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ON AN ALGEBRA OF SIEGEL MODULAR FORMS
ASSOCIATED WITH THE THETA GROUP I3(1,2)

By

Takeyoshi KoGiso and Koji TSUSHIMA

Abstract. In this note, we shall calculate some homogeneous poly-
nomials explicitly based on B. Runge’s conjecture in [4] p. 203 and
give the explicit structure of the graded ring A4(I'2(1,2)) of Siegel

modular forms of genus two belonging to the discrete subgroup
I';(1,2) of Sp(2,R).

§1. Notations and preliminaries

Throughout this note, we will use the following notations.
We denote by H, the Siegel upper half space of genus g defined by

H,:={Ze M(g,C)|Z : symmetric, Im (Z) > 0}.

We denote by Sp(g, R) the usual real symplectic group of size 2g defined by

t
XJIX =J,J = [ 0 I"]}.

Sp(a.R) = { X € Mg, R) o
g

Furthermore we consider the following discrete subgroup of Sp(g, R),
Fg = Sp(ga Z)

We call this T’y the Siegel modular group, and we put

o= {[2 ]2 2)=[5 3]s

which is called the principal congruence subgroup of level n.
We put

ronan = {4 5]ern

(A'B)y = (D'C), =0 mod2n},
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mi
where for M = (my;)e M(g,C), M, denotes the column vector M, =

of diagonal elements of M. Mgg

I'y(1,2) is called the theta group.
The symplectic group Sp(g, R) acts transitively on the Siegel upper half space
H, by

A B
X(Z):=(AZ+ B)(CZ+ D)™ for X = [C D] € Sp(g,R), Ze H,.
We assume that g > 2.
For any non-negative integer k, we call f(Z) a Siegel modular form of
weight k if
(1) f is a holomorphic function on H,,

(ii) f(X(Z)) = det(CZ + D) f(Z) for any X = [’C‘ g ] el,.

The space of all modular forms of the same weight k has a structure of a
vector space and we denote it by [I'y, k]. The direct sum of them becomes the
finite generated graded algebra and we denote it by A(I'y) := @[y, k).

We use the classical notation for the thetas, i.e. for (7,z) e Hy x C?,

0[;](1,2) = Z exp2ni(%r[x+%a] + <x+%cx,z+%ﬁ>)

xeZ?

where (x,y) denotes the standard scalar product, z[x] =’ xtx and i denotes v/ —1.
The elements o and f of Z¢ are also regarded as elements in Fj with entries

a+2p] [a} g
0 and 1. Here we remark that 0[ =0 —1)\%9,
g+2g) =g

It is well known that 0[;](1, z) is an analytic function on H, x CY.

The 0[;] = 6’[;](1, 0) are called the theta constants.

In the case of g =2, there exists the following 10 even pairs of «,f, i.e.,
(-D)P =1

00 0,000’00 O],O[O 0]’0[0 1,91 0,01 1’
00 01 1 0 11 0 0 00 0 0
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Now we define © :=[],,., 0 {;] Here we note that the degree of ® is 10.

We use this ® to describe our problem (posed by B. Runge).

Finally we have to prepare the definition of a code. A code C means a linear
subspace C of Fj, when its dimension k and the minimal weight d, it is denoted
by [n,k,d]. Where the weight d means the number of entries 1 in an element « of
a code C. A code is called doubly-even if the weight of every element of the code
is divisible by 4. A code C is called the self-dual when it coinsides with its dual

L = {xeF}|<{x,y)> =0 for any y € C}, where {x,y) means the standard inner
product.

§2. The relation between the Siegel modular group I'y and the corresponding
finite group

We can choose the following generator of I'y:

L ST O L] e
e ([ )G 5l seman)

On the other hand, the thetas of second order are given by

fo(7) = [ ] Zepom( [x—i—%a])

xeZf

for ae Z9, where i denotes v —1.
The function f, depends only on a mod2, here a is considered also as the
element of Fj.

The action of I'; on thetas of second order f, = 0[3} (27,0) is the following.

I, §
PROPOSITION 2.1 (see [3], p. 60). (1) For o = [(“; I ] eT,, a(f,) =iskf,
g

with Sla] =" aSa. Y,
(2) We define the 29 x 29-matrix T, by T, := ( 5 l) ((—1)<a’b>)a,b e Fj.

0 I
~I, 0

Then J = [ } acts on f, as follows:

J(f,) = Vdet(—=1) > (Ty), 1

beF]

for f, = em (27,0).
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Then we can consider the following 29 x 29-matrix Ds:

Ds = diag(iS19) for ae F§, and we define H, := (T,, Ds).

Here H, acts faithfully on the vector space generated by f,, ae Fj and
H,;/{ £ 1} acts on the algebra C[ﬁ,fb]a’bepzy.

Then the following theorem is known.

ProprosITION 2.2 (see [3], p. 60). There exists the surjective group homo-

morphism ¢ : Ty — Hy/{£1} satisfying ¢(J) =T, and ¢(c) = a([g’ }g}) -
g

Dg with the notations in proposition 2.1.

By the surjective group homomorphism ¢ in above proposition 2.2, the
subgroup I';(1,2) of I'; corresponds to the following finite group G-

1+N\[L I
G=<S4,diag(il,il,il,-_0-1),M1=( +’)[2 2]>
2 )| —n

where S; denotes the symmetric group of degree 4.

§3. Runge’s conjecture

From above proposition 2.1 and proposition 2.2 §2, B. Runge proved the
following theorem 3.1 about the correspondence between the ring of modular
forms and the invariant ring of some finite group by using the theta functions (see

3D

THEOREM 3.1 (B. Runge). For any element a = (ay,...,a,) in F3, we define
the function
g
Yo : Fl x - xF} — Z,

by
Yo(yis---0%g) i= #{ila= (i1, 79}
where
u 0 Yig
AL |
Y1 " Vng

Then for a self-dual doubly-even code C, the polynomial of 29-variables
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Pg(C) — Z H faYa()’l ----- yg)’

(V13- 74)€C9 aeF]
with the thetas of second order

a

IRUREY
becomes a modular form ( for the full modular group) of weight k = n/2.

From the fact in [1], p. 177, the fact in [2], theorem 7.1 in p. 200, the
statement of p. 201 and Lemma 2.1 of p. 180 in [4], the space generated by the
polynomials P>(C) for C = C+ becomes the invariant ring C[f,;a € F2] % for
L
A
of G = ¢(I'5(1,2)) and W of G’ differ by an eight root of unity. Furthermore,
from the arguement in p. 202, p. 203 in [4], for our case of G = ¢(I'2(1,2)),
A(T2(1,2)) = @ «[T2(1,2),k] corresponds to a certain subring of C[f,,a € F2,@)]

I .
G' = <S4,diag(i1, +1,+1,+1), W = 1/\/5[[2 ]>, where the matrix M,
‘ 2

where ® = ne,,e,,e[“].
B
Here, let us recall the related facts from the invariant theory.
ProposITION 3.2 (in [3], p. 76). Let G be a finite group acting on a poly-

nomial ring A = C[X1,...,X,] and if R = A€ is the invariant ring, it is known that
R is of the type: |

R = C[gl,---,gr] @C[gl,---,gr]gr-i-l @ @C[gl,u-,gr]gn (rSl’l)

where each g; is a homogeneous polynomial of degree d;.
We denote by R(; the homogeneous part of degree | in R. Then we have

. 1 + Zi:r wuh )'di
(DG(A) = Zdzmc R(l)ll = tho v
1>0 Hi=l,...,r(1 — 4 )

In [4], p. 203, B. Runge calculated <I>¢(r2(1,2))(\/1) as follows:

1+16+18+110+119+2‘21+123+129
(1=2H%1 =250 - 1"

Dyry(1,2) (V) =

and he remarked that this Poincaré series accords with [2], p. 405. Then he
described the following conjecture:
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ConNJECTURE (Runge) (in [4], p. 203). The ring @®x[I'2(1,2),k] has the
following graded ring structure.

®:[T2(1,2),k] = C[P3, P3Ps, P2P2, P, P}, P, Pg, P13, P23®, P3,0, P350]
= C[P3, P¢, Ps, P13

@ C[P3, P¢, Pg, P12) P3Ps
® C[P3, P{, Ps, P1y) P}P?
® C[P3, P, Py, Pyy) P, P}
@ C[P3, P, Ps, P12]P%®
@ C[P3, P¢, Py, P15)P3,©
@ C[P3, P¢, Ps, P12] P3®
® C[P3, P¢, Pg, P12)Oss

o

B

is a certain polynomial of degree 58, product of such P;’s and ©.

where @ = ne,,e,,a[ ], P; is a certain homogeneous polynomial of degree i and Qsg

In this note, we give an affirmative answer about the conjecture.
Actually B. Runge showed in the case of even weight related to this con-
jecture that:

THEOREM 3.3 (Runge) (see [4], p. 202). The ring @, x[I'2(1,2),k] has the
following graded ring structure.

@ 2x[T2(1,2), k] = C[P3, P3Ps, P3P, PP}, P¢, Pg, Pyy)
= C[P3, P{, Pg, P13
@® C|[P3, P, Pg, Py3)P3Ps
@ C[P;, P, Ps, P)| PP}

@ C[P3, P§, Py, Ppo] P2 P}
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where each P; are the following polynomials:
Py =(2),
Pg = (6) — 5(4,2) + 30(2,2,2),
Pg = (8) + 14(4,4) + 168(2,2,2,2),
and
Py; = (12) — 33(8,4) + 330(4,4,4) + 792(6,2,2,2)

where

(a1,a2,a3,a4) = > IT o

o€ Ss/Stab(ay a3,a3,a4) i=1,...,4

Here we put f, =f[g], N =f[?], 5 =f“, /3 -—-fm.

1
0

In this case, the corresponding finite group G = ¢(I'2(1,2)) is given as
follows.

+1 10 1 0
+1 1+il0 1 0 1
G-<S4, . Mi=——|1 0 _ >cGL(4,C).
+1 01 0 -1

By theorem 3.3, what we have to consider are homogeneous polynomials of
odd weight.

§4. The calculations and the result

By the invariance of the action of S4 and diag( + 1, + 1, £ 1, + 1), we may
put
P28 = Z Cal,az,a3,a4(a1,a2,a3,a4)A;

a1+a2+_a; +ays=28 .
ay,a»,a3,a4 are different odd integers

A
P32 = Z Cal,az,a3,a4(al,a2,a3,a4)

a+ay+az+as=32 ]
ay,ay,a3,a4 are different odd integers

and

A
P36 = Z Calﬁa21a3)a4(al7az,a37a4)

a+ax+az+as=36 )
a1, as,as,as are different odd integers
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where C,, 4,.4,.0,’S are the constants of rational integers and

(a1,a2,a3,a4)" == _ sign(o) . H (fii)e.

oES, 1,..., 4

By the invariance of the action of M), we calculate using the computer,
nonzero alternating polynomials P,g, P3; and P3¢ as follows:

Py =(19,5,3, 1)4 = 3(17,7,3,1)* + (15,9,3,1)*
- 6(15,7,5,1)4 + 5(13,11,3,1)* + 16(13,9,5,1)"

—54(13,7,5,3)* +13(11,9,7, 1)4 — 39(11,9, 5, 3)4,

Pn=(21,7,3, D)4 =7(19,9,3, )4 + 21(17,11,3,1)* - 63(17,7, 5, 3)*
— 35(15,13,3,1)* — 18(15,9,7,1)* + 203(15,9, 5,3)* + 63(13,11,7,1)#
—294(13,11,5,3)% — 322(13,9,7,3)* + 2457(11,9,7, 5)4
and
Py = 15(25,7,3,1)* — 75(23,9,3, 1) + 46(23,7,5,1)* + 120(21,11,3,1)"
—276(21,9,5,1)* — 1074(21,7,5,3)* + 644(19,13,3,1)* — 135(19,9,7,1)"
+1610(19,9,5,3)4 — 210(17,15,3, 1) — 644(17,13,5,1)4
+266(17,11,5,3)4 — 1665(17,9,7,3)* + 1254(15,13,7,1)4
—1330(15,13,5,3)4 + 1956(15,11,9,1)* — 8736(15,11,7,3)"
+ 34690(15,9,7,5)* — 15750(13, 11,9, 3)4 + 20930(13, 11,7, 5)".

So we have @ [l'2(1,2),k] contains C[P3, P3Ps, P3P2, PP}, P¢, P, P13,
P30, P3,0, P3s®] as a subring.
Furthermore we remark that

T+ A8 28 2104210 4 220 4 22 41 4%

Dy, 1.2 (VA) = (421 - (1 — 17

= 14+22%+225+423 +52194.9412 49214 1 152164 17418 4219 423,20

+ A1 427222 4328 43641 1345 439424642 +74%P+. ... .. ,
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and we checked that

Qus := P3PsPss = 15(37,7,3,1)* — 105(35,9,3, 1)* + 16(35,7,5,1)"
+15(33,11,3,1)* — 128(33,9, 5, 1)* — 821(33,7,5,3)*
+615(31,13,3,1)* + 144(31, 11, 5, 1) + 3590(31,9, 7, 1)"
+ 5681(31,9,5,3)% — 405(29,15,3, 1) + 512(29, 13,5, 1)4
—2633(29,11,7, 1) + 7258(29, 11, 5,3)* — 21320(29,9, 7, 3)4
— 1485(27,17,3,1)* — 944(27,15,5,1)* +103(27,13,7,1)"
+ 182(27,13,5,3)4 — 31106(27, 11,9, 1)* — 111872(27,11, 7, 3)*
— 68689(27,9,7,5)4 + 1275(25,19,3,1)* — 640(25,17,5,1)4
+ 18826(25,15,7,1)* + 377(25,15,5,3)* — 12800(25,13,9,1)"
+ 88000(25,13,7,3)* — 136786(25,11,9,3)* — 104221(25,11,9,5)4
+ 1875(23,21, 3, 1)* 4+ 2000(23, 19, 5, 1) — 24412(23,17,7,1)4
—29837(23,17,5,3)" +11122(23,15,9,1)* + 346624(23,15,7,3)4
+57819(23,13,11, 1) + 207430(23,13,9, 3)* — 296200(23,15,7,3)"
+ 688701(23,11,9,5)1 — 36913(21,19,7,1)* — 30788(21, 19, 5, 3)*
— 85376(21,17,9,1)* + 82478(21,17,7,3)* + 178738(21,15,11,1)*
+209085(21, 15,9,3)* — 1453960(21, 15,7,5)* — 417746(21,13, 11, 3)"
+243712(21,13,9,5)* + 4563377(21,11,9,7)* + 92575(19,17,11,1)4
— 108025(19,17,9,3)* — 1194129(19, 17,7, 5)* + 230501(19, 15, 13, 1)4
— 874752(19,15,11,3)* — 1942435(19, 15,9, 5)* — 2084558(19, 13, 11, 5)“
+ 8801090(19,13,9,7)* — 319143(17,15,13,3)*4 — 2492914(17, 15, 11, 5)*

+ 4411534(17,15,9,7)4 + 4772515(17,13,11,7)4 + 1161508(15, 13, 11, 9)4

is different from any linear combinations of the following polynomials:
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PiP1a Py = (39,5,3, 1)1 + (37,7,3,1)" — 38(35,9,3, )" + 813(35,7,5,1)*
—38(33,11,3,1)" + 760(33,9, 5, 1)* + 733(33,7, 5,3)*
+142(31,13,3, )4 + ... ,

PgP12Pys = (39,5,3,1)1 —3(37,7,3,1)* — 18(35,9,3, 1) + 805(35,7,5,1)*
+62(33,11,3,1)* — 2360(33,9,5,1)* — 2319(33,7, 5, 3)"
—518(31,13,3, )" +...... ,

PgP}P3 = (37,7,3,1)" = 3(35,9,3, 1) + 4(35,7,5,1)* + 13(33,11,3,1)*

~16(33,9,5,1)4 = 71(33,7,5,3)* = 31(31,13,3, D)4 + ... ,

PiPy, = (37,7,3,1)* —7(35,9,3,1)* +49(33,11,3,1)* — 63(33,7,5,3)"
—231(31,13,3,1)* +28(31,13,3, )" + ... ... ,

P3Py = (37,7,3, 1) +(35,9,3, )% — 7(33,11,3,1)* 4 56(33,9,5,1)*
—63(33,7,5,3)1 = 596(31,13,3, )4 +...... ,
and
Pi2Py = 15(37,7,3, 1)1 — 75(35,9,3, 1)* + 46(35,7,5,1)* — 375(33,11,3,1)*

—276(33,9,5,1)% — 1074(33,7,5,3)* +2475(31,13,3, )4 + ... ...

Furthermore we get these 7 polynomials x® as a basis of the 7-dimensional
vector space Ry, i.e.

Ry9 = {Q43® = P3PsP3s®, P;P1,P3®, Py P1, Ps®, Py P3 P3,0,
P§ P30, P; PO, P12P3®).

(We checked that P2P2P3,® and P,P}P»® are linear combinations of above
7 polynomials x@.)
So we have the following decomposition:
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C[P3, P3Ps, P2P2, PP}, P¢, Py, P12, P33®, P30, P30|
= C[P3, P{, Pg, P13
® C|P3, P¢, Pg, P13)P; Ps
@ C[P;, P, Py, Py, P3P}
® C[P;, P, Pg, P;)] P, P;
@ C[P;3, P, Ps, P15]P%®
@ C[P3, P¢, Pg, P15| P3,©
® C[P3, P¢, Pg, P15 P3®

@ C[P;3, P, Ps, P13] Q430

and using this result, we see that the Poincaré series of ®,[["2(1,2),k] and that of
this subring coinside. This implies that

®«[T2(1,2),k] = C[P5, P3Ps, P2P2, PP}, P}, Pg, P13, P3®, P3,®, P350]
= C[P3, P¢, Ps, P13
® C|P3, P§, Pg, P15 P3 Ps
@ C[P4, P¢, Pg, Py P3 P2
@ C[P5, P¢, Ps, P1| P2 P}
@ C[P5, P¢, Ps, P13)P%®
@ C[P5, P{, Pg, P15]P3,©
® C[P5, P§, Ps, P13]P3®

@ C[P3, P¢, P, P13 P3 PsP3®.
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