, \beta)] = 1\} \neq \emptyset$$
 if and only if $\{\beta \mid (\alpha, \beta) \in H^{(2)}\} \neq \emptyset$, and

$$\beta(\alpha) = \beta'$$
.

iii) Fix $\beta \in G_2$. By the same way as in ii), we have

$$\{\alpha \mid [(\alpha, \beta - 1), (\alpha, \beta)] = 1\} \neq \emptyset$$
 if and only if $\{\alpha \mid (\alpha, \beta) \in H^{(2)}\} \neq \emptyset$,

and

$$\min\{\alpha \mid [(\alpha, \beta - 1), (\alpha, \beta)] = 1\} = \min\{\alpha \mid (\alpha, \beta) \in H^{(2)}\}\$$

if
$$\{\alpha \mid [(\alpha, \beta - 1), (\alpha, \beta)] = 1\} \neq \emptyset$$
.

Thus we get the second equality **).

Next we will show the first equality *).

Assume
$$\{\alpha \mid [(\alpha, \beta - 1), (\alpha, \beta)] = 1\} \neq \emptyset$$
.

Put

$$\tilde{\alpha} = \min\{\alpha \mid [(\alpha, \beta - 1), (\alpha, \beta)] = 1\} = \min\{\alpha \mid (\alpha, \beta) \in H^{(2)}\}.$$

Then $\tilde{\alpha} \leq 2g - 1 - \beta$ and $\beta(\tilde{\alpha}) \leq \beta$.

Now assume $\beta(\tilde{\alpha}) < \beta$. Then

$$[(\tilde{\alpha}-1,\beta-1),(\tilde{\alpha},\beta-1)]=1$$

by $*_2 - 1$), and

$$[(\tilde{\alpha}-1,\beta-1),(\tilde{\alpha}-1,\beta)]=1$$

by Lemma 1-1 A) and $(\tilde{\alpha}, \beta) \in H^{(2)}$.

This contradicts to the minimality of $\tilde{\alpha}$. Thus we have $\beta(\tilde{\alpha}) = \beta = \beta(\alpha(\beta))$. By i) of this lemma we get $\tilde{\alpha} = \alpha(\beta)$.

Next assume that $\{\alpha \mid [(\alpha, \beta - 1), (\alpha, \beta)] = 1\} = \emptyset$. If $2g - 1 - \alpha(\beta) \ge \beta = \beta(\alpha(\beta))$, then $(\alpha(\beta), \beta(\alpha(\beta))) \in H^{(2)}$. This contradicts to the above assumption. Since $\alpha(\beta) + \beta(\alpha(\beta)) \le 2g$ (Lemma 1-5), $\alpha(\beta) = 2g - \beta$.

Then we get the equality
$$*$$
).

REMARK. At first the map $\beta(*)$ was introduced by Kim in case $D^{(2)} = D_M(P,Q)$.

Formula (2) in Theorem 1-7 for n = 3 and n = 2 can be written as follows.

LEMMA 3-2 (Corollary of Theorem 1-7).

(1) Let $(\alpha, \beta) \in V^{(2)}$. We write $\delta^{\alpha\beta}$ for $(\alpha, \beta) \in V^{(2)}$. Then

$$\#G^{(3)} = \sum_{(lpha,eta)\in H^{(2)}} l(lpha,eta) + \sum_{(lpha,eta)\in G^{(2)}} l(lpha,eta,\delta^{lphaeta}) - rac{g(2g+1)(g+1)}{3},$$

where $l(\alpha, \beta, \delta^{\alpha\beta}) = g + 1$ if $\alpha + \beta + \delta^{\alpha\beta} = 2g$.

$$\#G^{(2)} = \frac{g(g-1)}{2} + \sum_{\alpha \in G_1} l(\alpha, \beta(\alpha)) \le \frac{(3g^2 + g)}{2},$$

where $l(\alpha, \beta(\alpha)) = g + 1$ if $\alpha + \beta(\alpha) = 2g$.

Moreover $\#G^{(2)} = (3g^2 + g)/2$ if and only if $\beta(\alpha) = 2g - \alpha$ for all $\alpha \in G_1$.

PROOF. (2) This follows from
$$\{l(\alpha) \mid \alpha \in H^{(1)} = H_1\} = \{1, 2, \dots, g\}.$$

DEFINITION 3-3. Let $(D^{(3)}, *_3)$ be a Riemann-Roch graph. $(D^{(2)}, *_2)$ is the subgraph of $(D^{(3)}, *_3)$, and $(D^{(1)}, *_1)$ is the subgraph of $(D^{(2)}, *_2)$ as before. Define subsets S, T and R of $V^{(2)}$ as follows.

$$S:=\{(\alpha,\beta)\in G^{(2)}\,|\, (\alpha,\beta,\gamma)\in G^{(3)}\quad \text{for any }\gamma\leq 2g-1-\alpha-\beta\}.$$

$$T:=\{(u,v)\in V^{(2)}\,|\,0\leq u+v\leq 2g-2,[(u,v),(u+1,v)]=[(u,v),(u,v+1)]=0\}.$$

$$R := \{(a,b) \in V^{(2)} \mid 0 \le a+b \le 2g-2, [(a,b,2g-2-a-b), (a,b,2g-1-a-b)] = 0\}.$$

(N.B.,
$$(u+1,v) \in G_2$$
 and $(u,v+1) \in G_2$ for $(u,v) \in T$).

LEMMA 3-4.

(1)

$$R = \{(a,b) \in V^{(2)} \mid [(a,b,2g-2-a-b),(a,b,2g-1-a-b)] = 0\}$$

$$= \{(a,b) \in V^{(2)} \mid [(a,b,2g-2-a-b),(a+1,b,2g-2-a-b)] = 0\}$$

$$= \{(a,b) \in V^{(2)} \mid [(a,b,2g-2-a-b),(a,b+1,2g-2-a-b)] = 0\}.$$
(2)

$$S = \{(\alpha, \beta) \in G^{(2)} \mid l(\alpha, \beta, \delta^{\alpha\beta}) = g+1\} = \{(\alpha, \beta) \in G^{(2)} \mid \delta^{\alpha\beta} = 2g - \alpha - \beta\}.$$

PROOF. (1) This follows from Lemma 1-1 B).

(2) This follows from the definition of S and Definition 1-6.

By Lemma 3-4 (1), [(a,b),(a,b+1)]=[(a,b),(a+1,b)]=0 for $(a,b)\in R$. Then there is a natural inclusion $\varphi:R\to T(\text{i.e.},(u,v)=\varphi(a,b)=(a,b))$ and $\#R\le \#T$.

To estimate the cardinarities of S and T, we use the following number $r(\beta(*))$ defined by Homma.

DEFINITION 3-5 (Homma [2]). Let $G_1 = \{\alpha_1 < \alpha_2 < \dots < \alpha_g\}$, and let $G_2 = \{\beta_1 < \beta_2 < \dots < \beta_g\}$. Define a non-negative integer $r(\beta(*))$ by

$$r(\beta(*)) := \#\{(i,j) \mid \alpha_i < \alpha_j \text{ (i.e.,} i < j) \text{ and } \beta(\alpha_i) > \beta(\alpha_j)\}.$$

LEMMA 3-6. Let $(D^{(3)}, *_3)$ be a Riemann-Roch graph, and let S and T be as above. Then

(1)

$$T = \{(u, v) \in V^{(2)} \mid u + 1 \in G_1, v + 1 \in G_2, 0 \le u + v \le 2g - 2, \beta(u + 1) \ge v + 1$$

$$and \quad \alpha(v + 1) \ge u + 1\}.$$

(2)

$$\#T = r(\beta(*)) + \#(G_1) = r(\beta(*)) + g \leq \frac{g(g+1)}{2}.$$

And the equality #T = g(g+1)/2 holds if and only if

$$\beta(\alpha_i) = \beta_{g+1-i}, \quad 1 \le i \le g.$$

(3) $\#S \le g(g+1)$.

If the equality #S = g(g+1) holds, then

$$G_1 = G_2 = G_3 = \{1, 3, 5, \dots, 2g - 1\}$$
 and $\beta(\alpha) = 2g - \alpha$.

In this case, $(D^{(2)}, *_2)$ is defined by

"
$$[(u-1,v),(u,v)] = 0$$
 if and only if u is odd"

and

"
$$[(u, v - 1), (u, v)] = 0$$
 if and only if v is odd."

Therefore we have $G^{(2)} = \{(u, v) \in V^{(2)} \mid u \text{ or } v \text{ is odd}\}$ and $l(\alpha, \beta(\alpha)) = g + 1$ for $\alpha \in G_1$.

PROOF. (1) By Lemma 3-1 ii),

"
$$[(u, v), (u + 1, v)] = 0$$
 if and only if $v < \beta(u + 1)$ "

for $u + 1 \in G_1$, and by Lemma 3-1 iii),

"[
$$(u, v), (u, v + 1)$$
] = 0 if and only if $u < \alpha(v + 1)$ "

for $v + 1 \in G_2$. Thus we get (1).

(2) For $(u, v) \in T$, put x = u + 1 and y = v + 1. Then $x \in G_1$, $y \in G_2$, $\beta(x) \ge y$ and $\alpha(y) \ge x$. Since $\alpha(*) = \beta^{-1}(*)$ on G_2 , there exists a unique $x' \in G_1$ satisfying $\beta(x') = y$ and $\alpha(y) = x'$. Thus

$$\# T = \# \{(x, y) \mid x \in G_1, y \in G_2, y < \beta(x) \text{ and } x < \alpha(y) \}$$

$$+ \# \{(x, y) \mid x \in G_1, \beta(x) = y \}$$

$$= \# \{(x, x') \mid x \in G_1, x' \in G_1, x' > x, \beta(x') < \beta(x) \} + \# \{(x, \beta(x)) \mid x \in G_1 \},$$

and we have $\#T = r(\beta(*)) + g$.

Homma ([2]) has shown that

$$0 \le r(\beta(*)) \le \frac{g(g-1)}{2}$$

and

"
$$r(\beta(*)) = \frac{g(g-1)}{2}$$
 if and only if $\beta(\alpha_i) = \beta_{g+1-i}$ ($1 \le i \le g$)".

Thus we get (2).

(3) Assume

$$[(\alpha - 1, \beta, 2g - 1 - \alpha - \beta), (\alpha, \beta, 2g - 1 - \alpha - \beta)]$$

$$= [(\alpha, \beta - 1, 2g - 1 - \alpha - \beta), (\alpha, \beta, 2g - 1 - \alpha - \beta)]$$

$$= 1.$$

for $(\alpha, \beta) \in S$.

Let

$$\gamma_0 := \min\{\gamma \mid [(\alpha - 1, \beta, \gamma), (\alpha, \beta, \gamma)] = [(\alpha, \beta - 1, \gamma), (\alpha, \beta, \gamma)] = 1\}.$$

Then $\gamma_0 \leq 2g-1$, and $[(\alpha, \beta, \gamma_0-1), (\alpha, \beta, \gamma_0)] = 1$ by Lemma 1-1 A) and the minimality of γ_0 . This implies that $(\alpha, \beta, \gamma_0)$ is in $H^{(3)}$. This contradicts to $(\alpha, \beta) \in S$. Then for $(\alpha, \beta) \in S$, we have

$$[(\alpha - 1, \beta, 2g - 1 - \alpha - \beta), (\alpha, \beta, 2g - 1 - \alpha - \beta)] = 0$$

b) or

$$[(\alpha, \beta - 1, 2g - 1 - \alpha - \beta), (\alpha, \beta, 2g - 1 - \alpha - \beta)] = 0.$$

b) means that

$$(\alpha - 1, \beta)$$
 or $(\alpha, \beta - 1)$ is in R for $(\alpha, \beta) \in S$. $\cdots 3$ -6-1)

On the other hand, by Lemma 3-4 (1) and $*_3 - 1$),

$$(a+1,b)$$
 and $(a,b+1)$ are in S for $(a,b) \in R$. $\cdots 3$ -6-2)

Then we can consider the one-to-two correspondence $(a,b) \to \{(a+1,b), (a,b+1)\}$ from R to S by 3-6-2), and $\#S \le 2 \times \#R$ by 3-6-1). Therefore, by (2) of this lemma, we have

$$\#S \le 2 \times \#R \le 2 \times \#T \le 2 \times \frac{g(g+1)}{2} = g(g+1).$$

Thus we get the former half of (3).

Moreover we have

$$\#S = g(g+1) \quad \text{if and only if} \begin{cases} a) \ \#T = \#R = \frac{g(g+1)}{2} \\ b) \text{ one and only one of } (\alpha - 1, \beta) \quad \text{or} \quad (\alpha, \beta - 1) \\ \text{is in } R \text{ for } (\alpha, \beta) \in S. \end{cases}$$

Now assume #S = g(g+1), and let $G_3 = \{\gamma_1 < \gamma_2, \ldots, < \gamma_g\}$. We will show that $\alpha_i + \beta(\alpha_i)$ $(i = 1, \ldots, g)$ is constant.

Claim

$$\alpha_i + \beta(\alpha_i) = \alpha(\beta_{g-i+1}) + \beta_{g-i+1}$$

$$= 2g - \gamma_1 + 1 \quad \text{for all } i.$$

PROOF OF CLAIM. By Lemma 3-1 ii) and $*_3 - 1$), we have

$$[(\alpha_{j}-1,\beta(\alpha_{j})-1),(\alpha_{j},\beta(\alpha_{j})-1)]$$

$$=[(\alpha_{i}-1,\beta(\alpha_{j})-1),(\alpha_{i},\beta(\alpha_{j})-1)]=0. \cdots 3-6-3)$$

for $j \ge i$.

By (2) of this lemma, we have

$$\beta(\alpha_i) = \beta_{q+1-i} > \beta(\alpha_j) = \beta_{q+1-j}$$
 with $j > i$.

Since $[(\alpha_i - 1, \beta(\alpha_i) - 1), (\alpha_i - 1, \beta(\alpha_i))] = 0$,

$$[(\alpha_i - 1, \beta(\alpha_j) - 1), (\alpha_i - 1, \beta(\alpha_j))] = 0 \quad \text{for } j \ge i.$$

By 3-6-3) and 3-6-4) $(\alpha_i - 1, \beta(\alpha_j) - 1) \in T = R$, and $(\alpha_i, \beta(\alpha_j) - 1) \in S$ for all $j \ge i$. Since $2g - \alpha - \beta = \delta^{\alpha\beta} \in G_3$ for $(\alpha, \beta) \in S$ by Lemma 3-4(2), we have

$$2g - \alpha_i - \beta(\alpha_j) + 1 \in G_3$$
 with $j \ge i$.

As $\alpha_i < \alpha_j$ and $\beta(\alpha_i) > \beta(\alpha_j)$ (j > i), we have

$$\gamma_k = 2g - \alpha_{g-i+1} - \beta(\alpha_{g-i+k}) + 1$$
 with $k = 1, \dots, i$.

In particular

$$\gamma_1 = 2g - \alpha_{g-i+1} - \beta(\alpha_{g-i+1}) + 1.$$

Then Claim has been proved.

Assume $\alpha_{i+1} = \alpha_i + 1$, for some *i*. By Claim, $\beta(\alpha_i) = \beta(\alpha_{i+1}) + 1$. Then

$$(\alpha_i, \beta(\alpha_{i+1}) - 1) = (\alpha_{i+1} - 1, \beta(\alpha_{i+1}) - 1) \in T = R$$

and

$$(\alpha_i-1,\beta(\alpha_{i+1}))=(\alpha_i-1,\beta(\alpha_i)-1)\in T=R.$$

But the condition b) of #S = g(g+1) means that (a+1,b-1) is not in R if (a,b) is in R. Then

$$\alpha_{i+1} \neq \alpha_i + 1$$
 and $\beta_{i+1} \neq \beta_i + 1$ for all i.

Since $\beta(\alpha_i) = \beta_{q-i+1}$, we also have

$$G_1 = \{ \alpha_k = 2k - 1 \mid 1 \le k \le g - 1 \}, \quad G_2 = \{ \beta_k = 2k - 1 \mid 1 \le k \le g - 1 \}$$

and $\beta(\alpha) = 2g - \alpha$ for $\alpha \in G_1$.

Using Lemma 3-1 ii), iii) and $*_3 - 1$), we get the graph $(D^{(2)}, *_2)$ mentioned at the end of (3).

PROPOSITION 3-7. Assume #S = g(g+1). Then $(D^{(3)}, *_3)$ is defined by

$$[(\alpha - 1, \beta, \gamma), (\alpha, \beta, \gamma)] = 0 \quad \text{if and only if} \begin{cases} \text{``} \alpha \text{ is odd and } \alpha + \beta + \gamma \neq 2g - 1\text{''} \\ \text{or} \\ \text{``} \alpha + \beta + \gamma = 2g - 1 \text{ and } \beta, \gamma \text{ are even''}, \end{cases}$$

$$\beta) \\ [(\alpha, \beta - 1, \gamma), (\alpha, \beta, \gamma)] = 0 \quad \text{if and only if} \begin{cases} \text{``β is odd and $\alpha + \beta + \gamma \neq 2g - 1$''} \\ \text{or} \\ \text{``$\alpha + \beta + \gamma = 2g - 1$ and α, γ are even''} \end{cases}$$

and

$$[(\alpha,\beta,\gamma-1),(\alpha,\beta,\gamma)] = 0 \quad \text{if and only if} \begin{cases} \text{``γ is odd and $\alpha+\beta+\gamma \neq 2g-1$''} \\ \text{or} \\ \text{``$\alpha+\beta+\gamma=2g-1$ and α,β are even''}. \end{cases}$$

In this case,

$$S = \{(\alpha, \beta) \mid 1 \le \alpha + \beta \le 2g - 1 \text{ and } \alpha + \beta \text{ is odd}\}$$

and

$$G^{(2)} \setminus S = \{(\alpha, \beta) \mid 2 \le \alpha + \beta \le 2g - 2, \alpha \text{ and } \beta \text{ are odd}\}.$$

Moreover,
$$\delta^{(\alpha\beta)} = 2g - 1 - \alpha - \beta$$
 and $l(\alpha, \beta, \delta^{(\alpha\beta)}) = g$ for $(\alpha, \beta) \in G^{(2)} \setminus S$.

PROOF. By Lemma 3-6(3) and the proof of it, we can see that

$$R = T = \{(\alpha, \beta) \in V^{(2)} \mid \alpha \text{ and } \beta \text{ are even}, 0 \le \alpha + \beta \le 2g - 2\},$$
$$S = \{(\alpha, \beta) \mid 1 \le \alpha + \beta \le 2g - 2 \text{ and } \alpha + \beta \text{ odd}\}$$

and

$$G^{(2)} \setminus S = \{(\alpha, \beta) \mid 2 \le \alpha + \beta \le 2g - 2, \alpha \text{ and } \beta \text{ are odd}\}.$$

Then, by Lemma 3-4(1),

$$(\alpha - 1, \beta + 1) \in R$$
 and $[(\alpha - 1, \beta + 1, 2g - 2 - \alpha - \beta), (\alpha, \beta + 1, 2g - 2 - \alpha - \beta)] = 0$ for $(\alpha, \beta) \in G^{(2)} \setminus S$.
By $*_3 - 1$,

$$[(\alpha - 1, \beta, \gamma), (\alpha, \beta, \gamma)] = 0 \text{ (i.e., } (\alpha, \beta, \gamma) \in G^{(3)}) \qquad \cdots 3-7-1)$$

for every γ with $0 \le \gamma \le 2g - \alpha - \beta - 2$ and $(\alpha, \beta) \in G^{(2)} \setminus S$. Therefore we get $\delta^{\alpha\beta} \ge 2g - \alpha - \beta - 1$. Since $(\alpha, \beta) \in G^{(2)} \setminus S$ and $\delta^{\alpha\beta} \le 2g - \alpha - \beta - 1$, we have

$$\delta^{\alpha\beta} = 2g - \alpha - \beta - 1$$
 and $l(\alpha, \beta, \delta^{\alpha\beta}) = g$.

Then we get the latter half of this lemma.

Let α and β be odd and even respectively. If $\tilde{\gamma} = 2g - 1 - \alpha - \beta \ge 0$, then $(\alpha, \beta) \in S$ and $(\alpha, \beta, \tilde{\gamma}) \in G^{(3)}$. But $[(\alpha, \beta - 1, \tilde{\gamma}), (\alpha, \beta, \tilde{\gamma})] = [(\alpha, \beta, \tilde{\gamma} - 1), (\alpha, \beta, \tilde{\gamma})] = 1$ because β and $\tilde{\gamma}$ are even. Then

$$[(\alpha - 1, \beta, \gamma), (\alpha, \beta, \gamma)] = 0 \qquad \cdots 3-7-2)$$

for $0 \le \gamma \le 2g - 1 - \alpha - \beta$.

Let both α and β be odd. If $\tilde{\gamma} = 2g - 1 - \alpha - \beta \ge 0$, then $(\alpha, \beta) \in G^{(2)} \setminus S$ and $\delta^{\alpha\beta} = \tilde{\gamma}$. Hence $(\alpha, \beta, \tilde{\gamma}) \in H^{(3)}$ and

$$[(\alpha-1,\beta,\tilde{\gamma}),(\alpha,\beta,\tilde{\gamma})]=1. \qquad \cdots 3-7-3)$$

By 3-7-1), 3-7-2), 3-7-3) and $*_3 - 1$), we get the statement α). β) can be proved by the same way as in case α). The statement γ) follows from α), $*_3 - 2$) and $*_3 - 1$).

LEMMA 3-8. (1) The first term $\sum_{(\alpha\beta)\in H^{(2)}}l(\alpha,\beta)$ of the equation of Lemma 3-2(1) satisfies

$$\sum_{(\alpha\beta)\in H^{(2)}}l(\alpha,\beta)=\frac{g(g+1)(5g+1)}{6}+\frac{\sum_{\alpha\in G_1}\{-l(\alpha,\beta(\alpha))^2+l(\alpha,\beta(\alpha))\}}{2}.$$

(2) The second term $\sum_{(\alpha\beta)\in G^{(2)}} l(\alpha,\beta,\delta^{\alpha\beta})$ of 3-2(1) satisfies

$$\sum_{(\alpha\beta)\in G^{(2)}} l(\alpha,\beta,\delta^{\alpha\beta}) \le g(g+1) + g \times \# G^{(2)},$$

and the equality holds if and only if #S = g(g+1).

$$\# G^{(3)} \leq \frac{g(g+1)(g+5)}{6} + g \times \# G^{(2)} + \frac{\sum_{\alpha \in G_1} \{-l(\alpha, \beta(\alpha))^2 + l(\alpha, \beta(\alpha))\}}{2},$$

and the equality holds if and only if #S = g(g+1).

Proof. (1) Let

$$A = \sum_{\alpha \in H_1} \left(\sum_{\beta \text{ s.t. } (\alpha\beta) \in H^{(2)}} l(\alpha, \beta) \right) \quad \text{and} \quad B = \sum_{\alpha \in G_1} \left(\sum_{\beta \text{ s.t. } (\alpha\beta) \in H^{(2)}} l(\alpha, \beta) \right).$$

Then

$$\sum_{(\alpha\beta)\in H^{(2)}}l(\alpha,\beta)=A+B.$$

We can calculate A and B as follows.

$$\begin{split} A &= \sum_{\alpha \in H^{(1)}} \{ l(\alpha,0) + (l(\alpha,0)+1) + \dots + g \} \\ &= \sum_{\alpha \in H^{(1)}} \frac{(g-l(\alpha)+1)(g+l(\alpha))}{2} \\ &= \frac{\sum_{k=1}^{g} \{ (g-k+1)(g+k) \}}{2} = \frac{g(g+1)(2g+1)}{6}. \\ B &= \sum_{\alpha \in G^{(1)}} \left(\sum_{\beta \text{ s.t. } (\alpha,\beta) \in H^{(2)}} l(\alpha,\beta) \right) \\ &= \sum_{\alpha \in G^{(1)}} \{ l(\alpha,\beta(\alpha)) + (l(\alpha,\beta(\alpha)+1) + \dots + g \} \\ &= \frac{\sum_{\alpha \in G^{(1)}} \{ -l(\alpha,\beta(\alpha))^2 + l(\alpha,\beta(\alpha)) \}}{2} + \frac{g^2(g+1)}{2}. \end{split}$$

Adding A and B, we get the equation in (1).

(2) Splitting $G^{(3)}$ into two subsets S and $G^{(3)} \setminus S$, we have

$$\sum_{(\alpha\beta)\in G^{(2)}} l(\alpha,\beta,\delta^{\alpha\beta}) = \sum_{(\alpha\beta)\in S} l(\alpha,\beta,\delta^{\alpha\beta}) + \sum_{(\alpha\beta)\in G^{(2)}\setminus S} l(\alpha,\beta,\delta^{\alpha\beta})$$

$$\leq \#S \times (g+1) + (\#G^{(2)} - \#S) \times g$$

$$\leq g(g+1) + g \times \#G^{(2)} \quad \text{(by Lemma 3-6 (3))}.$$

THEOREM 3-9. Let $(D^{(3)}, *_3)$ be a Riemann-Roch graph, and let $G^{(3)}$ be its gap set.

Then

$$\#G^{(3)} \le \frac{g(7g^2 + 6g + 5)}{6},$$

and the equality holds if and only if $(D^{(3)}, *_3)$ is the graph defined as in Proposition 3-7.

PROOF. Substituting (2) of Lemma 3-2 for $\#G^{(2)}$ in the inequality of lemma 3-8 (3), we have

$$\#G^{(3)} \le {}_{(1)}\frac{g(4g^2 + 3g + 5)}{6} + \sum_{\alpha \in G_1} \{-l(\alpha, \beta(\alpha))^2 + (2g + 1)l(\alpha, \beta(\alpha))\}$$
$$\le {}_{(2)}\frac{g(7g^2 + 6g + 5)}{6}.$$

As

$$-l(\alpha,\beta(\alpha))^2 + (2g+1)l(\alpha,\beta(\alpha)) = -\left\{l(\alpha,\beta(\alpha)) - \left(g + \frac{1}{2}\right)\right\}^2 + g^2 + g + \frac{1}{4},$$

the second equality (2) holds if and only if $l(\alpha, \beta(\alpha)) = g$ or g + 1 for each $\alpha \in G_1$. If the first equality (1) holds, then #S = g(g+1) and $(D^{(2)}, *_2)$ is the graph defined in Lemma 3-6 (3). That is,

$$G_1=G_2=\{1,3,5,\ldots,2g-1\},$$

$$G^{(2)}=\{(\alpha,\beta)\,|\,1\leq \alpha+\beta\leq 2g-1, \alpha \text{ or }\beta \text{ is odd}\},$$
 $\beta(\alpha)=2g-\alpha \quad \text{and} \quad l(\alpha,\beta(\alpha))=g+1 \quad \text{for }\alpha\in G_1.$

Thus the equality (1) implies the equality (2), and then $\#G^{(3)} = g(7g^2 + 6g + 5)/6$ holds if and only if the equality (1) holds. So we have the graph discribed in Proposition 3-8.

EXAMPLE 3-10. The graph in Theorem 3-9 is exactly the graph $G_M(P_1, P_2, P_3)$ with hyperelliptic M and $|2P_1| = |2P_2| = |2P_3| = g_2^1$. This is also from the same calculation done by Kim in case n = 2.

REMARK 3-11. When n = 2, the graph which attains the maximal value of $\#G^{(2)}$ is not unique. For example, if

$$G_1 = {\alpha_1, \dots, \alpha_g} = {1, 2, 3, \dots, g},$$

 $G_2 = {\beta_1, \dots, \beta_g} = {g, g + 1, \dots, 2g - 1}}$

and $\beta(\alpha_i) = 2g - \alpha_i$, then this graph attains the maximal value by Lemma 3-2, and this graph does not come from any Riemann surfaces.

§. Appendix

Lemma 3-1 shows that a map $\beta(*): V_1 \to V_2$ with some conditions completely determine a Riemann-Roch graph in case n=2. In this section we study the structure of $(D^{(n)}, *_n)$ in detail when $n \ge 3$, and try to find some means, similar to $\beta(*)$, of construction of $(D^{(n)}, *_n)$.

A-I

First we survey a given $(D^{(n)}, *_n)$.

DEFINITION A-1. Fix a Riemann-Roch graph $(D^{(n)}, *_n)$. Assume $n \ge 3$. Let i and j $(1 \le i, j \le n, i \ne j)$ be fixed. Take an (n-2)-tuple

$$\Gamma_{ij} = (\gamma_1, \ldots, \gamma_{i-1}, \gamma_{i+1}, \ldots, \gamma_{j-1}, \gamma_{j+1}, \ldots, \gamma_n) \in \mathbf{N}_0^{n-2},$$

and we identify Γ_{ij} with the *n*-tuple

$$\sum_{k \neq i,j} \gamma_k \mathbf{e}_k = (\gamma_1, \dots, \gamma_{i-1}, 0, \gamma_{i+1}, \dots, \gamma_{j-1}, 0, \gamma_{j+1}, \dots, \gamma_n) \in \mathbf{N}_0^n.$$

We also write Γ_{ij} for this vertex.

For fixed Γ_{ij} , define a subset $G_i^{\Gamma_{ij}}$ of N_0 by

$$G_i^{\Gamma_{ij}} := \{ \gamma \,|\, \gamma > 0, \Gamma = \Gamma_{ij} + \gamma \mathbf{e}_i \in V^{(n)} \quad \text{and} \quad [\Gamma - \mathbf{e}_i, \Gamma] = 0 \}.$$

For $\gamma \in \mathbb{N}_0$ with $0 \le \gamma \le 2g - deg \Gamma_{ij} - 1$, define a non-negative integer $\gamma_j^{\Gamma_{ij}}(\gamma)$ by:

i) for
$$\gamma \notin G_i^{\Gamma_{ij}}$$
, $\gamma_i^{\Gamma_{ij}}(\gamma) := 0$;

ii) for $\gamma \in G_i^{\Gamma_{ij}}$,

a)
$$\gamma_{j}^{\Gamma_{ij}}(\gamma) := 2g - deg \, \Gamma_{ij} - \gamma (>0)$$
 if $\Delta_{j}(\Gamma_{ij}, \gamma) = \emptyset$

b)
$$\gamma_i^{\Gamma_{ij}}(\gamma) := \min\{\alpha \mid \alpha \in \Delta_j(\Gamma_{ij}, \gamma)\}(>0)$$
 if $\Delta_j(\Gamma_{ij}, \gamma) \neq \emptyset$,

where

$$\Delta_{i}(\Gamma_{ij},\gamma) := \{\alpha \mid [(\Gamma - \mathbf{e}_{i},\Gamma] = 1 \quad \text{with} \quad \Gamma = \Gamma_{ij} + \gamma \mathbf{e}_{i} + \alpha \mathbf{e}_{j} \in V^{(n)} \quad \text{and} \quad \gamma > 0\}.$$

Remark. i) For $\gamma \in G_i^{\Gamma_{ij}}$, $1 \le \gamma_j^{\Gamma_{ij}}(\gamma) \le 2g - deg \Gamma_{ij} - 1$. (see the proof of Lemma 3-1).

ii) If $\Gamma_{ij} = (0, \dots, 0)$ (write 0_{ij}), then $G_i^{0_{ij}} = \{ \gamma \mid \gamma \mathbf{e}_i \in G^{(n)} \}$. We wrote G_i for $G_i^{0_{ij}}$ in §.3.

Lemma A-2. Fix Γ_{ij} . For γ with $0 \le \gamma \le 2g - deg \Gamma_{ij} - 1$, put $\tilde{\gamma} = \gamma_j^{\Gamma_{ij}}(\gamma)$ and $\Gamma = \Gamma_{ij} + \gamma \mathbf{e}_i + \tilde{\gamma} \mathbf{e}_j$.

If $0 < \tilde{\gamma} < 2g - deg \Gamma_{ij} - \gamma$, then

$$\gamma > 0$$
, $[\Gamma - \mathbf{e}_i, \Gamma] = 1$ and $[\{\Gamma - \mathbf{e}_i\} - \mathbf{e}_i, \{\Gamma - \mathbf{e}_i\}] = 0$.

PROOF. As $\tilde{\gamma} > 0$, γ must be positive. By the definition of $\tilde{\gamma} = \gamma_j^{\Gamma_{ij}}(\gamma)$,

$$[\Gamma - \mathbf{e}_i, \Gamma] = 1$$
 and $[\{\Gamma - \mathbf{e}_i\} - \mathbf{e}_i, \{\Gamma - \mathbf{e}_j\}] = 0$.

By Lemma 1-1 A), we get this lemma.

The system of maps

$$\left\{ \tilde{\gamma}_{j}^{\Gamma_{ij}} : \left\{ \gamma \mid 0 \leq \gamma \leq 2g - 1 - \deg \Gamma_{ij} \right\} \right.$$

$$\left. \rightarrow \left\{ \gamma \mid 0 \leq \gamma \leq 2g - 1 - \deg \Gamma_{ij} \right\} \mid \Gamma_{ij} \in V^{(n)}, 1 \leq i, j \leq n \right\}$$

have the following properties.

LEMMA A-3. Fix a Riemann-Roch graph $(D^{(n)}, *_n)$. Let Γ_{ij} be as in Definition A-1. Then

i)

$$\#G_i^{\Gamma_{ij}} = \#G_i^{\Gamma_{ij}} = i(\Gamma_{ij}).$$

ii) $\gamma_j^{\Gamma_{ij}}$ induces a bijection from $G_i^{\Gamma_{ij}}$ to $G_j^{\Gamma_{ij}}$, and its inverse map is $(\gamma_i^{\Gamma_{ij}})^{-1} = \gamma_i^{\Gamma_{ij}}.$

iii) Let
$$\Gamma'_{ij} = \sum_{k \neq i,j} \gamma'_k \mathbf{e}_k$$
 be another $(n-2)$ -tuple with $\Gamma_{ij} \leq \Gamma'_{ij}$, then

$$G_i^{\Gamma_{ij}}\supset G_i^{\Gamma'_{ij}}$$

and

$$\gamma_j^{\Gamma_{ij}}(\gamma) \geq \gamma_j^{\Gamma'_{ij}}(\gamma)$$

for γ with $0 \le \gamma \le 2g - 1 - \deg \Gamma'_{ii}$.

Moreover if $G_i^{\Gamma_{ij}} = G_i^{\Gamma'_{ij}}$, then

$$\gamma_i^{\Gamma_{ij}} = \gamma_i^{\Gamma'_{ij}}.$$

PROOF. i) This can be easily proved by Lemma 1-3.

ii) Put $\tilde{\gamma} = \gamma_j^{\Gamma_{ij}}(\gamma)$ and $\Gamma = \Gamma_{ij} + \gamma \mathbf{e}_i + \tilde{\gamma} \mathbf{e}_j$ for $\gamma \in G_i^{\Gamma_{ij}}$. Then $\gamma > 0$ and $\tilde{\gamma} > 0$. First we will show $\tilde{\gamma} \in G_j^{\Gamma_{ij}}$.

Assume $\tilde{\gamma} \notin G_j^{\Gamma_{ij}}$.

 $\begin{array}{ll} \underline{case} & \Delta_{j}(\Gamma_{ij},\gamma) \neq \emptyset \ (i.e.,\Gamma \in V^{(n)}) \\ \text{By } \tilde{\gamma} \notin G_{j}^{\Gamma_{ij}}, \text{ we have } [\{\Gamma_{ij} + \tilde{\gamma}\mathbf{e}_{j}\} - \mathbf{e}_{j}, \{\Gamma_{ij} + \tilde{\gamma}\mathbf{e}_{j}\}] = 1. \text{ Then, by } *_{n} - 1), \\ & [\{\Gamma - \mathbf{e}_{i}\} - \mathbf{e}_{i}, \{\Gamma - \mathbf{e}_{i}\}] = [\Gamma - \mathbf{e}_{i}, \Gamma] = 1. \end{array}$

On the other hand $[\Gamma - \mathbf{e}_i, \Gamma] = 1$ by # ii-b).

Thus, by Lemma 1-1 A), we have

$$[\{\Gamma - \mathbf{e}_i\} - \mathbf{e}_i, \{\Gamma - \mathbf{e}_i\}] = 1.$$

But this contradicts to the definition # ii-b).

 \underline{case} $\Delta_j(\Gamma_{ij}, \gamma) = \emptyset$ $(i.e., \Gamma \notin V^{(n)})$ $\underline{deg}(\Gamma - \mathbf{e}_j) = 2g - 1$ and then $\Gamma - \mathbf{e}_j \in V^{(n)}$. We have

$$[\{\Gamma - \mathbf{e}_j\} - \mathbf{e}_i, \{\Gamma - \mathbf{e}_j\}] = 0.$$

On the other hand, by $\tilde{\gamma} \notin G_i^{\Gamma_{ij}}$ and $*_n - 1$,

$$[\{\Gamma_{ij} + \tilde{\gamma}\mathbf{e}_j\} - \mathbf{e}_j, \{\Gamma_{ij} + \tilde{\gamma}\mathbf{e}_j\}] = [\{\Gamma - \mathbf{e}_i\} - \mathbf{e}_j, \{\Gamma - \mathbf{e}_i\}] = 1.$$

Then, by Lemma 1-1 B),

$$[\{\Gamma - \mathbf{e}_j\} - \mathbf{e}_i, \{\Gamma - \mathbf{e}_j\}] = 1.$$

This is also a contradiction. Thus $\tilde{\gamma} \in G_i^{\Gamma_{ij}}$ in any case.

Next we will show $(\gamma_i^{\Gamma_{ij}})^{-1} = \gamma_i^{\Gamma_{ij}}$.

 $\underline{case} \quad \Delta_j(\Gamma_{ij}, \gamma) \neq \emptyset$

By Lemma A-2 and $*_n - 1$), we have

$$[\{\Gamma_{ij} + \delta \mathbf{e}_i + \tilde{\gamma} \mathbf{e}_i\} - \mathbf{e}_i, \{\Gamma_{ij} + \delta \mathbf{e}_i + \tilde{\gamma} \mathbf{e}_i\}] = 0$$

for any δ with $0 \le \delta \le \gamma - 1$, and $\Delta_i(\Gamma_{ij}, \tilde{\gamma}) \ni \gamma$. Thus we have

$$\gamma_i^{\Gamma_{ij}}(\tilde{\gamma}) = \gamma = (\gamma_j^{\Gamma_{ij}})^{-1}(\tilde{\gamma})$$

by the definiton of $\gamma_i^{\Gamma_{ij}}(\tilde{\gamma})$.

 \underline{case} $\Delta_j(\Gamma_{ij}, \gamma) = \emptyset$

Using Lemma 1-1 B) and # ii-a), we also have $\Delta_i(\Gamma_{ii}, \tilde{\gamma}) = \emptyset$ and

$$\gamma_i^{\Gamma_{ij}}(\tilde{\gamma}) = 2g - deg \Gamma_{ij} - \tilde{\gamma} = \gamma = (\gamma_i^{\Gamma_{ij}})^{-1}(\tilde{\gamma}).$$

iii)
$$G_i^{\Gamma_{ij}} \supset G_i^{\Gamma'_{ij}}$$
 and $\gamma_j^{\Gamma_{ij}}(\gamma) \ge \gamma_j^{\Gamma'_{ij}}(\gamma)$ follow from $*_n - 1$).

Next assume $G_i^{\Gamma_{ij}} = G_i^{\Gamma'_{ij}}$. Then $i(\Gamma_{ij}) = i(\Gamma'_{ij})$. By Lemma 1-3 and $*_n - 1$), we have

$$[\Gamma_{ij} + \alpha \mathbf{e}_i + \beta \mathbf{e}_j, \Gamma'_{ij} + \alpha \mathbf{e}_i + \beta \mathbf{e}_j] = deg \, \Gamma'_{ij} - deg \, \Gamma_{ij} \cdots \psi$$

for $\alpha \ge 0$ and $\beta \ge 0$.

Fix γ with $1 \leq \gamma \leq 2g - 1 - deg \Gamma'_{ij}$. Put $\tilde{\gamma}' = \gamma_j^{\Gamma'_{ij}}(\gamma)$, $\tilde{\Gamma} = \Gamma_{ij} + \gamma \mathbf{e}_i + \tilde{\gamma}' \mathbf{e}_j$ and $\tilde{\Gamma}' = \Gamma'_{ij} + \gamma \mathbf{e}_i + \tilde{\gamma}' \mathbf{e}_j$. Then $\tilde{\Gamma} \leq \tilde{\Gamma}'$ and $[\tilde{\Gamma}' - \mathbf{e}_i, \tilde{\Gamma}'] = 1.$

$$[\tilde{\Gamma} - \mathbf{e}_i, \tilde{\Gamma}'] = [\tilde{\Gamma} - \mathbf{e}_i, \tilde{\Gamma}' - \mathbf{e}_i] + [\tilde{\Gamma}' - \mathbf{e}_i, \tilde{\Gamma}'] = (deg \Gamma'_{ii} - deg \Gamma_{ij}) + 1 = [\tilde{\Gamma}, \tilde{\Gamma}'] + 1.$$

On the other hand, since

$$[\tilde{\Gamma} - \mathbf{e}_i, \tilde{\Gamma}'] = [\tilde{\Gamma} - \mathbf{e}_i, \tilde{\Gamma}] + [\tilde{\Gamma}, \tilde{\Gamma}'],$$

we have
$$[\tilde{\Gamma} - \mathbf{e}_i, \tilde{\Gamma}] = 1$$
 and $\gamma_i^{\Gamma_{ij}}(\gamma) \leq \tilde{\gamma}' = \gamma_i^{\Gamma'_{ij}}(\gamma)$.

Also we can have the following proposition from $*_n - 1$).

Proposition A-4. Let $\Gamma = \sum_{i=1}^{n} \gamma_i \mathbf{e}_i$ be in $V^{(n)}$. Let Γ_{kn} $(k \neq n)$ be the (n-2)-tuple that satisfies $\Gamma = \Gamma_{kn} + \gamma_k \mathbf{e}_k + \gamma_n \mathbf{e}_n$.

i) Assume $\gamma_i > 0$ for some $i \ (\neq n)$. Then

$$[\Gamma - \mathbf{e}_i, \Gamma] = 1$$
 if and only if $\gamma_n^{\Gamma_{in}}(\gamma_i) \leq \gamma_n$.

ii) Assume $\gamma_n > 0$. Then, for any $k \ (\neq n)$,

$$[\Gamma - \mathbf{e}_n, \Gamma] = 1$$
 if and only if $\gamma_k^{\Gamma_{kn}}(\gamma_n) \leq \gamma_k$.

This proposition and Proposition A-3 ii) imply that $D^{(n)}$ with $*_n$ is exactly decided by the system

$$\left\{ \left\{ \gamma_{n}^{\Gamma_{in}} \mid \left\{ \gamma \mid 0 \leq \gamma \leq 2g - 1 - deg \, \Gamma_{in} \right\} \right.$$

$$\left. \rightarrow \left\{ \gamma_{n} \mid 0 \leq \gamma \leq 2g - 1 - deg \, \Gamma_{in} \right\} \right\} \mid \Gamma_{in} \in V^{(n)}, 1 \leq i \leq n - 1 \right\}.$$

A-II

Let $D^{(n)}$ be as before, but we do not assume the condition $*_n$ on it. Regarding $D^{(n-1)}$ as the subgraph of $D^{(n)}$ by the natural way (i.e., $(\gamma_1, \ldots, \gamma_{n-1}) \leftrightarrow (\gamma_1, \ldots, \gamma_{n-1}, 0)$), and assume that $D^{(n-1)}$ is equipped with the condition $*_{n-1}$. We will investigate how we can build up $*_n$, which induces the given $*_{n-1}$.

DEFINITION A-5. i) Let Γ_{in} and Γ'_{in} be as in Definition A-1. We define a subset $\tilde{G}_{i}^{\Gamma_{in}}$ of $\{\gamma \mid 1 \leq \gamma \leq 2g-1-deg \Gamma_{in}\}$ by

$$\tilde{G}_i^{\Gamma_{in}} := \{ \gamma \mid [\{\Gamma_{in} + \gamma \mathbf{e}_i\} - \mathbf{e}_i, \{\Gamma_{in} + \gamma \mathbf{e}_i\}] = 0 \text{ by } *_{n-1} \}.$$

If $\Gamma_{in} \leq \Gamma'_{in}$, then we can see from $*_{n-1} - 1$) that

C-0)
$$ilde{G}_{i}^{\Gamma_{in}} \supseteq ilde{G}_{i}^{\Gamma_{in}'}.$$

ii) Assume that there is a system of maps

$$\left\{ \tilde{\gamma}_{n}^{\Gamma_{in}} : \left\{ \gamma \mid 0 \leq \gamma \leq 2g - 1 - \deg \Gamma_{in} \right\} \right.$$

$$\left. \rightarrow \left\{ \gamma \mid 0 \leq \gamma \leq 2g - 1 - \deg \Gamma_{in} \right\} \mid \Gamma_{in} \in V^{(n)}, 1 \leq i \leq n - 1 \right\}.$$

satisfying

- $\alpha) \ \tilde{\gamma}_n^{\Gamma_{in}}(\gamma) = 0 \quad \text{if} \quad \gamma \notin \tilde{G}_i^{\Gamma_{in}}.$
- β) $\tilde{\gamma}_{n}^{\Gamma_{in}}$ is an injective map from $\tilde{G}_{i}^{\Gamma_{in}}$ into $\{\gamma \mid 1 \leq \gamma \leq 2g 1 deg \Gamma_{in}\}$.

Define a map $\tilde{\gamma}_i^{\Gamma_{in}}$ on $\{\gamma \mid 0 \leq \gamma \leq 2g - 1 - deg \Gamma_{in}\}$ by

$$\tilde{\gamma}_i^{\Gamma_{in}}(\gamma) = (\tilde{\gamma}_n^{\Gamma_{in}})^{-1}(\gamma) \quad \text{for} \quad \gamma \in \tilde{\gamma}_n^{\Gamma_{in}}(\tilde{G}_i^{\Gamma_{in}})$$

$$ilde{\gamma}$$
) $ilde{\gamma}_{i}^{\Gamma_{in}}(\gamma) = 0$ for $\gamma \notin ilde{\gamma}_{n}^{\Gamma_{in}}(ilde{G}_{i}^{\Gamma_{in}})$.

Moreover they assume to be satisfied the following conditions (C-1), C-2), C-3)).

C-1) If $\Gamma_{in} \leq \Gamma'_{in}$, then

$$\tilde{\gamma}_n^{\Gamma_{in}}(\gamma) \ge \tilde{\gamma}_n^{\Gamma_{in}'}(\gamma)$$
 on $\{ \gamma \mid 0 \le \gamma \le 2g - 1 - deg \Gamma_{in}' \}$.

(N.B. C-1) is equivalent to $\tilde{\gamma}_{n}^{\Gamma_{in}}(\gamma) \geq \tilde{\gamma}_{n}^{\Gamma_{in}'}(\gamma)$ on $\tilde{G}_{i}^{\Gamma_{in}'}$ by C-0), α) and β).)

C-2)
$$\tilde{\gamma}_{i}^{\Gamma_{in}}(\gamma) \geq \tilde{\gamma}_{i}^{\Gamma'_{in}}(\gamma)$$
 on $\{\gamma \mid 0 \leq \gamma \leq 2g - 1 - deg \Gamma'_{in}\}.$

(N.B. C-2) is equivalent to

$$\begin{cases} \tilde{\gamma}_{n}^{\Gamma_{in}}(\tilde{G}_{i}^{\Gamma_{in}}) \supset \tilde{\gamma}_{n}^{\Gamma_{in}'}(\tilde{G}_{i}^{\Gamma_{in}'}) \\ \text{and} \\ \tilde{\gamma}_{i}^{\Gamma_{in}}(\gamma) \geq \tilde{\gamma}_{i}^{\Gamma_{in}'}(\gamma) \quad \text{on} \quad \tilde{\gamma}_{n}^{\Gamma_{in}'}(\tilde{G}_{i}^{\Gamma_{in}'}). \end{cases}$$

In fact, if C-2) holds and there exists $\gamma \in \tilde{G}_i^{\Gamma'_{in}}$ satisfying $\tilde{\gamma}_n^{\Gamma'_{in}}(\gamma) \notin \tilde{\gamma}_n^{\Gamma'_{in}}(\tilde{G}_i^{\Gamma_{in}})$, then $\tilde{\gamma}_i^{\Gamma'_{in}}\tilde{\gamma}_n^{\Gamma'_{in}}(\gamma) \leq \tilde{\gamma}_i^{\Gamma_{in}}\tilde{\gamma}_n^{\Gamma'_{in}}(\gamma) = 0$ by γ). Hence $\gamma \leq 0$. This is a contradiction.

C-3) For $\Gamma = \sum_{i=1}^{n} \gamma_i \mathbf{e}_i \in V^{(n)}$ and $1 \le k, l \le n-1, \Gamma_{kn}$ and Γ_{ln} are as in Proposition A-4. Then

$$\gamma_k < \tilde{\gamma}_k^{\Gamma_{kn}}(\gamma_n)$$
 if and only if $\gamma_l < \tilde{\gamma}_l^{\Gamma_{ln}}(\gamma_n)$.

Now we put the weight 0 or 1 on each edge in $E^{(n)}$ according to the following set R of rules $R1), \ldots, Rn$.

$$R-i$$
) $(i=1,\ldots,n-1)$ Let $\Gamma=(\gamma_1,\ldots,\gamma_n)\in V^{(n)}$ with $\gamma_i>0$.

$$[\Gamma - \mathbf{e}_i, \Gamma] = 1 \quad \Leftrightarrow \quad \tilde{\gamma}_n^{\Gamma_{in}}(\gamma_i) \leq \gamma_n.$$

R

$$R-n$$
) Let $\Gamma=(\gamma_1,\ldots,\gamma_n)\in V^{(n)}$ with $\gamma_n>0$.
$$[\Gamma-\mathbf{e}_n,\Gamma]=1 \quad \Leftrightarrow \quad \tilde{\gamma}_k^{\Gamma_{kn}}(\gamma_n)\leq \gamma_k \quad \text{for some } k\neq n.$$
 $(\Leftrightarrow \quad \tilde{\gamma}_k^{\Gamma_{kn}}(\gamma_n)\leq \gamma_k \quad \text{for all } k\neq n \text{ by C-3})).$

Because of C-3), the weight of each edge is well defined by R - i).

DEFINITION A-6. $(D^{(n)}, R)$ denotes the graph such that each edge has weight 0 or 1 according to R), and define $G_i^{\Gamma_{ik}}$ and $\gamma_k^{\Gamma_{ik}}(*)$ by the same way as in Definition A-1.

(i.e., Let $\Gamma = (\gamma_1, \dots, \gamma_n) \in V^{(n)}$ and put $\Gamma = \Gamma_{ij} + \gamma_i \mathbf{e}_i + \gamma_j \mathbf{e}_j$ for fixed i and j $(1 \le i, j \le n, i \ne j)$, then

$$G_i^{\Gamma_{ij}} := \{ \gamma \mid 0 < \gamma \le 2g - \deg \Gamma_{ij} - 1 \quad \text{and} \quad [\{ \Gamma_{ij} + \gamma \mathbf{e}_i \} - \mathbf{e}_i, \{ \Gamma_{ij} + \gamma \mathbf{e}_i \}] = 0 \text{ by } R \}.$$

For $0 \le \gamma \le 2g - deg \Gamma_{ij} - 1$, we define a non-negative integer $\gamma_i^{\Gamma_{ij}}(\gamma)$ by

i) For
$$\gamma \notin G_i^{\Gamma_{ij}}$$
, $\gamma_i^{\Gamma_{ij}}(\gamma) = 0$.

#' ii) For
$$\gamma \in G_i^{\Gamma_{ij}}$$
.

a)
$$\gamma_j^{\Gamma_{ij}}(\gamma) := 2g - deg \Gamma_{ij} - \gamma \ (\geq 1)$$
 if $\Delta_j(\Gamma_{ij}, \gamma) = \emptyset$

b)
$$\gamma_j^{\Gamma_{ij}}(\gamma) := \min\{\alpha \mid \alpha \in \Delta_j(\Gamma_{ij}, \gamma)\}$$
 if $\Delta_j(\Gamma_{ij}, \gamma) \neq \emptyset$,

where

$$\Delta_{j}(\Gamma_{ij},\gamma) = \{\alpha \mid [\{\Gamma_{ij} + \gamma \mathbf{e}_{i} + \alpha \mathbf{e}_{j}\} - \mathbf{e}_{i}, \{\Gamma_{ij} + \gamma \mathbf{e}_{i} + \alpha \mathbf{e}_{j}\}] = 1 \text{ by } R\}.\right)$$

LEMMA A-7. (1) For $1 \le i \le n-1$, we have

$$\tilde{G}_{i}^{\Gamma_{in}} = G_{i}^{\Gamma_{in}}, \quad \tilde{\gamma}_{n}^{\Gamma_{in}}(\tilde{G}_{i}^{\Gamma_{in}}) = G_{n}^{\Gamma_{in}}, \quad \tilde{\gamma}_{n}^{\Gamma_{in}}(*) = \gamma_{n}^{\Gamma_{in}}(*) \quad and \quad \tilde{\gamma}_{i}^{\Gamma_{in}}(*) = \gamma_{i}^{\Gamma_{in}}(*).$$

(2) Let $1 \le i, k \le n-1$ and $i \ne k$. For $\Gamma = \Gamma_{ik} + \gamma_i \mathbf{e}_i + \gamma_k \mathbf{e}_k \in V^{(n)}$ with $\gamma_i > 0$,

$$\gamma_k^{\Gamma_{ik}}(\gamma_i) \leq \gamma_k$$
 if and only if $[\Gamma - \mathbf{e}_i, \Gamma] = 1$.

PROOF. (1) By α) and β) in Definition A-5, $\gamma \in \tilde{G}_i^{\Gamma_{in}}$ is equivalent to $\tilde{\gamma}_n^{\Gamma_{in}}(\gamma) > 0$. And, by R - i) $(i \neq n)$, $\tilde{\gamma}_n^{\Gamma_{in}}(\gamma) > 0$ is equivalent to $\gamma \in G_i^{\Gamma_{in}}$. Thus $\tilde{G}_i^{\Gamma_{in}} = G_i^{\Gamma_{in}}(i \neq n)$. By R - i) $(i \neq n)$, we also have $\Delta_n(\Gamma_{in}, \gamma) = \{\alpha \mid \tilde{\gamma}_n^{\Gamma_{in}}(\gamma) \leq \alpha\}$. Then $\tilde{\gamma}_n^{\Gamma_{in}}(*) = \gamma_n^{\Gamma_{in}}(*)$ and $\tilde{\gamma}_n^{\Gamma_{in}}(*) = \gamma_i^{\Gamma_{in}}(*)$.

Next we will prove $\tilde{\gamma}_n(\tilde{G}_i^{\Gamma_{in}}) = G_n^{\Gamma_{in}}$.

Take $\gamma \in \tilde{\gamma}_{n}^{\Gamma_{in}}(\tilde{G}_{i}^{\Gamma_{in}}) = \gamma_{n}^{\Gamma_{in}}(G_{i}^{\Gamma_{in}})$. Then

$$\tilde{G}_{i}^{\Gamma_{in}} \ni (\tilde{\gamma}_{n}^{\Gamma_{in}})^{-1}(\gamma) = \tilde{\gamma}_{i}^{\Gamma_{in}}(\gamma) > 0.$$

Thus, by R-n,

$$[\{\Gamma_{in} + \gamma \mathbf{e}_n\} - \mathbf{e}_n, \{\Gamma_{in} + \gamma \mathbf{e}_n\}] = 0$$

and $\gamma \in G_n^{\Gamma_{in}}$.

Conversely, if $\gamma \in G_n^{\Gamma_{in}}$, then $\tilde{\gamma}_i^{\Gamma_{in}}(\gamma) > 0$ by R - n). And we have $\gamma \in \tilde{\gamma}_n^{\Gamma_{in}}(\tilde{G}_i^{\Gamma_{in}})$ by γ) in Definition A-5.

(2) Assume $\gamma_k^{\Gamma_{ik}}(\gamma_i) \leq \gamma_k$, and put $\Gamma' = \Gamma_{ik} + \gamma_i \mathbf{e}_i + \gamma_k^{\Gamma_{ik}}(\gamma_i) \mathbf{e}_k$. Then $[\Gamma' - \mathbf{e}_i, \Gamma'] = 1$. Let Γ'_{in} be the (n-2)-tuple satisfying $\Gamma' = \Gamma'_{in} + \gamma_i \mathbf{e}_i + \gamma_n \mathbf{e}_n$. Then, by R - i,

$$\gamma_n^{\Gamma_{in}'}(\gamma_i) \le \gamma_n.$$

Since $\Gamma'_{in} \leq \Gamma_{in}$,

$$\gamma_n^{\Gamma_{in}}(\gamma_i) \le \gamma_n^{\Gamma_{in}'}(\gamma_i)$$
 by C-2).

Hence $\gamma_n^{\Gamma_{in}}(\gamma_i) \leq \gamma_n$. We proved that $[\Gamma - \mathbf{e}_i, \Gamma] = 1$ if $\gamma_k^{\Gamma_{ik}}(\gamma_i) \leq \gamma_k$.

Conversely if $[\Gamma - \mathbf{e}_i, \Gamma] = 1$, then $\gamma_k \in \Delta_k(\Gamma_{ik}, \gamma_i) \neq \emptyset$ and $\gamma_k^{\Gamma_{ik}}(\gamma_i)$ is equal to $\min\{\alpha \mid \alpha \in \Delta_k(\Gamma_{ik}, \gamma_i)\}$. Thus $\gamma_k^{\Gamma_{ik}}(\gamma_i) \leq \gamma_k$.

By Lemma A-7(2) and R), we can see easily that the graph $(D^{(n)}, R)$ satisfies the condition $*_n - 1$).

Now we add the following assumption so that the graph $(D^{(n)}, R)$ satisfies $*_n - 2$).

C-4) Let
$$1 \le i, k \le n-1$$
, $\gamma_k^{\Gamma_{ik}}$ is a bijection from $G_i^{\Gamma_{ik}}$ to $G_k^{\Gamma_{ik}}$ so that
$$(\gamma_k^{\Gamma_{ik}})^{-1}(*) = \gamma_i^{\Gamma_{ik}}(*) \quad \text{on } G_k^{\Gamma_{ik}}.$$

THEOREM A-8. Assume that

$$(V^{(n-1)}, *_{n-1})$$
 and $\{\tilde{\gamma}_n^{\Gamma_{in}} \mid 1 \le i \le n-1, \Gamma_{in} \in V^{(n-2)}\}$

satisfy the conditions C-1) \sim C-4). Then the graph $(D^{(n)}, R)$ is equipped with $*_n$ which induces the given $*_{n-1}$.

PROOF. We only have to show that $*_n - 2$) is satisfied.

Let $\Gamma = \sum_{k=1}^{n} \gamma_k \mathbf{e}_k \in V^{(n)}$ satisfying $\gamma_i > 0$ and $\gamma_j > 0$ for some i and j $(1 \le i, j \le n, i \ne j)$. Let Γ_{ij} be the (n-2)-tuple satisfying $\Gamma = \Gamma_{ij} + \gamma_i \mathbf{e}_i + \gamma_j \mathbf{e}_j$. By $*_n - 1$) and $(\gamma_j^{\Gamma_{ij}})^{-1}(*) = \gamma_i^{\Gamma_{ij}}(*)(C-4)$ and γ)), the following two cases can be happened.

$$\uparrow) \begin{cases} i) & \left[\{\Gamma - \mathbf{e}_j\} - \mathbf{e}_i, \{\Gamma - \mathbf{e}_j\} \right] = \left[\Gamma - \mathbf{e}_i, \Gamma\right] \quad \text{and} \quad \left[\{\Gamma - \mathbf{e}_i\} - \mathbf{e}_j, \{\Gamma - \mathbf{e}_i\} \right] \\ & = \left[\Gamma - \mathbf{e}_j, \Gamma\right]. \end{cases}$$

$$\downarrow \uparrow) \begin{cases} ii) & \left[\{\Gamma - \mathbf{e}_j\} - \mathbf{e}_i, \{\Gamma - \mathbf{e}_j\} \right] \\ & = \left[\{\Gamma - \mathbf{e}_i\} - \mathbf{e}_j, \{\Gamma - \mathbf{e}_i\} \right] = 0 \quad \text{and} \quad \left[\Gamma - \mathbf{e}_i, \Gamma\right] = \left[\Gamma - \mathbf{e}_j, \Gamma\right] = 1. \end{cases}$$

(In fact, for example, if $[\Gamma - \mathbf{e}_i, \Gamma] = 1$ and $[\{\Gamma - \mathbf{e}_j\} - \mathbf{e}_i, \{\Gamma - \mathbf{e}_j\}] = 0$, then $\gamma_j^{\Gamma_{ij}}(\gamma_i) = \gamma_j$. As $\gamma_i = (\gamma_j^{\Gamma_{ij}})^{-1}(\gamma_j) = \gamma_i^{\Gamma_{ij}}(\gamma_j)$, $[\Gamma - \mathbf{e}_j, \Gamma] = 1$ and $[\{\Gamma - \mathbf{e}_i\} - \mathbf{e}_j, \{\Gamma - \mathbf{e}_i\}] = 0$. This is the case \dagger) ii).)

†) implies the condition A) of Lemma 1-1.

Let $\Gamma = \sum_{k=1}^{n} \gamma_k \mathbf{e}_k \in V^{(n)}$ with $deg \Gamma = 2g - 2$. Then we have

$$[\Gamma, \Gamma + \mathbf{e}_i] = [\Gamma, \Gamma + \mathbf{e}_n] \quad \text{for } 1 \le i \le n - 1.$$

(In fact, $[\Gamma, \Gamma + \mathbf{e}_i] = 0$ is equivalent to $\gamma_n^{\Gamma_{in}}(\gamma_i + 1) = \gamma_n + 1$ by R - i). As $(\gamma_n^{\Gamma_{in}})^{-1} = \gamma_i^{\Gamma_{in}}$, we have $\gamma_i^{\Gamma_{in}}(\gamma_n + 1) = \gamma_i + 1$. This is equivalent to $[\Gamma, \Gamma + \mathbf{e}_n] = 0$ by R - n).)

†) and ††) imply The condition B) in Lemma 1-1.

When $\Gamma_{kn} = (0, ..., 0)$ (write O_{kn}) for $k \neq n$, the subset $\tilde{\gamma}_n(G_k^{O_{kn}}) = G_n^{O_{kn}}$ (Lemma A-7 (1)) of $\{\gamma \mid 1 \leq \gamma \leq 2g-1\}$ is uniquely determined whichever k

we may take (by C-3 and R-n)). We denote this set by \tilde{G} . Then $\tilde{G} = \{\gamma \mid \gamma \mathbf{e}_n \in V^{(n)}, [(\gamma-1)\mathbf{e}_n, \gamma \mathbf{e}_n] = 0\}$ and $\#\tilde{G} = \#(G_k^{O_{kn}}) = g$. This means that the condition C) in Lemma 1-1 is satisfied.

Remark A-9. The non-negative integer δ^{Γ_n} defined in §.1 can be re-defined by

$$\delta^{\Gamma_n} := \max\{\gamma_n^{\Gamma_{in}}(\gamma_i) \mid 1 \le i \le n-1\},\,$$

where $\Gamma = (\gamma_1, \dots, \gamma_n) = (\Gamma_n, \gamma_n) = \Gamma_{in} + \gamma_i \mathbf{e}_i + \gamma_n \mathbf{e}_n$ for $1 \le i \le n - 1$.

EXAMPLE A-10. Let $(V^{(3)}, *_3)$ be the graph in Theorem 3-3. Let $\Gamma = (\gamma_1, \gamma_2, \gamma_3) \in V^{(3)}$. Then $\Gamma_{23} = \gamma_1$ and $\Gamma_3 = (\gamma_1, \gamma_2)$. If $\gamma_1 = 2k - 1$ or 2k with $1 \le k \le g - 1$, then

$$G_2^{\Gamma_{23}} = G_3^{\Gamma_{23}} = \{1, 3, 5, \dots, 2(g-k) - 1\}$$

and

$$\gamma_3^{\Gamma_{23}}(\gamma_2) = \begin{cases}
0 & \text{if } \gamma_2 \text{ is even} \\
2(g-k) - \gamma_2 & \text{if } \gamma_2 \text{ is odd.}
\end{cases}$$

Then, for $(\gamma_1, \gamma_2) \in V^{(2)}$,

$$\delta^{\Gamma_3} = \begin{cases} 2g - 1 - \gamma_1 - \gamma_2 & \text{if } \gamma_1 \text{ and } \gamma_2 \text{ are odd} \\ 2g - \gamma_1 - \gamma_2 & \text{if } \gamma_1 \text{ is odd(resp. even)} & \text{and} \quad \gamma_2 \text{ is even(resp. odd)} \\ 0 & \text{if } \gamma_1 \text{ and } \gamma_2 \text{ are even.} \end{cases}$$

(In fact, if $\gamma_1=2k-1$ and $\gamma_2=2l-1$ $(0\leq k,l\leq g-1,\ k+l\leq g)$ then

$$\begin{split} \delta^{\Gamma_3} &= \max\{\gamma_3^{\Gamma_{13}}(\gamma_1) = 2(g-l) - \gamma_1, \gamma_3^{\Gamma_{23}}(\gamma_2) = 2(g-k) - \gamma_2\} \\ &= 2g - 1 - \gamma_1 - \gamma_2. \end{split}$$

If
$$\gamma_1 = 2k - 1$$
 and $\gamma_2 = 2l$ $(0 \le k, l \le g - 1, k + l \le g)$, then
$$\delta^{\Gamma_3} = \max\{\gamma_3^{\Gamma_{13}}(\gamma_1) = 2(g - l) - \gamma_1, \gamma_3^{\Gamma_{23}}(\gamma_2) = 0\}$$
$$= 2g - \gamma_1 - \gamma_2.$$

(See Proposition 3-7).)

References

- [1] E. Albarello, M. Cornalba, P. Griffiths and J. Harris, Geometry of Algebraic curves I, Springer-Verlag 1985.
- [2] M. Homma, The Weierstrass semigroup of points on a curve, Archv. der Mathematik 67, 337–348, 1996.
- [3] S. J. Kim, On the index of the Weierstrass semigroup of a pair of points on a curve, Archv. der Mathematik 62, 73-82, 1994.

Naonori Ishii Nihon Uiniversity Mathematical Division of General Education College of Science and Thechnology, 7-24-1, Narashinodai, Funabashi-shi, Chiba, 274 Japan