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A CERTAIN GRAPH OBTAINED FROM A SET OF
SEVERAL POINTS ON A RIEMANN SURFACE

By

Naonori IsHi1

Introduction

0-1. Let M be a compact Riemann surface of genus g>2, and let
Py,P,,...,P, be distinct points on M. We define the Weierstrass gap set
G(Pl,Pz,...,P,,) by

G(P15P27"-’Pn) = {(ylayZ""’yn) €N x -+ X NOH meromorphic
function f on M whose pole divisor (f), is yyP1 + P2 + -+ + ¥, Pu},

where Ny is the set of non-negative integers.

When n =1, G(P;) is the set of Weierstrass gaps at P;. One of the essential
differences between the case n =1 and the case n > 2 is that the cardinarity
# G(Py) is the constant g but #G(P;,...,P,) (n > 2) depends on the choice of
M and the set of points {P;,...,P,} on M.

Kim has given formulas for # G(P;, P,) and shown the following inequalities

(¢ + 39) (34> +9)
2 2 '
Moreover he has proved that the upper bound (3g* + g)/2 can be realized if and
only if “M is hyperelliptic and |[2P;| =|2P;| =g,” ([3]). The lower bound
(g% + 3g)/2 can be attained by taking general points P, and P, on arbitrary M.
This is stated in [I] without proof, and has been proved by Homma ([2]). He
also has translated Kim’s formulas into other practical ones, and added several
interesting remarks in the case where M is a curve defined over a field of
characteristic p > 0 ([2]). Through their works it seems to be helpful to use a
certain type of graph D" defined as follows.

< #G(P1,P) <

DEFINITION 0-2 (Riemann-Roch Graph). Fix positive integers g and n. Let
e; be the n-tuple (0,...,0,1,0,...,0) (ie., the i-th component of e; is 1) in N.
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For an element (y,,...,7,) € N#, we also write >, y;e;. Let ¥ denote the subset

{C=@n- ) 76N, 0<y + - +7, <291}
of Nj.
For I =3 _,yei€ V", define degI" by

degl' .= Z Vi

Let I'=3 ;7€ and I"=3_,y/e; be in V™. Then we write
I'<r if yj<y fori=1,2,...,n
Let E™ denote the subset
{(T—e)I|TeV®and T —e e VW)
of VW x V() where ' —e; = (y1,.--,7 = 1,...,7,) With T = (y1,...,%, -+, 7n)-
Let D™ denote the graph {V(™ E™} consisting of ¥ and E™ as a set of

vertices and a set of edges respectively. When I’ < T, any chain of successive
(degT — degT’) edges

Flrl, NI, oo, ..., I‘degl'—degl"'~lr‘

is called a path from I'' to I'. Of course these paths are not unique even though I
and I'’ are fixed, but we write I''T" for them abusively. Moreover, each edge is
labeled “0” or “1”, which is called the weight of the edge, and the labeling has
the following properties.

#n—1) Let T=3,7¢ and ' =3 ,5.¢; be in V™. Assume I >T and
y; = 7; > 0 with some i. If the edge (I' — ¢;)I" is of weight 1, then so
is the edge (I —e;)I.
*p)
*n —2) Let O =3,0e; and T =3, 7¢; be in V" with deg' = 2g — 1. The
number of edges of weight 1 (resp. 0) on any path OI' is g —1
(resp. g).

From now on, we will call the above type of graph (D™, *,) a Riemann-Roch
graph.

DErINITION 0-3. Define the gap set G™ of (D™, x,) by
G™ := {I" € Y™ |3i such that the edge (T — ¢;)T € E™ is of weight 0}.
H®™ denotes the compliment V\G™ of G™ in V™,
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REMARK. O = (0,...,0) e H®.

0-4. Let M and {Py,...,P,} be as before. Then the following facts on an
effective divisor E =y, Py + y,P> + -+ + y,P, are known:

1) if degE=7y,+---+y, =29~ 1, then I(E) = h°(O(E)) = g;

2) if P; is not a base point of the linear system |E|, then P; is not a base
point of any linear system '

[?IPI+372P2+"'+5;iPi+'°'+?nPnla

where 7, >y, (k=1,...,n) and §; = y;.

Identify each effective divisor E =3[ ,y,P; of degree <2g—1 with the
vertex I' = Y[ | y,€;, and give 1 to the edges (I" — ¢;)T" if and only if P; is not a
base point of [>_", v;P;|. Then we get a Riemann-Roch graph. Dy (Py,..., Py)
denotes this graph. Then the gap set G™ obtained from Dy (P, ..., P,) coincides
with the Weierstrass gap set G(P,...,P,) in O-1.

0-5. In this paper, we start studying Riemann-Roch graphs D™ and their
gap sets G™ in general (ie., they are not necessarily obtained from M and
{P1,..., Pu}).

In particular we will prove that

#G(”)z(n+g)—l
g

and there is a unique graph D™ satisfying # G" = (n " g) — 1, where (Z) =
g

a!/(a — b)'b! for integers a > b > 0 (Theorem 2-3).
About upper bounds of #G®, we calculate in case n =3, and show that

460 < g9(79*> + 69 + 5)
- 6

and there is a unique graph satisfying # G®) = g(7g° + 6g + 5)/6. Moreover this
graph is exactly equal to Dy (P, P2, P3), where M is hyperelliptic and P, P, P3
are satisfying [2P;| = |2P,| = |2P3| = g} (Theorem 3-9).

Finally we try to replace %,) with another set of conditions in order to study
a Riemann-Roch graph in detail(Appendix).

§1

Fix a Riemann-Roch graph (D™, x,). Then we can easily have the following
lemma. :
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LEMMA 1-1. The condition * —2) is equivalent to the following set
{A4),B),C)} of conditions.

A) Let T and T be in VW with T' > T"'. Evry path from T’ to T has the same
number of edges of weight 1.

We will write [U'T]| for the number of edges of weight 1 on a path T'T.

B) Let T,T' and T" be in VW with T' <T,I'' <T", and degT = degT" =
29 — 1. Then

[C'T") = [['T).

C) Let T =(2g —1)e; and O =(0,...,0) be in V",
Then
[OT =g - 1.

DerINITION 1-2.  For I' € V" define non-negative integers /(I') and i(T") by
I[(T):=[0T]+1(=1) and by i(I') := (') — 1 + g —deg I'(= 0) respectively.

Then we have:

LemMMA 1-3. If T and T’ are in V" satisfying degT" =29 — 1 and T’ <T,
then i(T"') is equal to the number of edges of weight O on a path T'T, and this
number does not depend on the choice of a path from T'' to T.

Let (DD x,_|) be the subgraph of (D, x,) obtained by identifying
(P1r--+yPny) € VO with (;,...,7,-1,0) € V™ and restricting *,) to V=D,
Then GV (resp. H" 1)) of this subgraph (D"~1 x,_ ;) is embedded in G
(resp. H™) of (D™, x,) by the same manner as above. We represent the element
of ¥V»=1) by I, (the index n of I, suggests that ', is obtained by omitting the
n-th coordinate of some element I" of V™). For I', = (y;,...,7,_;) € V1 and
? € No, (T, ) denotes (yy,---,7s-1,7) € Ng.

DerINITION 1-4. For T, = (y1,...,7,_1) € V"1, define a subset Ar, of N
by

Ar, := {6|0 € Ny, (T'»,6) e H"},
and define a non-negative integer 6'" by

5T {min{é |6eAr,} if Ar, #

2g —degT,(=1) if Ar, = .
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LemMA 1-5. Let Ar, and 6" be as above. Then:
i) o' satisfies 0 < 0™ <29 — 1 —degT,(< 29 —1) if and only if Ar, # &;
ii) if Ar, = &, then degT', >0 and 6'" =29 — degT, <29 —1;
iii) 6™ satisfies 6" > 0 if and only if T,y e G" V.
Moreover we have a surjective map

{Ta|Tne G" DY = {y(> 0)|(On,7) € G™}

defined by T, — (0,,6'"), where O, = (0,...,0)e V1),

Proor. i) This follows from the fact that Ar, # & is equivalent to
(Ty,0™) e v,

i) If Ar, = &, then degI', > 1. In fact, degI', = 0 means I', = O,. But O, is
in H#1 and 6% = 0. Therefore we get ii) by Definition 1-4.

iii) The first half of iii) follows from the fact that 6" =0 is equivalent to
(T,,0)e H® (ie., T, e H" D),

We will prove that the map in iii) is well-defined, that is, (0,,6"") € G™ for
I, e G,
Assume that there is a I', € V"~V satisfying

67" >0 and (0,,6™) e H®. coeeea1-5-1)

Then [(0,,6™) — e,, (0,,6™)] = 1.
Thus, by %, — 1), we have

{(Th,6") — e} — €, {(Tn,0™) —e&}] =1 e 1-522)
for all i satisfying y; > 0 and i # n.
case Ar, # I
As (T,,06™) e H"  we have
[(Ta,6™) — €1, (T, 6™)] = 1 coeenr1-5-3)

for all i satisfying 1 <i<n and y; > 0.
Define a subset ® of Ny by

0 := {6 e Ny |[(Ts,0) — e, (T',8)] = 1 for all i satisfying y; > 0 and i # n}.
By 1-5-3, ® 56" and ® # . Then we can define a non-negative integer 4 by

J := min{d € Ny |6 € ®}.
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On this 5, we have

[(Ty,d) — e, (I',0)] = 1 for all i satisfying 1 <i<nandy, >0. ----- 1-5-4)
(ie., d€Ar,.)
In fact, this is from the definition of ® when i=1,...,n—1.

If [(Ts,8) — €n, (Tn,0)] =0, then [{([4,8) —en} — e, {(Tn,0) —e,}] =1 for all i
satisfying i # n and y;, >0 by Lemma 1-1 A). Therefore 6—1€®, and this
contradicts to the definition of 4. Hence 1-5-4) is correct when i = n. By 1-5-4)
and the definition of ™", we have & > é'".

On the other hand, by Lemma 1-1 A), 1-5-2) and ([,,6™") e H™,

[{(Tay6™) — €0} — &, {(T, ™) —€,}] = 1

for all i satisfying y; > 0 and i # n.
Hence 6" —1€® and 6 <d™"—1. This is a contradiction. Thus we get
(On,6"") e G,

case Ar, =
We have 6" = 2g — degT, by Definition 1-4, and (T,,6"") —e, € V.
Assume

[{(I“mérn) - en} — €, {(rn75r") - en}] =1

for all i satisfying y, > 0 and i # n.
Then by the same way as in the case Ar, # J, we can find a positive integer o
satisfying 6 < 2g — 1 — degT,, and (T',,,6) € H™. This contradicts to Ar, = &J. So
there is an i satisfying

[{(Fnaar") - en} — €, {(rmérn) - en}] =0.
By Lemma 1-1 B),

{(Tn,6™) — &} — €n, {(Tn,6"") —e:}] = 0.
Then, by x, — 1),

[(0n,6™) — €4,(0,,6™)] =0 and (0,,6™) e G™.

Thus our map is well-defined.
Next we will prove the surjectivity of our map.
Fix (O,,7) € G"(y > 0). Define a subset A of Ny and a positive integer j, by

A:= {yl |(yla0"--70,)’) GH(n)}
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and by

_ [min{y |y ed} fA#Q
29—y if A=
respectively. i
Let [, = (7,,0,...,0) € ¥*~D. Let A and &' be as in [Definition 1-4.
We will show o' = .

case A#J
Since ([,,y) is in H®, we have ye A; . Now assume that y satisfies

o' = min{y’ |y’ € Ag } <.

Then, by *, — 1),

{(Tn,7) —en} —e1,{(Tn,7) —en}] = L. <o 1-5-5)
By 1-5-5), Lemma 1-1 A) and (I',,7) € H®, we have
{(Tn7) —e1} — €n, {(Tn,7) —e1}] = 1. ceee1-5-6)

Define

® = {yl ' [(YIaOa---,O’Y) —em(yl,o""ao,y)] = 1}

By 1-5-6), 7 —1e®, and we can define a positive integer 3| by 7] =
min{y; |y, € ®}. Then ] < # — 1. But (j,0,...,0,y) € H" by the minimality of
71 and Lemmal-1 A). This is a contradiction. Thus we get §'" = y.

case A= i i
If A; = (&, then 6" = 2g — deg T, = 2g — 7, = y by the definition of 6" and
71- Then it is sufficient to show Ar = .
If Ay # &, then there exists y’ such that ([,,y') e H®.
Because of y' <2g— 5, =y and %, — 1),

{(Ey) — e} — e {(Fry) — e} = 1.
By Lemma 1-1 B),
[{(f‘n’y) - el} — €y, {(fna )’) - el}] =1.
By ’the same argument in case A # (, there exists an integer ] satisfying

71 <7 —1 and (§1,0,...,0,7) € H®. This is a contradiction. Therefore we get
Ar, = Q. | -
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DEFINITION 1-6. Let Ty = (y,.-.,7,1) € V" V. Assume Ar, = 5. By the
definition of 6™, degT', +0'" = 2g. Hence the n-tuple (I',,6"") is not in V),
But we define i(I',,6™) and /(T,,6™")

by i(,,6"™)=0 and by I(,,6™)=g+1
respectively (See Definition 1-2).

Using the above notations we have the following equalities on # G,

THEOREM 1-7.

(1)
#GW = Y T+ Y iTne™M+ > o™

I,e H-1 I,eGr-1) I,eGr-1)

(2)

#GMW = > T+ Y ITwé™)— D degTy+(g—1)x # V=Y

I, eHm-1 I, eGn-b I,eVn-H
[ st _ (k2
=FZ_ I(T,) + }:_ (T, )—Zk .
€ Hm=1) r,eGr-1 k=0
n+2g—2
-1 .
+ (g )( 29— 1 )

Proor. (1) Take 'y = (y1,..., 7)€ V"D and y with 0 <y<2g—1—
degTy.

Suppose I', € H"=1 first. By *, — 1), we can see that (I',,y) € G™ if and
only if “y >0 and [(Tn,7) — e€n, (In,y)] =0".
Then, by Lemma 1-3,
#{y|(Th,y) € GM} =i(T,) for TI,eH"D, e 147-1)
Next suppose I', € G-,
If y>06"™, then [(T,,y) —ei,(Th,y)] =1 for i=1,...,n— 1. Thus we have
“Q < y <51“,,”
(T, y) € G™ if and only if { or
“p>06" and [(Tn,y-1),Tsy)]=0".



A certain graph obtained from a set of several 63

Therefore, by Lemma 1-3,

#{y|(Tu,7y) € GM} = i(T,,0"") + 6™ for T, e GV, eeen127-2)
Thus we have the equation (1) by 1-7-1 and 1-7-2.
29 —2
(2) This follows from I(T) = i([) + 1 + degT — g, # V=) = <"“2Lgﬁ 1 )

and

2g—1
Z degrnzik(n_'_lli—z). Ol

I,eVn-1) k=0

§2. The lower bound of # G"

In this section we will determine the lower bound of # G™, and show that
there is a unique graph (D™, x,) which attains the lower bound of #G®.
Let the notation be as in §1. First we will prove the following lemma.

LeMMA 2-1. Let T =(y;,...,7,) € V. Assume y; >0 and [ —e;, T[] =1
for some i. Then there exists T' = (yI,5,...,7.) € H" that satisfies T' <T and

i = Vi
ProoF. We may assume i = 1. Define

Yo = min{y | (71,7, V30> V) — €1, (V1> V5 V35, V)] = 1}
for the above I' = (¥;,73,¥3s--+» Vn)-

Then
[('yl’yé)y& see ayn) — €, (yl’yé?y% s vyn)] = L
In fact, if

(V1,725 30> V) —€2, (P15 72573 -- 5 P0)] = 0,

then [{(yla yé, V3s-ees Yn) - e2} — €1, {(J}la yé) V3. ayn) '_eZ}] =1
by Lemma 1-1 A). This contradicts to the definition of .

Next define
y; = mln{y! [(ylayé’yayM""yn) _el’(yl’yé7y7y4)" 'ayn)]

= [(YI’ yé’ ViVayr - yn) — €, (yhyé? Vi Vay .- 7yn)] = 1}
Then

(715725 735 Vas -5 Vn) — €35 (P15 72,73 Yy -+ P)] = 1
by the same reason as above. After repeating these procedures, we get the I'’ that
we want. ’ |
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Next we will define a filtration of G™ by

el =A(()") DA(ln) DAg") S ... DA}C") S .. DAS’L)I :Aé") =g,
where
AP = {T|i) = k,T e G"}.

For each k, define subsets B"” and C\" of A" by

B” = {T'|T = (Ty,7) € G", T, e H" Y i(T) > k}
and by

C" = {T'|T = (0,,7) € G,i(T) = k}

respectively, where 0, = (0,...,0) € H""), Then we have

Bgr) - B(ln) S Bgn)_“ - B/(c") S ... 3321—)1 :Bé"),

ooy ocl s . oW 5

and

AP S B S (k=0,...,9).

a™ and b denote #A™ and #B{" respectively.

Then we have the following lemma.

Lemma 22, i) B > g—k for k=0,...,q.
Moreover b;c") =g —k if and only if B;c") = C,(C").

i1) The following conditions are equivalent:

a) bJ) = g;

b) b =g—k for k=0,1,...,g;

c) i(T,) =0 for Ty e H*V\{0,};

d) take T, € V"=V with degT, = 2g — 1. Then the first g edges of any path
from O, to T, are of weight 0,

e) G" ) ={T,e V"1 |0<degl, <g}.

PROOF. i) By Lemma 1-3, we have #C" =g—k (k=0,...,g). Then i)
follows from Bi(n) o Ci(n) (k=1,...,9).
ii) a) < b)
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We can easily see that
b’=g & BY=c
& BY=Cc"k=0,...,9)

& b =g-k

b) & ¢
If 5" >g—k for some k, then there exists I' = (T',7) € G™ with T, e

H®=D\{0,} and i(T') > k. By Lemma 1-3, i(T’,) > k + 1. Thus we have b) < ¢),
and vice versa.

c) = d)

Suppose c) to be true. Fix a path 0,1, with degT, = 29 — 1. We denote this
path by 2. Take a vertex I'y = (y1,---,%---,¥n_1) # 0, on 2 that satisfies
yi >0 and [[,—e;,[,]=1 for some 1 <i<n-1. Then there exists I, =
)y ¥l yh_ ) € H®D\{0,} that satisfies I, < T, and y;, = y/ by Lemma
2-1.

Since i(I'’) =0 by c), there is no edge of weight 0 on any path I'.T,. So
there is no edge of weight 0 between I', and T, on 2. By x, —2) we get d).

d) =e) »
By *, —2), d) implies that I', € G~V if and only if degT, < g.

e) = c)
e) is equivalent to the fact that I', € H"~D\{0,} if and only if deg[’, > g. This
implies c). O

Now we will show the main theorem of this section.

THEOREM 2-3. i) For n =2, the following conditions are equivalent:

(1) G" ={I'|0 < degT < g};

(2) a(()") = #G" is minimal for all types of (D™, x,);

(3) For each k(=0,...,g—1), a,(c") is minimal for all types of (D™, x,).
ii) The lower bound of #G™ is .

(n+g) Y
g

which is only attainable by a unique graph defined by (1).



66 Naonori IsHII

PrOOF. Let (D™, x,) be an arbitrary Riemann-Roch graph, and let
(D(” D x,_1) be the subgraph of it as before. Since i(I',) =k for I, e
=D\ 4 k+1)) we have

#{y>0|[(Tn,y—1),(Tn,y)] =0,degT, +y<2g9—1} =k.

Of course (I',y) € G™ if [(Ty,y—1),(Ts,7)] =0. Watching (I',,0) e G for
I',e G" U we have

#{y=0]i(Tny) 20,(Tny) € G} = #{y|(Tn,y) eGP} 2k +1

#{y>0]i(Tny) = 1,(Tn,y) e G"} > k

#{y>0|i(Tn,7) 2 k,(Tn,y) €GP} > 1
for Ty e Ay \A(r)  (k=0,1,...,g—1).
By using I for k=0,...,9g—1, we have
a > (@ - agn—”) n z(agn~l> - agn-”) o

(n) > (aln 1) __agn—l)) + (g 2)(a(n 1 (n 1 )+( 1) (n 1) +b(n

I a" a4 +aV + b (k=0,1,...,9-1).
ReMARK. All the equalities of II) hold if and only if all the equalities of Ij
hold for all T, e G D,

To prove the theorem we use the follwing Lemma.

LEmMMA 2-4. (1) b(()"),...,b((;'_)1 are minimal if and only if

G" D ={I,|0 < degT, < g}.

(2) Assume GV = {TI',|0 < degT, < g}. Then the following conditions are
equivalent:
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a) the first equality in each I(0 <k <g—1) holds;
b) all the equalities in each I,(0 <k < g—1) hold,
c) 5‘“ —g+1—degr for T e G 1,

d) G ={T'|0 < degT < g}.

PROOF. (1) This follows from Lemma 2-2.
2) b) = ¢) :
Assume o™ > g+1—degT, for some T, e A" N4 V. i(T,) = k > 0. By
Lemma 2-2 d), i(T'y) =g — degT,.
Hence there is 7 satisfying

[(Tn,7—1),(Tn,7)] =1 and 0<j<g+1—degl,.
But ([, 7) € G™ because of ™" > 7. Then

#{y|i(Tn,7) = 0,(Tn,7) € GM} > k +2.

c)=>d)
Suppose ¢) to be true. By Lemma 1-5 iii) and {"" |, e G" D} = {1,..., g},
we have

(On,k)e G™ if andonlyif 1<k<g.
First we will show
C—e,Il=1

for T = (y1,...,7,) € V" with degT" >g+1 and y, > 0.
If y,>g+1, then [ —e,,I[]=1 by (0,7, € H" and %, —1). When y, <g,
take T’ = (],...,7'_,7) = (T,y,) with degT'=g+1 and I’ <T. Then
degT! < g, T € GV and y, =g+ 1 —degI"’ =™ by c). Also by *, — 1) and
the definition of 6=, we have [ —e,, '] = 1.

Next we will show

T —e,T=1

for T = (y1,...,7,) € V" with degT">g+1 and y, > 0.

When y; > g+ 1,[I —e;,I] =1 as above. When y; < g, take I'" = (y,,75,...,7},)
satisfying T" <T and degT’' =g+ 1. Put I' = ([,,y.), then y. = 6 and
[[" — e, '] =1. Thus we have [ —e,,I]=1 by x, —1).

This argument is also effective when the index 1 is replaced with i # 1. Thus if T
satisfies degI" > g+ 1, then [T —e;, | =1 (0 <i <n).

The implications d) => a) and a) = b) are easy. O
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PROOF OF THEOREM 2-3. 1)
We prove this theorem by induction on n.
Now we assume that

a" Yk =0,...,g— 1) are minimal if G"D = {T,,|0 < degT, < g}....%n_1)
By our assumption *,_;) and Lemma 2-4 (1), the right hand side of each
inequality of II is minimal if and only if

G" D ={I,|0 < degT, < g}.

Moreover, when G"~1) = {T,,|0 < deg T, < g}, all the equalities of II hold if and
only if

G" ={I'|0 < degT < g}
by Lemma 2-4 (2) and Remark before Lemma 2-4.
Thus a”(k =0,...,g — 1) are minimal if and only if
G™ = {T'|0 < degT < g}
under the assumption x,_;).
When n=2,#G") =g and @) =g—k (k=0,...,g— 1) for any type of
DY), Then the assumption %, is satisfied, and we get Theorem 2-3. O

ExamMPLE 2-5. Let M be a hyperelliptic curve and Py, P,,...,P, be non-
Wierestrass points satisfying |P; + Pj| # gi(1 < i, j <n). Then

Gp(Py,...,Py) ={T'|0<degT < g}.
In fact this can be easily seen by the same calculation done by Kim([3]) in case
n=2.
§3. The upper bound of # GO
In this section we determine the upper bound of # G®.

Let (D™, x,) be a Riemann-Roch graph and let (DY «,_;) be its subgraph
as in §1. The subsets of vertices

v 5 pe-l) 5 5 p)

G" 5 G 5 . 5 60

and

H(") o) H("’_l) D oeee D H(l)
are also as in §1.
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Define
Gi:={x|xe;e G™} and H;:={n|0<n<2g-1}\G;

respectively.
ReEMARK. H; and G coincide with H() and GV respectively.

LEMMA 3-1. Fix a Riemann-Roch graph (D@, x;). For o€ VOV, let B(«) be
the non-negative integer 6% defined in 1-4

(ie ﬂ(a)zéaz{min{ﬂl(a,ﬁ)eH(Z)}(gzg—l-—a) lf{ﬂl(a,ﬁ)eH(Z)};eg)
h 29~ o if {Bl(,p)eHP} =0

Then

i) For a € Gy, B(a) is in G. Moreover the map B(*) : Gi — G, defined by B(a)
is one to one.

it) For a € Gy, we have

{(Bll(@=1,8),(2,8)] =1} # & if and only if {B]|(x,8) e H?} # &

and :

ﬁ(a>:{min{ﬁ| (= 1,B), (@ B)] = 1}(< 29— 1—a) if {B|[(x=1,B), (o, B)] =1} %~
2g—a if {Bl{(x=1,p), (0, B)]=1}=0.

ii1) For B e G,, we have
{2][(0,f=1), (B =1} # & if and only if {a|(x,f) e HP} # &}

If a(*) : G, — Gy be the inverse map of B(x) in i), then

min{a| (2, 8) e H®} if {a|(a,) e HO} # &
O((ﬂ) =x)

29— B if {o|(x,p) e HO} = ¥
_ {min{au(a,/f—l),(a,ﬂ)]=1} if {a|l@wB—1),@B) =1} # &
129 -8 if {a|[(B—1),(08)] =1} =g

Proor. i) This follows from Lemma 1-5 iii) and #G; = #G, = ¢.
i1) Fix a € G.

Put
ﬂ’ — {mln{ﬂ| [_(ot—l,,b’),(oc,ﬂ)] = 1}(5 2g— 1 - 0() if {ﬁl [(d - l,ﬂ)a (avﬂ)]=1} # g
2g—o ‘ if {ﬁl[(a_l,ﬂ)a(aaﬂ)]=1}=Q~

Assume {B|[(x—1,8),(«,p)] =1} # .
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Then we have
[(a, 8" = 1), (@, 8')] = 1.
In fact, if [(a, 8 —1),(a,B)] =0, then
(=1, = 1),(0,p' = )] =1
by 1-1 A). This contradicts to the definition of B’. Thus
pre{Bl(xp)e H?}.

Consequently we have

{Bl(@peHD}#F and f' > p).
Conversely, if {f]|(a,f8) € H?} # &, then obviously
{Bll(«=1,8), (@B =1} #F and B’ <p(a).

Thus we have

{BI[(x=1,8),(0,)] =1} # & if and only if {B|(x,8) e H?} # &,
and
Bla) ="
iii) Fix 8 € G,. By the same way as in ii), we have
{«|[(,8—1),(x,B)] =1} # & if andonlyif {a|(xp) e H?} # &,

and

min{«| [(e, f — 1), (%, B)] = 1} = min{«| (o, f) € H?}
if {a|[(2,8—1),(a, )] =1} # .

Thus we get the second equality *x).
Next we will show the first equality x*).

Assume {x|[(,8 — 1), (0, B)] = 1} # .
Put

& = min{a| (¢, 8 — 1), (o, B)) = 1} = min{a| (, B) € H(z)}'

Then & <2g—1—f and f(a) < p.
Now assume f(a) < . Then

[(&— l’ﬁ_ 1),(&’ﬂ— 1)] =1
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by % — 1), and
[(@-1,p-1),(@a— 1B =1
by Lemma 1-1 A) and (&,8) e H®.
This contradicts to the minimality of & Thus we have (&) = 8 = B(«(B)). By 1)
of this lemma we get & = a(f).
Next assume that {o|[(a,f—1),(e,B)]=1}=. If 29— 1—a(B) =B =
p(a(p)), then (a(B),B(x(B))) € H?. This contradicts to the above assumption.

Since a(f) + f(x(B)) <29 (Lemma 1-5), a(B) =29 — B. 7
Then we get the equality *). O

REMARK. At first the map B(*) was introduced by Kim in case D® =

M(P’ Q)

Formula (2) in Theorem 1-7 for n = 3 and n = 2 can be written as follows.

LEmMMmaA 3-2 (Corollary of Theorem 1-7).
(1) Let («,B) € V. We write 6*¢ for (o, ) € VP. Then

D S R S O e

(a,8)e H® (0,8) eGP

where 1(a, $,0%) =g+ 1 if o+ B +% =2g.
(2)

@ _ g(g - Bd’+9)
#G + >« B <=

dEG[

where l(a,f(o)) =g+ 1 if a+ B(a) = 2g.
Moreover # G = (3g% +g)/2 if and only if B(a) =2g — « for all o€ Gy.

ProOF. (2) This follows from {I(a)|ae HV = Hi} ={1,2,...,4}. O

DEFINITION 3-3. Let (D) x3) be a Riemann-Roch graph. (D®, x,) is the
subgraph of (D®), x3), and (D", ;) is the subgraph of (D@, x,) as before.
Define subsets S,7 and R of V® as follows.

S:={(a,p) e GP|(a,B,7) € GO forany y <2g—1—a—p}.
T::{(u,v)eV(Z)|0£u—|—v329—2,[(u,v),(u+1,v)]=[(u,v),(u,v+1)]=O}.
R:={(a,b) e V|0 < a+b < 2g-2,[(a,b,2g—2—a—b), (a,b,2g—1—a—b)] =0}.

(N.B.,, (u+1,v) € G, and (u,v+1) € G, for (u,v) e T).
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LEMMA 3-4.

(1)

R={(a,b) e V?|[(a,b,29 —2 —a—b),(a,b,2g — 1 — a — b)] = 0}
= {(a,b) e V?|[(a,b,2g —2 —a—b),(a+1,b,2g — 2 —a—b)] =0}
= {(a,b) € V?|[(a,b,29 —2 —a —b),(a,b+ 1,29 — 2 — a — b)] = 0}.

(2)

S ={(o,8) € G?|I(,$,6%) = g+ 1} = {(2,8) e G?P |67 =29 — o« — f}.

Proor. (1) This follows from Lemma 1-1 B).
(2) This follows from the definition of S and Definition 1-6. O

By Lemma 3-4 (1), [(a,b),(a,b+1)] =[(a,b),(a+1,b)] =0 for (a,b) e R.
Then there is a natural inclusion ¢: R — T(i.e., (u,v) = ¢(a,b) = (a,b)) and
#R< #T.

To estimate the cardinarities of S and 7, we use the following number
r(f(x)) defined by Homma.

DEFINITION 3-5 (Homma [2]). Let Gy ={a1 <ox <--- < a,}, and let G, =
{B1 < By <---<pB,}. Define a non-negative integer r(f(x)) by
r(B(*)) == #{(i, /) | <oy (ie,i<j) and Bla) > Bloy)}.

LEMMA 3-6. Let (D®) x3) be a Riemann-Roch graph, and let S and T be as
above. Then

(1)
T={uv)eVPlu+1eG,v+1€G,0<u+v<2g-2,pu+1)>v+1
and a(v+1)=u+1}.
(2)

#T = (B(s)) + #(G1) = r(p() +9 < 0L

And the equality #T = g(g+ 1)/2 holds if and only if

B(o) =Byr1-» 1<i<g
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(3) #S <g(g+1).
If the equality #S = g(g+ 1) holds, then
G=G=G;={1,3,5,...,29g—1} and p(a)=2g9—a.
In this case, (D\?), ;) is defined by
“lu—1,0v),(u,v)] =0 if and only if wu is odd”
and
“l(u,v—1),(u,v)] =0 if and only if v isodd.”
Therefore we have G@ = {(u,v) € V@ |uor vis odd} and l(a,B(a)) =g+ 1 for
o € G.
Proor. (1) By Lemma 3-1 ii),
“l(u,v),(u+1,v)] =0 if and only if v < p(u+1)”
for u+ 1€ Gy, and by Lemma 3-1 iii),
“l(u,v), (u,v+1)] =0 if and only if u < a(v+1)”

for v+ 1€ G,. Thus we get (1).

(2) For (u,v)eT,put x=u+1and y=v+1. Then xe G, y € G, f(x) >
y and oa(y) = x. Since a(*) = !(*) on G, there exists a unique x’ € G; satis-
fying f(x’) = y and a(y) = x’. Thus

#T = #{(x,y)|x€ G, ye G2, y<B(x) and x<a(y)}
+ #{(x, y) | x € G, B(x) =y}
= #{(x,x") | x€ G1,x" € G1,x" > x,B(x") < B(x)} + #{(x,B(x)) | x € G},

and we have #T =r(f(x)) +g.
Homma ([2]) has shown that

0 < r(B(x) < g(gz— D

and

“r(p(x)) = g_(gT—_I_) if and only if B(o) =B, (1 <i<g)”.

Thus we get (2).
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(3) Assume
[(a— 17ﬁvzg_ 1 —oc—ﬁ),(oz,,B,Zg— 1 _a_ﬂ)]
= [(a’ﬂ_ 1,29_ 1 _a_ﬂ)v(aaﬁ’zg_ 1 —*{X—ﬁ)]

=1

for (a,p) € S.
Let

Yo = mln{yl [(a - l’ﬁa )’)>(a7ﬂa Y)] = [(Ot,ﬂ— 1’7)7 (a’ﬂa }’)] = 1}

Then y, <29 -1, and [(o,8,79— 1),(®,8,7%)] =1 by Lemma 1-1 A) and the
minimality of y,. This implies that (a,f,7,) is in H®. This contradicts to
(o, ) € S. Then for (a,f) € S, we have

[(0—1,829—1—a—p), (8,29 -1 —a—f)]=0
b) or
[(,f-1,29-1—a—f),(p,29—1-a—p)]=0.
b) means that
(a—1,8) or (¢,f—1) isinR for (a,f) € S. ceee23-6-1)
On the other hand, by Lemma 3-4 (1) and %3 — 1),
(a+1,b) and (a,b+1) areinS for (a,b) € R. ceeee-3-6-2)

Then we can consider the one-to-two correspndence (a,b) — {(a+1,b),(a,b+1)}
from R to S by 3-6-2), and #S <2 Xx #R by 3-6-1). Therefore, by (2) of
this lemma, we have

#S<2x #R<2xX #Tszxg(L;_l_)zg(gH).
Thus we get the former half of (3).
Moreover we have
o) #T= #R=29*+1
2

#S=g(g+1) if and onlyif b) one and only one of (a—1,8) or («,f—1)

is in R for (o, B) € S.

Now assume #S =g(g+ 1), and let G3 = {y; < ,,...,<y,}. We will show that
o + B(e;) (i=1,...,g) is constant.
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Claim

o + Blo) = a(By_iv1) + Byois1

=29 —y,+1 foralli

Proor oF CLamM. By Lemma 3-1 ii) and %3 — 1), we have
[(oy — 1, B(oy) — 1), (o, B(o;) — 1)]
= [(&; = 1, B(o) — 1), (o, B(e7) — 1)] = 0. rree e 3-6-3)

for j>i.
By (2) of this lemma, we have

B(oi) = Byr1-i > B(oy) = By, Wwith j > i
Since [(a; — 1, B(ey) — 1), (o — 1, B(e))] = 0,
(% — 1, B(0y) = 1), (s = L, B(wy))] =0 forj=i ~  -o-ee 3-6-4)

By 3-6-3) and 3-6-4) (a;—1,8(ey) —1)e T =R, and («;,B(xj)) —1) e S for all
j=1i. Since 29 —a—p=06%c Gy for (a,8) € S by Lemma 3-4(2), we have

29 —o; — (o) + 1€ Gz with j > i.
As o; < o; and f(oy) > B(oy) (j > i), we have
Ve =29 — 0g_ip1 — Blog_irk) +1 withk=1,...,i
In particular
71 =29 — ogir1 — B(og-i+1) + 1.
Then Claim has been proved.

Assume o;41 = a; + 1, for some i. By Claim, f(a;) = B(oiy1) + 1.
Then

(0, B(otir1) — 1) = (i1 — L, B(ei41) — 1) e T = R
and
(0 — 1, B(oti41)) = (& — 1, B(w;) — 1) e T = R.

But the condition b) of #S = g(g9+ 1) means that (a+1,b—1) is not in R if
(a,b) is in R. Then

o1 #;+1 and B #P;+1 foralli
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Since f(;) = B,_i+1, We also have
Gi={u=2%k-1|1<k<g—1}, G={f=2k—-1|1<k<g—1}

and f(a) =29 —a for a € G;.
Using Lemma 3-1 ii), iii) and *3 — 1), we get the graph (D@ x,) mentioned at
the end of (3). O

PROPOSITION 3-7. Assume #S =g(g+1).
Then (D®),*3) is defined by

) ( “ais odd and o+ B +y # 29— 17
[(a - l,ﬁa Y)v(aaﬂa y)] =0 lf and Only lf< or
\ “a+B+y=2g9—1 and B,y are even”,

B) ( “Bisodd and o + B+ y # 29— 17
[(a, = 1,9),(a,8,7)] =0 if and only ifﬁ or
\ “a+p+y=29 — 1 and a,y are even

and

?) “yisodd and a + f+y#29—1”

[(a’ﬁay_ 1),(a,ﬂ,)’)] =0 lfand onlyif or
“a+p+y=2g—1 and a,p are even’.

In this case,
S={(ap)|l1 <a+p<2g9-1and a+ f is odd}
and
GON\S = {(,B)|2 < a+ B <29 —2,a and B are odd}.
Moreover, 6 =2g—1 —o— B and l(a, B,6®P) = g for (a,B) € GO\S.

Proor. By Lemma 3-6(3) and the proof of it, we can see that
R=T={(o,p) € V@ |qand f are even,0 < a+f < 2g — 2},
S={(,f)|l <a+p <2g—2and a+ f odd}

and
GO\S = {(a,B)|2 <a+ B <29 —2,a and f are odd}.
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Then, by Lemma 3-4(1),
(OC - 1’ﬁ+ 1) € R and [(a - 17:3+ 1,2g—2~0€—ﬁ), (Ot,ﬂ—F 1,29 - 2—-0(—ﬁ)] =0

for (a,8) e GA\S.
By %3 —1),

[(OC - 1aﬂ, 7), (Ot,ﬁ, '}’)] =0 (i'e'a (Ot,ﬂ, ))) € G(3)) e 3'7'1)

for every y with 0 <y<2g—a—pf—2 and («,f) € GP\S. Therefore we get
6% >2g9—a—pB—1. Since (a, ) € GA\S and 6% <2g—a—p—1, we have

0% =29—a—pf—-1 and [(a,pB,6%) =y.

Then we get the latter half of this lemma.
Let « and B be odd and even respectively. If =29 —1—oa — >0, then

(«,8) € S and («,8,7) € GP). But [(o,8—1,7), (%, 8,7)] = (. 8,7 = 1), (%, 8,7)] =
1 because f and y are even. Then

[(a—laﬂ7y):(“>ﬂay)]=0 3'7'2)

for0<y<2g—-1-a-4.
Let both a and f be odd. If j =29 — 1 —a— >0, then («,f) € GA\S and
6% = 3. Hence (a,f,7) € H® and

[(d—l,ﬁ,y),(d,ﬂ,f)]':l. ""“3'7"3)

By 3-7-1), 3-7-2), 3-7-3) and %3 — 1), we get the statement o). ) can be proved
by the same way as in case «). The statement y) follows from «),*3 — 2) and
*3 — 1) D

LeEMMA 3-8. (1) The first term 3 5 gy [(o, B) of the equation of Lemma
3-2(1) satisfies

_9lg+D)g+1) |, Tuea{—H%B0)" + 1)}

(. 8) o -

(«p)  HO

(2) The second term E(aﬁ)eG(z) I(a, 8,0%%) of 3-2(1) satisfies

> lwp6%)<glg+1)+gx #G69,
(o) =G

and the equality holds if and only if #S = glg+1).
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(3)

ZaeGl {_l(avﬂ(a))z + l(d,ﬂ(d))}
2 k)

g(g+1)(g +5)
6

and the equality holds if and only if #S =g(g+1).

#GO®) < +gx #G? +

Proor. (1) Let

A=Z( > l(a,ﬂ)) and B=Z< > l(oc,ﬂ)).

aeH \ Bs.t. (af)e H? aeG \ B st. (af)e HD

Then
> lap)=A4+B
(f)e HO

We can calculate 4 and B as follows.

A=Y {I(@,0) + U0+ 1)+ +g}

ae HD

_ y el 4 Do+ 1)

ae HM

_Yidlg—k+1)(g+k)} glg+1D(2g+1)
2 6 '

B:Z( 3 l(a,ﬂ))
ae G \ Bs.t. (af)e HO

= 3 {le,B@) + (@, Ba) + 1) +--- + g}

ae G
_ Zacqu{=H2p()* + i p@)} g9 +1)
2 2

Adding 4 and B, we get the equation in (1).
(2) Splitting G® into two subsets S and G®\S, we have

Sl B = > @B+ D U« p,6%)

(2B)e G (ap)eS (2f) € GO\S

< #Sx(g+ D)+ (#G? — #8) xg

<g(g+1)+gx #G? (by Lemma 3-6 (3)).
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THEOREM 3-9. Let (DO, x3) be a Riemann-Roch graph, and let G be its gap
set. '
Then

< 6 y

and the equality holds if and only if (D®), x3) is the graph defined as in Proposition
3-7.

PrOOF. Substituting (2) of Lemma 3-2 for # G®@ in the inequality of lemma
3-8 (3), we have

#69 < ) ST LS~ a))? + (29 + Dl B2)
DCGG1
2
<o g(7g +66g +5) '

As
2
1B + 20+ DI ) =~ {1 8) - (5+3) | +6 9+,

the second equality (2) holds if and only if /(a, f(a)) = g or g + 1 for each a € Gj.
If the first equality (1) holds, then #S =g(g+ 1) and (D@, «,) is the graph
defined in Lemma 3-6 (3). That is,

G1=G2={1,3,5,...,Zg—1},
G = {(0,f)|1 <a+p <2g—1,x0r fis odd},
Bla) =29 —a and (o, f(a)) =g+ 1 forae G.

Thus the equality (1) implies the equality (2), and then # G® = g(7g%*+ 6g + 5)/6
holds if and only if the equality (1) holds. So we have the graph discribed in
Proposition 3-8. U

ExaMpLE 3-10. The graph in Theorem 3-9 is exactly the graph
Gy (P1, Py, P3) with hyperelliptic M and |2P;| = |2P,| = |2P3;| = g}. This is also
from the same calculation done by Kim in case n = 2.

REMARK 3-11. When n = 2, the graph which attains the maximal value of
#G®? is not unique. For example, if
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Gy = {ay,...,00} = {1,2,3,...,4},
Gy ={py,---.B,} =1{9,9+1,...,29g - 1}}

and B(o;) =29 — o;, then this graph attains the maximal value by Lemma 3-2,
and this graph does not come from any Riemann surfaces.

§. Appendix

Lemma 3-1 shows that a map B(x): ¥} — V> with some conditions com-
pletely determine a Riemann-Roch graph in case » = 2. In this section we study
the structure of (D™, x,) in detail when n >3, and try to find some means,
similar to f(x), of construction of (D™, x,).

A-1
First we survey a given (D™, x,).

DerINITION A-1.  Fix a Riemann-Roch graph (D™, x,). Assume n > 3. Let i
and j (1 <i,j<n,i+# j) be fixed. Take an (n — 2)-tuple

L = (P1s - s Victs Vidts - - -3 Vjmls Vit Lo - - -5 ¥n) eNg 2,
and we identify I'; with the n-tuple

Z Y€k = (P15 > %ie1r 0 Vistr - - 5 ¥im1r O Vjts - - - V) € NG
k#ij

We also write I'; for this vertex.
For fixed I'y, define a subset G,-r"" of Ny by
Gl :={yly>0,T=T;+ye,e V™ and [[—e,TI]=0}
For y € Np with 0 <y <2g —degI';; — 1, define a non-negative integer yjr”(y) by:
i) for y¢ G/

7' () = 0;
# ii) for ye G,
a) 7 %(y) =29 —degTy — y(>0) if  A;(Ty,y) =

b) 7 7(y):=min{a|ae ATy »)H>0) if A(Tyy) # 3,
where

Ai(Ty,y) :={a|[(T —e;,I)=1 with T =T+ ye;+ ae; € v and y>0}.
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REMARK. 1) For ye G,r‘j, 1 < yjr,-,- (y) <29 —degT';j — 1. (see the proof of
Lemma 3-1).
ii) If T = (0,...,0) (write 0;), then G\” = {y|ye; e G®}. We wrote G; for
0y -
G;” in §.3.

1

LEMMA A-2. Fix I'y. For y with 0 <y <2g—degl';y — 1, put j = erij()’) and
=Ty + ye; + pe;.
If 0<y<2g—degT—y, then
y>0, [F—ej,F]z 1 and [{I"—e,-}—ej,{l"——ei}]=0.

PROOF. As 7 > 0,y must be positive. By the definition of j = yjr,-,- (),
—e,I]=1 and [{T'—e¢}—e;,{I'—¢}]=0.

By Lemma 1-1 A), we get this lemma. ]

The system of maps
{f),—r"' {r10<y=<2g9—1—degly}
> {y|0<y<2g—1—degTy}|Tye V™1 Si,an}
have the following properties.

LEMMA A-3. Fix a Riemann-Roch graph (D™, x,). Let T'; be as in
A-1. Then
i)

Ty |
#G " = #G " =i(Ty).
ii) yjr"" induces a bijection from G,.r" to Gjr"’, and its inverse map is
| Ty
(Vj =

iii) Let Ty =3, viex be another (n—2)-tuple with T < T, then

" I
G'>G;"

1

and
Ty Ly
7 () =y ()

for y with 0 <y <2g—1—degT}.
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’

L Ty AT
Moreover if G;" = G, ", then

1 b

Proor. i) This can be easily proved by Lemma 1-3.
ii) Put y = yjr”(y) and I' =T + ye; + ye; for y e G,r”. Then y > 0 and 7 > 0.
First we will show je Gjr’".

Assume 7 ¢ Gjr'" .

case Aj(Tyj,y) # & (ie,T e VW)
By 7 ¢ Gjr"’, we have [{I'; + ye;} —e;, {I'; + y¢;}] = 1. Then, by *, — 1),
(I —e}—¢,{T—e}]=[—-¢,IN=1

On the other hand [I' —e;, I’} =1 by # ii-b).
Thus, by Lemma 1-1 A), we have

{T —e} —e, {I —¢} =1.
But this contradicts to the definition # ii-b).

case Aj(Ty,y) = & (ie., T ¢ V)
deg(T —¢;) =2g — 1 and then T —e; e V™. We have

(T —¢} —e;,{T' —¢}] =0.
On the other hand, by 7 ¢ Gj.r” and *, — 1),
[{Ty + e} — e, {y + 7e}] = {T —e} — ¢, {T' —e}] =1
Then, by Lemma 1-1 B),
{T ¢} —e,{T —¢}] =1
This is also a contradiction. Thus j € Gjr"’ in any case.

Next we will show (y;?)" = ;7.

case Ai(Ty,y) # &
By Lemma A-2 and %, — 1), we have

[{Fl] + oe; + ;7ej} — €, {1",, + de; + fzej}] =0
for any 6 with 0 <d <y—1, and Ay(T,9) 2 y. Thus we have

i (5 Fiy-1/5
A =r=06""0)
by the definiton of y,-r ().
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case Ai(Ty,7) = &
Using Lemma 1-1 B) and # ii-a), we also have A(T';,7) = & and
Ty~ - Tjn—1,~
y:"(7) =29 —degTyj— 5=y = (") ()
Ty r; r; r.
) G;' > G;” and y;’(y) = y;”(y) follow from x, —1).

Next assume Gir” = Gir‘;. Then i(T';) = i(T'};). By Lemma 1-3 and *, — 1), we
have

[Ty + oe; + Be;, T'j; + oe; 4 fej] = deg T; — deg Ty - -+ - h

for « >0 and £ > 0.

Fix y with 1 <y <2g—1-degT.

Put 7' = yjr""(y), I'=T;+ye+7e and I’ = T, + ye;i +7'e;. Then I'<I' and
[ —e, T =1.

Therefore, by 1§,

T —e,I')|=[—e,["'—¢]+[["—e, "] = (degT';; — degTy) + 1 = [, ]+ 1.
On the other hand, since
T —e, '] =[—e,I]+[[,T],

we have [I'—e;,I]=1 and yjr"’(y) <y = yjr"’(y). O
Also we can have the following proposition from x, — 1).

PROPOSITION A-4. Let T =3" ye be in V. Let Ty, (k #n) be the
(n —2)-tuple that satisfies T = Iy + yi€k + ypen.
1) Assume y; > 0 for some i (# n). Then

[C—e,T1=1 if and only if 3,"(3;) < ¥,
ii) Assume y, > 0. Then, for any k (# n),
T —e,,T]=1 ifand only if ;" (,) < .

This proposition and Proposition A-3 ii) imply that D™ with x, is exactly
decided by the system

{{v{""l{yIOSys2g— 1 — deg Ty}

_>{y,,|osyszg—1—degr',-,,}}|r,-neV("),lgiSn—l}.
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A-II

Let D be as before, but we do not assume the condition *, on it. Re-
garding D"-1) as the subgraph of D by the natural way (i.e., (y;,...,%,_;) <
(71y--+,¥n-1,0)), and assume that D"~1 is equipped with the condition x,_;.
We will investigate how we can build up x,, which induces the given *,_;.

DEFINITION A-5. i) Let I';, and I}, be as in Definitionl A-1. We define a
subset G,-r"" of {y|1<y<2g—-1-—degT;,} by

G/ := {y|[{Tin + yei} — €;, {Tin + y€;}] = 0 by %,_,}.

If I';,, <T,, then we can see from *,_; — 1) that

C'O) Girm 2 G’r"".

il) Assume that there is a system of maps
{7 {710 <y <29 — 1 — deg T}
—~{y]0<y<2g—1—degTin}|Tine V™, 1 siSn—l}.

satisfying
a) Fln(y) =0 if y¢ G )
B) 7F is an injective map from G/ into {y|1 <y <2g—1—degT;,}.

Define a map 7;” on {y|0<y<2g—1-degl;,} by
i) =@~ () for yejrm(GI*)

?)
Jin(y) =0 for y¢yr(GF").

Moreover they assume to be satisfied the following conditions (C-1), C-2),
C-3)).

C-1) If I';, <T;, then

in>
Jre(y) = Fpm(y) on {y|0<y<2g—1—degT}}.

(N.B. C-1) is equivalent to 77#(y) = a"(y) on G/ by C-0), a) and ,B).)

C2) 7"()=7"(») on {y|0<y<2g—1-degT,}.

(N.B. C-2) is equivalent to
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T ;AT T, ~T
Fnn(Gi") = " (G; ™)

and
T, .y T T
Jin(y) =7 "(y) on (G ™).

In fact if C-2) holds and there exists y € G i satisfying 7, "‘(y) ¢ 7, Tin(GI"), then
"'y T (y) < 7 "n "'(y) =0 by y). Hence y < 0. This is a contradiction.

C3) For T'=Y7",7eeV® and 1<k,il<n—-1Ty and I} are as in
Proposition A-4. Then

Ve < 7t (y,) if and only if  y; < 517 (,).

Now we put the weight 0 or 1 on each edge in E® according to the
following set R of rules R1),...,Rn).
R—i)(i=1,...,n—1) Let T'=(y,...,7,) € V® with y, > 0.

C-eT=1 & 57() <
R)
R—n) Let T = (yy,...,7,) € V?® with y, > 0.

r—e,I'l=1 <« r""(y,,) <y, forsome k # n.
(& 5% (y,) <y, forall k #n by C-3)).

Because of C-3), the weight of each edge is well defined by R —i).

DEFINITION A-6. (D™, R) denotes the graph such that each edge has weight
0 or 1 according to R), and define Gir"" and y,f *(x) by the same way as in
Definition A-1. :

(i.e., Let T'=(y1,...,7,) € V™ and put I =T +ye +ye for fixed i and
J (1 <i,j<n,i+#j), then

G,.r” ={y|0<y<2g—degl'y—1 and [{I';+ye;} —e;,{ly+ ye;}] =0 by R}.
For 0 <y <2g—degl';j — 1, we define a non-negative integer yjr” (y) by
i) For y¢ G,%, 3,7 () =
#' ii) For ye Gr"
a) 7'(y) =29 —degTy—y (21) if ATy =0

b) yj-r""(y)- =min{a|a e ATy, )} if A(Ty,p) # I,
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where

Aj(Ty,y) = {o| [{Ty + vei + oe;} — i, {T' + ye; + oe;}] = 1 by R}-)

LemMa A-7. (1) For 1 <i<n-—1, we have
Girin — Girin, ?’l:in(éirin) — G{m’ 7’}’1;1":(*) — yrl:in(*) and j;irin(*) — y’rm(*)

(2) Let 1 <i,k<n-—1 and i # k.
For T =Ty +yei+yex € V?® with y;, >0,

7 () <we i andonlyif [T —e,T]=1.

Proor. (1) By «) and p) in Definition A-5, ye G,.r"" is equivalent to
In(y) > 0. And, by R—i) (i #n), 75"(y) >0 is equivalent to ye G". Thus
GI'" = GI'"(i #n). By R—1i) (i # n), we also have A,(Tin,y) = {a| prm(y) < a}.
Then jln(x) =yfn(x) and 57=(x) = y{"(*).

Next we will prove 7,(G'") = GI'.

Take y € jI»(Gl ") = yI»(GI"). Then

GFn s 5T () = 77 (y) > 0.

Thus, by R — n),

[{Fin + yen} — €p, {rin + yen}] =0

and y e Gl».

Conversely, if y € G, then 57" (y) > 0 by R — n). And we have y € 7#(G/™)
by y) in Definition A-5.

(2) Assume y,f""(y,-)) <7, and put ' =Ty +y,-e,-+y,£""(y,—)ek. Then [['—
e;,I''] = 1. Let I'}, be the (n — 2)-tuple satisfying I'' = I';, + y,&; + y,e,. Then, by
R —1i),

Yan(¥:) < Vu-

Since I', < i,

n —

yn () < 7 (7)) by C-2).

Hence yf=(y;) <y,  We proved that [’ —e;,I'] =1 if y{""(y,—)) < Y-
Conversely if [ —e;,I'] = 1, then y; € Ax(Tik, y;) # & and y{ *(y,) is equal to
min{o |« € Ae(Tik, 7)}. Thus 7% (7)) < % O
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By Lemma A-7(2) and R), we can see easily that the graph (D™, R) satisfies
the condition x, — 1).

Now we add the following assumption so that the graph (D), R) satisfies
%, — 2).

C-4) Let 1 <i,k<n—1, y;* is a bijection from G/* to G, * so that
(") () =7 *(+) on G-
THEOREM A-8. Assume that
(VD s, ) and {3In|1<i<n—1,T;, eV}
satisfy the conditions C-1) ~ C-4). Then the graph (D™, R) is equipped with *,

which induces the given x,_;.

ProOOF. We only have to show that %, — 2) is satisfied.

Let T' =Y 7 7€ V™ satisfying y, >0 and 7; >0 for some i and
J (1 <i,j<nyi+#j). Let I'; be the (n— 2)-tuple satisfying I' = ' + y;e; + y;e;.
By %, — 1) and (yjr”)_l(*) = y,.r"' (x)(C-4) and y)), the following two cases can be
happened.

(i) {T—e¢}—e,{I'—¢}=[—e,I] and [{I' —e;} —e;,{I' —e;}]
= [F — €, F]
Y
i) [{T —e} —e,{I - e}
\ =[{I’—e,~}—ej,{F—e,-}]=O and [F—ei,F]=[F—ej,F]=1.'

(In fact, for example, if I'—e;,I'| =1 and [{I' —e;} —e;,{I' —¢;}] =0, then
) =7 As 3= 0)=2"(), T-e =1 and [{T—e}—e,
{T' —e;}] = 0. This is the case 1) ii).)
1) implies the condition A) of Lemma 1-1.

Let I'=Y7_, ycex € V" with degT” = 2g — 2. Then we have

) L T+e]=[T+e,] forl<i<n-1.

(In fact, [, +¢]=0 is equivalent to yl»(y;+1)=y9,+1 by R—1i). As
(ynri")_1 =yl we have y1*(y, + 1) = y;+ 1. This is equivalent to [[',T" + e, = 0
by R —n).)
1) and 1f) imply The condition B) in Lemma 1-1.

When Ty, =(0,...,0) (write O,) for k #n, the subset }7,,(6,?"") = GO
(Lemma A-7 (1)) of {y|1 <y <2g—1} is uniquely determined whichever k
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we may take (by C-3 and R —n)). We denote this set by G. Then G =
{y]7en € V) [(y — 1)e,, ye,) = 0} and #G = #(G*) = g. This means that the
condition C) in Lemma 1-1 is satisfied. O

REMARK A-9. The non-negative integer 6'" defined in §.1 can be re-defined
by

6" = max{y"(y)|1 <i<n-1},

where T'= (y;,...,7,) = Ty 7)) =Tin + 7€ +y,e0 for 1 <i<n-1.

ExaMpLE A-10. Let (V) ,x;) be the graph in Theorem 3-3. Let I =
(y1,72,73) € V. Then T'3 =y, and T's = (y;,7,). If yy =2k — 1 or 2k with 1 <
k <g-1, then

GI? =GI» = {1,3,5,...,2(g — k) — 1}
and

if p, is even

y32(r2) = °
3 2(g—k)—yp, if p,is odd.

Then, for (y;,7,) € V®,

29g—1—vy, —y, if y, and y, are odd
o ={ 29—y, - if y, is odd(resp. even) and 1y, is even(resp. odd)

0 if y, and y, are even.

(In fact, if yy =2k—1and y,=21-10<k,I<g-1, k+1<g)
then

5% = max{yTP (1) = 2(g — ) — 11, ?T2 () = 209 — k) — 12}
=29—1=y -
If yy=2k—1and y,=21 (0<k,/<g-1, k+1<yg), then
0T = max{y; *(y;) = 2(g — ) — 1,732 (72) = 0}
=29 =%~ 72

(See Proposition 3-7).)



A certain graph obtained from a set of several 89

References

[1] E. Albarello, M. Cornalba, P. Griffiths and J. Harris, Geometry of Algebraic curves I, Springer-
Verlag 1985.

[2] M. Homma, The Weierstrass semigroup of points on a curve, Archv. der Mathematik 67, 337-
348, 1996.

[3] S.J. Kim, On the index of the Weierstrass semigroup of a pair of points on a curve, Archv. der
Mathematik 62, 73-82, 1994.

Naonori Ishii

Nihon Uiniversity

Mathematical Division of General Education
College of Science and Thechnology, ‘
7-24-1, Narashinodai, Funabashi-shi, Chiba, 274
Japan



	A CERTAIN GRAPH OBTAINED ...
	Introduction
	\S 1 Fix a Riemann-Roch ...
	\S 2. The lower bound ...
	\S 3. The upper bound ...
	References


