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1. Introduction

Let $P_{n}(C)$ denote an n-dimensional complex projective space with the Fubini-
Study metric of constant holomorphic sectional curvature $4c$ and $M$ a real
hypersurface in $P_{n}(C)$ with the induced metric.

The problem with respect to the type number $t$ , i.e., the rank of the second
fundamental form of real hypersurfaces in $P_{n}(C)$ has been studied by many
differential geometers ([1], [2] and [3] etc.).

The second named author [4] showed that there is a point $p$ on $M$ such that
$t(p)\geq 2$ and M. Kimura and S. Maeda [1] gave an example of real hypersurface
in $P_{n}(C)$ satisfying $t=2$ , which is non-complete. Y. J. Suh [3] proved that there
is a point $p$ on a complete real hypersurface $M$ in $P_{n}(C)(n\geq 3)$ such that
$t(p)\geq 3$ . According to [2], there is a point $p$ on a complete real hypersurface $M$

in $P_{n}(C)$ such that $t(p)\geq n$ , but there is a mistake in deducation to lead a certain
formula.

In this paper, we shall prove the following Main theorem

MAIN THEOREM. Let $M$ be a complete real hypersurface in $P_{n}(C)(n\geq 4)$ .
Then there exists a point $p$ on $M$ such that $t(p)\geq 4$ .

2. Preliminaries

Let $P_{n}(C)(n\geq 4)$ be a complex projective space with the metric of constant
holomorphic sectional curvature $4c$ and $M$ a real hypersurface in $P_{n}(C)$ with the
induced metric. Choose a local field of orthonormal frames $e_{1},$

$\ldots,$
$e_{2n}$ in $P_{n}(C)$

such that $e_{1},$
$\ldots,$ $e_{2n-1}$ , restricted to $M$, are tangent to $M$. We use the following

convention on the range of indices unless otherwise stated: $A,$ $B,$ $\ldots=1,$
$\ldots,$

$2n$
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and $i,j,$ $\ldots=1,$
$\ldots,$

$2n-1$ . We denote by $\omega^{A}$ and $\omega_{B}^{A}$ the canonical l-forms and
the connection forms, respectively. Then they satisfy

(2.1) $d\omega^{A}+\sum\omega_{B}^{A}\wedge\omega^{B}=0$ , $\omega_{B}^{A}\wedge\omega_{A}^{B}=0$ .

We restrict the forms under consideration to $M$. Then we have $\omega^{2n}=0$ and
by Cartan’s lemma we may write as

(2.2) $\phi_{j}\equiv\omega_{i}^{2n}=\sum h_{ij}\omega^{j}$ , $h_{ij}=h_{ji}$ .

The quadratic form $\sum h_{ij}\omega^{j}\otimes\omega^{j}$ and the matrix $H=(h_{ij})$ is called second
fundamental form and the shape operater of $M$ for $e_{2n}$ , respectively. Moveover,
the curvature form $\Omega_{j}^{i}$ of $M$ are defined by

(2.3) $\Omega_{j}^{i}=d\omega_{j^{i}}+\sum\omega_{k}^{i}\wedge\omega_{j^{k}}$ .

We denote by $\tilde{J}$ the complex structure of $P_{n}(C)$ . Let $(J_{j}^{i}, f_{k})$ be the almost
contact metric structure of $M$, i.e., $\tilde{J}(e_{i})=\sum J_{i}^{j}e_{j}+f_{i}e_{2n}$ . Then $(J_{j}^{i},f_{k})$ satisfies

$\sum J_{k}^{i}J_{j}^{k}=f_{i}f_{j}-\delta_{j}^{i}$ , $\sum f_{j}J_{i}^{j}=0$ ,
(2.4)

$\sum f_{i}^{2}=1$ , $J_{j}^{i}+J_{i}^{j}=0$ .

The parallelism of $\tilde{J}$ implies

$dJ_{j}^{i}=\sum(J_{k}^{i}\omega_{j}^{k}-J_{k}^{j}\omega_{i}^{k})-f_{i}\phi_{j}+f_{j}\phi_{j}$ ,
(2.5)

$df_{i}=\sum(f_{j}\omega_{i}^{j}-J_{i}^{j}\phi_{j})$ .

The equation of Gauss and Codazzi are given by

(2.6) $\Omega_{j}^{i}=\phi_{i}\wedge\phi_{j}+c\omega^{j}\wedge\omega^{j}+c\sum(J_{k}^{i}J_{l}^{j}+J_{j}^{i}J_{l}^{k})\omega^{k}\wedge\omega^{/}$ ,

(2.7) $d\phi_{i}=-\sum\phi_{j}\wedge\omega_{i}^{j}+c\sum(f_{i}J_{k}^{j}+f_{j}J_{k}^{i})\omega^{j}\wedge\omega^{k}$ ,

respectively.

3. Formulas

Let $M$ be a real hypersurface in $P_{n}(C)$ . In this section, we assume that the
rank of second fundamental form is not larger than $m$ on an open set $U$. In the
sequel, we use the following convention on the range of indices: $a,$ $b,$ $\ldots=$

$1,$
$\ldots,$

$m$ and $r,$ $s,$ $\ldots=m+1,$
$\ldots,$

$2n-1$ . Then for an arbitary point $p$ in $U$ we
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can take a local field of orthonormal frames $\{e_{1}, \ldots, e_{2n-1}\}$ on a neighborhood of
$p$ such that the l-forms $\phi_{i}$ can be written as

$\phi_{a}=\sum h_{ab}\omega^{b}$ ,
(3.1)

$\phi_{r}=0$ .

Here, we put

(3.2) $\omega_{r}^{a}=\sum A_{rb}^{a}\omega^{b}+\sum B_{rs}^{a}\omega^{s}$ .

Taking the exterior derivative of $\phi_{r}=0$ and using (2.7) and (3.1), we have

$\sum h_{ab}\omega^{b}\wedge\omega_{r}^{a}-c\sum(f_{r}J_{j}^{i}+f_{i}J_{j}^{r})\omega^{l}\wedge\omega^{j}=0$ ,

which, together with (3.2), implies

(3.3) $\sum(h_{ac}A_{rb}^{c}-h_{bc}A_{ra}^{c})-cf_{a}J_{b}^{r}+cf_{b}J_{a}^{r}-2cf_{r}J_{b}^{a}=0$ ,

(3.4) $\sum h_{ab}B_{rs}^{b}-cf_{a}J_{s}^{r}+cf_{s}J_{a}^{r}-2cf_{r}J_{s}^{a}=0$ ,

(3.5) $f_{s}J_{t}^{r}-f_{t}J_{s}^{r}+2f_{r}J_{t}^{s}=0$ .

The above equation (3.5) is equivalent to

(3.6) $f_{r}J_{t}^{s}=0$ .

Similarly, taking the exterior derivative of $\phi_{a}=\sum h_{ab}\omega^{b}$ and making use of
(2.1), (2.7), (3.1), (3.2) and (3.4), we get

(3.7) $dh_{ab}-\sum(h_{ac}\omega_{b^{c}}+h_{bc}\omega_{a}^{c}-\sum h_{ac}A_{rb}^{c}\omega^{r})$

$+c\sum(f_{b}J_{r}^{a}\omega^{r}-f_{r}J_{b}^{a}\omega^{r}+2f_{a}J_{r}^{b}\omega^{r})\equiv 0$ (mod $\omega^{a}$ ).

Here, we denote by $T$ the maximal value of the type number $t$ .
The following two Lemmas are proved in [2] and [3].

LEMMA 3.1 ([3]). Assume that there exists a point $p\in M$ such that
$\tilde{J}(kerH_{p})\perp kerH_{p}$ . Then $t(p)\geq n-1$ . Furthermore, the equality holds if and only

if $\tilde{J}((kerH_{p})^{\perp})\subset kerH_{p}$ , where $(kerH_{p})^{\perp}$ denotes the set of all vectors normal to
$kerH_{p}$ .

LEMMA 3.2 ([2]). If $\tilde{J}(kerH_{|U})\perp kerH_{|U}$ , then $T\geq n$ on $U$.
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We shall take $T$ as $m$ in above. In the remainder of this section we restrict
the forms under consideration to the following open set $V_{T}$ defined by

$V_{T}=\{p\in M|J_{s}^{r}(p)\neq 0, t(p)=T\}$ .

From (3.6) we have $f_{r}=0$ . Thus we may set $f_{1}=1$ and $f_{2}=\cdots=f_{T}=0$ . This
and (2.4) show

(3.8) $J_{a}^{1}=0$ , $J_{r}^{1}=0$ .

Furthermore, the fact that $df_{a}=0$ and $df_{r}=0$ tells us

(3.9) $\omega_{a^{1}}=-\sum J_{b}^{a}\phi_{b}$ ,

(3.10) $A_{ra}^{1}=\sum h_{ab}J_{r}^{b}$ ,

(3.11) $B_{rs}^{1}=0$ ,

where we have used (2.5), (3.1), and (3.2). The above equation (3.9) yields

(3.12) $\omega_{a}^{1}\equiv 0$ (mod $\omega^{a}$ ).

From (3.4), we have

(3.13) $\sum h_{ab}B_{rs}^{b}=cf_{a}J_{s}^{r}$ .

Moreover, from (3. 11) and (3. 13), it follows that (cf. [3])

(3.14) $det(h_{ab})=0$ $(a, b=2, \ldots, T)$ .

Thus, for a suitable choice of a field $\{e_{a}\}$ of orthonormal frames, we may set

(3.15) $h_{ab}=\lambda_{a}\delta_{ab}$ $(a, b=2, \ldots, T)$ .

Combining (3.15) with (3.14), we can set $\lambda_{2}=0$ . Since $det(h_{ab})=-(h_{12})^{2}\lambda_{3}\cdots\lambda_{T}$ ,
it follows that

(3.16) $h_{12}\neq 0$ and $h_{aa}=\lambda_{a}\neq 0$ $(a=3, \ldots, T)$ ,

because $det(h_{ab})$ does not vanish on $V_{T}$ .
On the other hand, the equation (3.10), together with (3.8) and (3.15), yields

(3.17) $A_{r2}^{1}=0$ .

Now put $a=2$ and $b\geq 3$ in (3.3). Then using (3.10), (3.15) and (3.16), we
find

(3.18) $A_{r2}^{b}=h_{12}J_{r}^{b}$ $(b\geq 3)$ .
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Similarly, put $a=1$ and $b=2$ in (2.4). Then we obtain

$\sum(h_{1a}A_{r2}^{a}-h_{2a}A_{r1}^{a})+cJ_{r}^{2}=0$ .

It follows from (3.10), (3.15), (3.17) and (3.18) that the above equation can be
reformed as

(3.19)
$h_{12}A_{r2}^{2}=h_{12}\sum h_{1a}J_{r}^{a}-h_{12}\sum_{a\geq 3}h_{1a}J_{r}^{a}-cJ_{r}^{2}$ .

We put $a=2$ and $b\geq 3$ in (3.7) and take account of (3.12) and (3.15). Then
we have

$h_{bb}\omega_{2}^{b}-h_{12}\sum A_{rb}^{1}\omega^{r}\equiv 0$ (mod $\omega^{a}$ ).

which, together with (3.8), (3.10) and (3.16), leads to

(3.20) $\omega_{2}^{b}\equiv h_{12}\sum J_{r}^{b}\omega^{r}$ for $b\geq 3$ (mod $\omega^{a}$ ).

Put $a=1$ and $b=2$ in (3.7). Then from (3.12) it follows that

$dh_{12}-\sum(h_{1b}\omega_{2}^{b}-\sum h_{1b}A_{r2}^{b}\omega^{r})+2c\sum J_{r}^{2}\omega^{r}\equiv 0$ (mod $\omega^{a}$ ).

Combining this equation with (3.8), (3.12) and $(3.17)\sim(3.20)$ , we get

(3.21) $dh_{12}+((h_{12})^{2}+c)\sum J_{r}^{2}\omega^{r}\equiv 0$ (mod $\omega^{a}$ ).

On the other hand, from (3.13) we have

$h_{a1}B_{rs}^{1}+\sum_{b\geq 2}h_{ab}B_{rs}^{b}=0$ for $a\neq 1$ .

Using (3.11) and (3.15), we obtain

$\lambda_{a}B_{rs}^{a}=0$ .

This equation yields

(3.22) $B_{rs}^{a}=0$ for $a\neq 2$ .

Similarly, from (3.4), we find

$h_{12}B_{rs}^{2}=cJ_{s}^{r}$ ,

which, together with (3.17), lead to

(3.23) $B_{rs}^{2}=\frac{c}{h_{12}}J_{s}^{r}$ .
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4. The proof of Main theorem

In this section, we keep the notation in section 3 unless otherwise stated. If
$\tilde{J}(kerH)\perp kerH$ on a non-empty open set, then Lemma 3.2 proves Main
theorem. Therefore, we have only consider the case where the open set $V_{T}$

defined section 3 is not empty. It is known that $T\geq 3$ (cf. [3]). Assume $M$ is
complete and $T=3$ and derive a contradiction.

LEMMA 4.1. $J_{r}^{2}\neq 0$ on any non-empty open subset of $V_{3}$ .

PROOF. If there exist an open subset of $V_{3}$ such that $J_{r}^{2}=0$ , then from (2.4)

we get

$J_{3}^{2}=\pm 1$ , $J_{i}^{3}=0$ for $i\neq 2$ .

Taking account of the coefficient of $\omega^{s}$ in $dJ_{r}^{3}=0$ , and using (2.5), (3.2) and
(3.22) we find

$B_{rs}^{2}=0$ .

This implies $J_{s^{r}}=0$ , which contradicts the fact that rank $J=2n-2\geq 4$ . $\square $

Thus, owing to Lemma 4.1, we have

(4.1) $\forall p\in V_{3},$ $\forall U(p),$ $\exists q\in U(p)$ such that $J_{r}^{2}(q)\neq 0$ ,

where $U(p)$ denotes a neighborhood of $p$ .
Moveover, we consider the open set $V_{3}^{\prime}$ defined by

$V_{3}^{\prime}=\{p\in V_{3}|J_{r}^{2}(p)\neq 0\}$ .

Since $V_{3}^{\prime}$ is dense subset of $V_{3}$ by (4.1), any equality obtained on $V_{3}^{\prime}$ holds also on
$V_{3}$ . Hence, we may assume $V_{3}=V_{3}^{l}$ whenever we treat equalities.

On the other hand, for a suitable choice of a field $\{e_{r}\}$ of orthonormal
frames, we can set

(4.2) $J_{5}^{2}=\cdots=J_{2n-1}^{2}=J_{6}^{3}=\cdots=J_{2n-1}^{3}=0$ .

For simplicity, we put $\alpha=J_{3}^{2}$ and $\beta=J_{4}^{2}$ . Then from (2.4) and (4.2), we
obtain

$\alpha^{2}+\beta^{2}=1$ ,
(4.3)

$\beta J_{3}^{4}=0$ .
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Since $\beta\neq 0$ on $V_{3}^{\prime}$ , above equation implies

(4.4) $J_{3}^{4}=0$ on $V_{3}$ .

From (2.4), (4.2) and (4.4), we get

$\sum(J_{i}^{3})^{2}=\alpha^{2}+(J_{5}^{3})^{2}=1$ ,

which yields

$ J_{5}^{3}=\pm\beta$ .

We may assume

(4.5) $ J_{5}^{3}=\beta$ ,

by taking $-e_{5}$ instead of $e_{5}$ if necessary. Similarly, from (2.4), (4.2), (4.4), (4.5)
and the equation $\sum J_{i}^{3}J_{4}^{i}=0$ , we have

(4.6) $ J_{4}^{5}=\alpha$ .

It follows from (2.4), (4.2), $(4.4)\sim(4.6)$ and the equation $\sum(J_{i}^{4})^{2}=1$ , that

(4.7) $J_{6}^{4}=\cdots=J_{2n-1}^{4}=J_{6}^{5}=\cdots=J_{2n-1}^{5}=0$ .

Hence, we obtain the following matrix

(4.8) $(J_{j}^{i})=(00000$

$-\beta-\alpha 000$

$-\beta 000\alpha 0$

$\beta 000\alpha$ $-\alpha\beta 000$

$0*)$

LEMMA 4.2. $\beta$ has not zero points everywhere on $V_{3}$ .

PROOF. Taking the exterior derivative of $J_{5}^{2}=0$ and making use of (3.20),
(3.22) and (4.8), we have

$\beta(\omega_{5}^{4}+h_{12}\beta\omega^{5})+\alpha^{2}\frac{c}{h_{12}}\omega^{5}\equiv 0$ (mod $\omega^{a}$ ).

Then if there exists a point $p$ on $\nabla_{3}$ such that $\beta(p)=0$ , we get $\alpha(p)=0$ . This
contradicts (4.3). $\square $
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On the other hand, we put $F=h_{12}$ , then the equation (3.21) is equivalent to

(4.9) $dF+(F^{2}+c)\beta\omega^{4}\equiv 0$ (mod $\omega^{a}$ ).

Let $p$ be any point of $V_{3}$ and let $\gamma:I\rightarrow V_{3}$ be a maximal integral curve of
the unit vector field $e_{4}$ on $V_{3}$ through $p$ . Assume that $I$ has an infimum or a
supremum, say $t_{0}$ .

LEMMA 4.3.

$\lim_{l\rightarrow l_{0}}h_{33}(\gamma(t))\neq 0$ .

PROOF. Put $a=b=3$ in (3.7). Then we get

$dh_{33}-2\sum h_{3c}\omega_{3}^{c}+\sum h_{3c}A_{r3}^{c}\omega^{r}\equiv 0$ (mod $\omega^{a}$ ).

From (3.8), (3.10), (3.12) and (3.15), it follows that

(4.10) $dh_{33}+h_{33}\sum(h_{31}J_{r}^{3}+A_{r3}^{3})\omega^{r}\equiv 0$ (mod $\omega^{a}$ ).

We restrict the forms under consideration to $\gamma$ . Then (4.10), together with (4.4),

becomes

$\frac{dh_{33}}{dt}+h_{33}A_{43}^{3}=0$ , $t\in I$ .

On the otherhand, since $M$ is complete, there exists a limit point $\lim_{t\rightarrow l_{0}}\gamma(t)$

on $M$. Suppose that $\lim_{l\rightarrow l_{0}}h_{33}(\gamma(t))=0$ . Then from the above differential
equation, we have $h_{33}=0$ on $\gamma$ . This contradicts (3.16). $\square $

LEMMA 4.4.

$\lim_{l\rightarrow l_{0}}F(\gamma(\iota))=0$ .

PROOF. Assume that $\lim_{l\rightarrow l_{0}}F(\gamma(t))\neq 0$ . Owing to Lemma 4.3, we see
$t(\gamma(t_{0}))=3$ . Since $\gamma$ is maximal, we have $J_{s^{r}}(\gamma(\iota_{0}))=0$ . Then by Lemma 3.1, we
obtain

$t(\gamma(t_{0}))\geq n-1\geq 4$ for $n\geq 5$ ,

which is a contradiction. For a case where $n=4$ , also by using Lemma 3.1 we
get $f_{a}(\gamma(\iota_{0}))=0$ . This also contradicts $f_{1}(\gamma(\iota_{0}))=1$ . $\square $
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Put $t_{1}=\inf I(\geq-\infty)$ and $t_{0}=\sup I(\leq\infty)$ . Then there are four possibilities
of an open interval $(t_{1}, t_{0})$ . Namely, the interval $I$ is one of the following:

(1) $-\infty<t_{1},$ $ t_{0}<\infty$ ,

(2) $-\infty=t_{1},$ $ t_{0}<\infty$ ,

(3) $-\infty<t_{1},$ $ t_{0}=\infty$ ,

(4) $-\infty=t_{1},$ $ t_{0}=\infty$ .

Case (1):

Owing to Lemma 4.4 it is seen that there exist a real number $t^{\prime}$ such that
$t_{1}<t^{\prime}<t_{0},$ $dF=0$ at $\gamma(t^{\prime})\in V_{3}$ . Then (4.9) gives $\beta(\gamma(t^{\prime}))=0$ . This contradicts
Lemma 4.2.
Case (2), (3), (4):

Taking the exterior derivative of $ J_{4}^{2}=\beta$ and using (2.5) and (4.8), we have

$d\beta\equiv-\frac{c}{F}\alpha^{2}\omega^{4}$ (mod $\omega^{a}$ ).

We restrict the forms under consideration to $\gamma$ . Then above equation becomes

(4.11) $\frac{d\beta}{dt}=-\frac{c}{F}\alpha^{2}$ , $t\in I$ .

Put $ g=F\beta$ and from (4.9) and (4.11), we have

(4.12) $\frac{dg}{dt}=-g^{2}-c$ , $t\in I$ .

Then solving (4.12), we get

(4.13) $g(\gamma(t))=-\sqrt{c}\tan\sqrt{c}(t-t_{2})$ ,

where $t_{2}$ is a constant. However, (4.13) is defined only for a finite interval, which
is contradiction.

It completes the proof of Main theorem.
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