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A NOTE ON NORMALLY GENERATED LINE BUNDLES
ON COMPACT RIEMANN SURFACES

By

Tatsuya ARAKAWA

1. Introduction

Let $X$ denote a compact Riemann surface of genus $g(X)>0$ and $L$ an ample
line bundle on $X$.

DEFINITION 1. $L$ is said to be normally generated if, for each $n>0$ , the
natural map

Sym $H^{0}(X, L)\rightarrow H^{0}(X, L^{n})$

is surjective.

There are the following two sufficient conditions for line bundles on $X$ to be
normally generated obtained by H. H. Martens and D. Mumford, respectively:

THEOREM 1 (cf. [3]). The canononical bundle $K_{X}$ on $X$ is normally generated
if and only if $X$ is nonhyperelliptic.

THEOREM 2 ([4]). If $\deg L\geq 2g(X)+1$ , then $L\nearrow s$ normally generated.

On the other hand, Homma [2] classified all the normally generated line
bundles on $X$ when the genus of $X$ is three.

THEOREM 3 ([2]). Supppose $g(X)=3$ .
(i) If $X$ is hyperelliptic, then $L$ is normally generated if and only if $\deg L\geq 7$ .
(ii) If $X$ is nonhyperelliptic, then $L$ is normally generated if and only $L$ satisfies

one of the following conditions:
(a) $\deg L\geq 7$ .
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(b) $\deg L=6$ and $H^{0}(X, L\otimes K_{X}^{-1})=0$ .
(c) $L\cong K_{X}$ .
Now let $\pi$ : $X\rightarrow Y$ be a (possibly ramified) covering of compact Riemann

surfaces and let $g(Y)(\geq 0)$ denote the genus of $Y$.

PROBLEM. Classify ample line bundles on $Y$ such that the pull backs on $X$

are normally generated.

In this note, we will study this problem in the cases of $\pi$ being double
coverings with small $g(X)$ or $g(Y)$ . In \S 2, we will determine such line bundles on
$Y$ when $g(X)=3$ and in \S 3, the cases of $Y$ being rational or elliptic Riemann
surfaces are treated.

Before closing this section, let us recall some fundamental facts on double
coverings (cf. [5]):

LEMMA 1. Let $B$ denote the branch locus of the double covering $\pi$ : $X\rightarrow Y$ on
Y. Then there exists a line bundle $F$ on $Y$ with $2F\cong B$ such that the following
conditions hold:

(i) $X$ is embedded into $F$ and the projection of $F$ to $Y$ restricted on $X$ coincides
with $\pi$ .

(ii) The canonical bundle $K_{X}$ on $X$ is linearly equivalent to $\pi^{*}(K_{Y}\otimes F)$ where
$K_{Y}$ is the canonical bundle on $Y$.

(iii) For any line bundle $L$ on $Y$, we have:

$\pi_{*}\mathcal{O}_{X}(\pi^{*}L)\cong \mathcal{O}_{Y}(L)\oplus \mathcal{O}_{Y}(L\otimes F^{-1})$ .

COROLLARY. Let $\pi$ : $X\rightarrow Y$ be a double covering of compact Riemann
surfaces. Then the induced homomorphism $\pi^{*}$ : Pic $Y\rightarrow PicX$ is injective.

PROOF. Let $M$ be a line bundle on $Y$ such that the pull back $\pi^{*}M$ is trivial
on $X$. Then we have $\deg M=0$ and $h^{0}(X, \pi^{*}M)=1$ . Hence, by Lemma 1 (iii),

we have $h^{0}(Y, M)=h^{0}(X, \pi^{*}M)-h^{0}(Y, M\otimes F^{-1})=1$ , that is, $M$ is also trivial
on Y. $\square $

The author would like to express his gratitude to Professors Sampei Usui and
Kazuhiro Konno for their helpful suggestions and encouragements. He also
thanks to Professor Masayoshi Miyanishi for useful advises. Finally he thanks to
the referee for pointing out several mistakes in the earlier version.
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2. The cases of $g(X)=3$

By Lemma 1 and Theorem 3, we can determine such line bundle $M$ on $Y$ as
in Problem when $g(X)=3$ :

Since $g(X)>g(Y)$ , we have $g(Y)=0,1$ or 2. If $g(Y)=0$ , then $X$ is
hyperelliptic. On the other hand, we have the following result of Farkas:

LEMMA 2 ([1]). Let $X\rightarrow Y$ be a double covering of compact Riemann
surfaces with $g(X)=3$ and $g(Y)=2$ . Then $X$ is hyperelliptic.

As a conclusion of Lemma 2 and Theroem 3 (i), we obtain the following
result.

PROPOSITION 1. Suppose $g(Y)=0$ or 2. Then $\pi^{*}M$ is normally generated $lf$

and only $lf\deg M\geq 4$ .

Now suppose $X$ is nonhyperelliptic. Then we have $g(Y)=1$ and hence, by
Lemma 1 (ii), $K_{X}\cong\pi^{*}F$ and $\deg F=2$ .

By Theorem 3 (ii), $\pi^{*}M$ is normally generated if $\deg M\geq 4$ and not normally
generated if $\deg M=1$ .

Suppose $\deg M=2$ . Then $\pi^{*}M$ is normally generated if and only if
$\pi^{*}M\cong\pi^{*}F$ , that is, by the corollary to Lemma 1, $M\cong F$ .

Suppose $\deg M=3$ . Then, since $g(Y)=1$ and $\deg M\otimes F^{-1}=1$ , we have
$h^{0}(X, \pi^{*}M\otimes K_{X}^{-1})=h^{0}(Y, M\otimes F^{-1})+h^{0}(Y, M\otimes F^{-2})>0$ .

Consequently we get the following:

PROPOSITION 2. Suppose $g(Y)=1$ .
(i) If $X$ is hyperelliptic then $\pi^{*}M$ is normally generated if and only $lf$

$\deg M\geq 4$ .
(ii) If $X$ is nonhyperelliptic then $\pi^{*}M$ is normally generated if and only if

$\deg M\geq 4$ or $M\cong F$ .

3. The cases of $g(X)\geq 4$ and $g(Y)\leq 1$

3.1. The cases of $g(Y)=0$

If $g(Y)=0$ , then $\deg F=g(X)+1$ and hence, if $\deg M<g(X)+1$ for a line
bundle $M$ on $Y$, we have

$H^{0}(X, \pi^{*}M)\cong H^{0}(Y, M)$
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by Lemma 1 (iii), that is, each section in $H^{0}(X, \pi^{*}M)$ is the pull back of a
section in $H^{0}(Y, M)$ . But, for a sufficiently large $n$ ,

$H^{0}(X, \pi^{*}M^{n})\neq H^{0}(Y, M^{n})$

by Lemma 1 (iii) again. We therefore conclude that $\pi^{*}M$ is not normally
generated in this case.

On the other hand, by Theorem 2, $\pi^{*}M$ is normally generated if $\deg M\geq$

$g(X)+1$ .
Consequently we have:

PROPOSITION 3. Suppose $g(Y)=0$ . Then $\pi^{*}M$ is normally generated $\iota f$ and
only $lf\deg M\geq g(X)+1$ .

3.2. The cases of $g(Y)=1$

If $g(Y)=1$ , then we have $\deg F=g(X)-1$ and $K_{X}\cong\pi^{*}F$ . If moreover
$g(X)\geq 4$ , then $X$ is always nonhyperelliptic.

Now by the same arguments as in \S 3.1, we can conclude that, for a line
bundle $M$ on $Y,$ $\pi^{*}M$ is not normally generated if $H^{0}(X, M\otimes F^{-1})=0$ .
Therefore if $\pi^{*}M$ is normally generated, then $\deg M\geq g(X)$ or $M\cong F$ . On the
other hand, by Theorems 1 and 2, $\pi^{*}M$ is normally generated if $\deg M\geq$

$g(X)+1$ or $M\cong F$ .
Now suppose $\deg M=g(X)$ . By Lemma 1 (iii), we have

$H^{0}(X, \pi^{*}M)\cong H^{0}(Y, M)\oplus H^{0}(Y, M\otimes F^{-1})$

and

$H^{0}(X, \pi^{*}M^{2})\cong H^{0}(Y, M^{2})\oplus H^{0}(Y, M^{2}\otimes F^{-1})$ .

But by the Riemann-Roch theorem, we have $h^{0}(Y, M)=g,$ $h^{0}(Y, M\otimes F^{-1})=1$

and $h^{0}(Y, M^{2}\otimes F^{-1})=g+1$ . Hence the natural map

$H^{0}(Y, M)\otimes H^{0}(Y, M\otimes F^{-1})\rightarrow H^{0}(Y, M^{2}\otimes F^{-1})$

is not surjective, and neither is

$H^{0}(X, \pi^{*}M)\otimes H^{0}(X, \pi^{*}M)\rightarrow H^{0}(X, \pi^{*}M^{2})$ .

Therefore we conclude that, in this case, $\pi^{*}M$ is not normally generated.
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Consequently we have:

PROPOSITION 4. Suppose $g(X)\geq 4$ and $g(Y)=1$ . Then, for a line bundle $M$

on $Y,$ $\pi^{*}M$ is normally generated if and only if $\deg M\geq g(X)+1$ or $M\cong F$ .
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