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TOTALLY REAL SECTIONAL CURVATURE OF A REAL
HYPERSURFACE 1N A QUATERNIONIC SPACE FORM

By

Miguel ORTEGA and Juan de Dios P\’EREZ

Abstract. We characterize the real hypersurfaces of a non-flat
quatemionic space form with constant quatemionic sectional curva-
ture as the ones which have constant totally real sectional curvature.

1. Introduction

The sectional curvature is a basic tool when studying the geometry of a
Riemannian manifold. Probably, the most studied manifolds are the real, complex
and quatemionic space forms. These manifolds are characterized by the constancy
of the sectional curvature, the holomorphic sectional curvature and the qua-
temionic sectional curvature respectively. Besides, in quatemionic kaehlerian
manifolds, it is well-known that the constancy of quatemionic sectional curvature
is equivalent to the constancy of totally real sectional curvature. In this way, we
have considered the problem of studying whether this property is inherited to real
hypersurfaces of a non-flat quatemionic space form $QM^{m}(q),$ $m\geq 3,$ $q\neq 0$ . Real
hypersurfaces with constant quatemionic sectional curvature of $QM^{m}(q),$ $q\neq 0$ ,
have been classified by A. Martinez in [3] when $q>0$ , i.e., in the quatemionic
projective space $QP^{m}(q)$ , and by the authors in [6] when $c<0$ , i.e., in the
quatemionic hyperbolic space $QH^{m}(q)$ .

As $QM^{m}(q),$ $q\neq 0,$ $m\geq 3$ , is a quatemionic Kaehlerian manifold, there
exists a 3-dimensional vector bundle $\hat{V}$ of tensors of type $(1, 1)$ and a local basis
of almost Hermitian stmctures $\{J_{1}, J_{2}, J_{3}\}$ on $QM^{m}(q)$ . Let $M$ be a connected
real hypersurface of $QM^{m}(q),$ $q\neq 0,$ $m\geq 3$ , and $N$ a local normal unit vector
field on $M$. We shall denote $U_{k}=-J_{k}Nk=1,2,3$ . If $X$ is a tangent vector field
to $M$, we shall write $J_{k}X=\phi_{k}X+f_{k}(X)N,$ $k=1,2,3$ , where $\phi_{k}X$ is the tan-
gential component of $J_{k}X$ . The maximal quatemionic distribution will be denoted
by $D$ .
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Given a vector $X$ tangent to $M$, we shall denote $Q(X)=$

$Span\{X, \phi_{1}X, \phi_{2}X, \phi_{3}X\}$ . If $\pi$ is a 2-plane tangent to $M$, we shall say that $\pi$ is
totally real if for any orthonormal basis {X, $Y$} of $\pi,$ $Q(X)\perp Q(Y)$ and $\pi$ is
included in $D$ . Let denote by $T(\pi)=T(X, Y)$ the sectional curvature of any
totally real 2-plane $\pi=Span\{X, Y\}$ tangent to $M$. We shall call it the totally real
sectional curvature of $M$.

We recall that $M$ is mled if $D$ is integrable. We shall denote by $D^{\perp}$ the
orthogonal complement of $D$ in $TM$. We need to write $q=4\epsilon/k^{2}$ , where $\epsilon=\pm 1$

is the sign of $q$ and $k\neq 0$ is a real constant. Our results are

THEOREM. Let $M$ be a real hypersurface of $QM^{m}(q),$ $q\neq 0,$ $m\geq 3$ , on which
$T$ is constant. Then $M$ is of one of the following:

a) Ruled, $q=4T$ .
b) If $\epsilon=1$ , an open subset of a tube of radius $r>0$ over a totally geodesic

$QP^{n-1}(q),$ $T=(q/4)+(1/k^{2})\cot^{2}r$ .
d) If $\epsilon=-1$ then $M$ is an open subset of either
d.l) A tube of radius $r>0$ over a totally geodesic $QH^{m-1}(q),$ $(q/4)<T=$

$(q/4)+(1/k^{2})\tan h^{2}r<q/4+1/k^{2}$ .
$d.2)$ A horosphere, $T=(q/4)+(1/k^{2})$ .
$d.3)$ A geodesic hypersphere, i.e., a tube of radius $r>0$ over a point,

$(q/4)+(1/k^{2})<T=(q/4)+(1/k^{2})\cot h^{2}r$ .

Given a 2-plane $\pi$ tangent to $M$, we say that $\pi$ is quatemionic if for any
orthonormal basis {X, $Y$} of $\pi,$ $Q(X)=Q(Y)$ and $\pi$ is included in $D$ . We recall
that $M$ has constant quatemionic sectional curvature if the sectional curvature of
any tangent quatemionic 2-plane is constant. The next corollary relates this
definition to the Theorem.

COROLLARY. Let $M$ be a real hypersurface of $QM^{m}(q),$ $q\neq 0,$ $m\geq 3$ . Then
$M$ has constant quaternionic sectional curvature if and only if $M$ has constant
totally real sectional curvature.

REMARK 1. Let $\pi$ be a totally real 2-plane tangent to $M$. The condition $\pi$ is
included in $D$ ’ has the goal of preventing $\phi_{k}\pi$ from being l-dimensional for some
$k=1,2,3$ .

If the quatemionic dimension of the quatemionic space form is $m=2$ , there
are no totally real 2-planes tangent to $M$. Therefore, the totally real sectional
curvature is meaningful when $m\geq 3$ .
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2. Preliminaries

Let $\tilde{\nabla}$ be the Levi-Civita connection of $QM^{m}(q),$ $q\neq 0,$ $m\geq 3$ . As this is a
quatemionic Kaehlerian manifold, there exists a 3-dimensional vector bundle $\hat{V}$ of
tensors of type $(1, 1)$ and a local basis of almost Hermitian stmctures $\{J_{1}, J_{2},J_{3}\}$

on $QM^{m}(q)$ which satisfy

(2.1) $J_{1}^{2}=J_{2}^{2}=J_{3}^{2}=-Id$ , $J_{1}J_{2}=-J_{2}J_{1}=J_{3}$

(2.2) $\tilde{\nabla}_{X}J_{i}=qk(X)J_{j}-q_{j}(X)J_{k}$ $i=1,2,3,$ $X\in TQM^{m}(q)$

(2.3) $(dq_{i}+q_{j}\wedge qk)(X, Y)=4g(X,J_{i}Y)$ $j=1,2,3,$ $X,$ $Y\in TQM^{m}(q)$

where $(i, j, k)$ is a cyclic permutation of (1,2,3) and $qkk=1,2,3$ are local
l-forms on $QM^{m}(q)$ .

Let $M$ be a connected real hypersurface of $QM^{m}(q),$ $q\neq 0,$ $m\geq 3$ , and $N$ a
local normal unit vector field on $M$ . We shall denote $U_{k}=-J_{k}Nk=1,2,3$ . If $X$

is a tangent vector field to $M$, we shall write $J_{k}X=\phi_{k}X+f_{k}(X)N,$ $k=1,2,3$ ,
where $\phi_{k}X$ is the tangential component of $J_{k}X$ and $f_{k}(X)=g(X, U_{k}),$ $k=1,2,3$ ,
where $g$ is the induced metric on $M$. The distribution $D^{\perp}$ is locally spanned by
the set $\{U_{1}, U_{2}, U_{3}\}$ . By (2.1),

(2.4) $\phi_{k}^{2}X=-X+f_{k}(X)U_{k}$ $f_{k}(\phi_{k}X)=0$ , $\phi_{k}U_{k}=0$ , $k=1,2,3$ .

for any $X$ tangent to $M$.
(2.5) $\phi_{i}X=\phi_{j}\phi_{k}X-f_{k}(X)U_{j}=-\phi_{k}\phi_{j}X+f_{j}(X)U_{k}$ $j=1,2,3$

$f_{i}(X)=f_{j}(\phi_{k}X)=-f_{k}(\phi_{j}X)$

for any $X$ tangent to $M$, where $(i, j, k)$ is a cyclic permutation of (1, 2, 3). It is
also easy to check

$\phi_{i}U_{j}=U_{k}=-\phi_{j}U_{i}$

(2.6)
$g(\phi_{i}X, Y)+g(X, \phi_{i}Y)=0$ , $g(\phi_{i}X, \phi_{j}Y)=g(X, Y)-f_{i}(X)f_{i}(Y)$

for any $X,$ $Y$ tangent to $M,$ $i=1,2,3(i, j, k)$ being a cyclic permutation of
(1, 2, 3). If we denote by $\nabla$ the induced connection of $QM^{m}(q)$ on $M$, the Gauss
and Weingarten formulae are given respectively by

(2.7) $\tilde{\nabla}_{X}Y=\nabla_{X}Y+g(AX, Y)N$

(2.8) $\tilde{\nabla}_{X}N=-AX$

for any $X,$ $Y$ tangent to $M$, where $A$ is the Weingarten endomorphism of the
immersion.
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We shall denote $UD(p)=\{X\in T_{p}M:f_{k}(X)=0, k=1,2,3, \Vert X\Vert=1\}$ . The
Gauss equation allows us to compute the following expression of the totally real
sectional curvature of $M$

(2.9) $T(X, Y)=\frac{q}{4}+g(AX, X)g(AY, Y)-g(AX, Y)^{2}$

where $X,$ $Y\in UD,$ $Span\{X, Y\}$ is totally real and $g(X, Y)=0$ . A similar formula
of the sectional curvature of any quatemionic 2-plane $\pi$ tangent to $M$ is given by

(2.10) $H(X, Y)=q+g(AX, X)g(AY, Y)-g(AX, Y)^{2}$

where $\pi=Span\{X, Y\},$ $\{X, Y\}$ being an orthonormal basis of $\pi$ .
In [5], mled real hypersurfaces are characterized by the condition $g(AX, Y)=$

$0$ for any $X,$ $Y\in D$ .
Finally, we need the following results to prove ours.

THEOREM 1 [3]. Let $M$ be a real hypersurface of $QP^{n}(q),$ $q>0,$ $m\geq 3$ ,
which has constant quaternionic sectional curvature H. Then $M$ is one of the
following cases:

a) An open subset of a geodesic hypersphere, $4H>q$ .
b) Ruled, $4H=q$ .

THEOREM 2 [6]. Let $M$ be a real hypersurface of $QH^{m}(q),$ $q<0,$ $m\geq 3$ ,
which has constant quaternionic sectional curvature H. Then $M$ is one of the
following cases:

a) An open subset of a geodesic hypersphere, $i.e.$ , a tube of radius $r>0$ over a
point, $(q/4)+(1/k^{2})<H=(q/4)+(1/k^{2})\cot h^{2}r$ .

b) An open subset of a horosphere, $H=(q/4)+(1/k^{2})$ .
c) An open subset of a tube of radius $r>0$ over a hyperplane $QH^{m-1}$ ,

$(q/4)<H=(q/4)+(1/k^{2})\tan h^{2_{\gamma}}<(q/4)+(1/k^{2})$ .
d) Ruled, $4H=q$ .

REMARK 2. In the reference [3], Theorem 1 can be found with the hypothesis
$m>4$ . Anyway, the proof of Theorem 2 can be repeated with slight differences
for the cases $m=3$ and $m=4$ .

3. Proof of the Theorem

Let $p$ be a point of $M$. Take $X\in UD(p)$ . Let $Y(t),$ $t\in(-\delta,\delta)$ , be a curve
in $D(p)$ such that $Span\{X, Y(t)\}$ is totally real, $Y(O)=Y$, $Y^{\prime}(0)=Z$ and
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$g(Y, Z)=0$ . By (2.9),

$\frac{d}{dt}g(AX, X)g(AY(t), Y(t))-g(AX, Y(t))^{2}=0t=0$

A straightforward computation shows

(3.1) $0=g(AX, X)g(AY, Z)-g(AX, Y)g(AX, Z)$

for any $X,$ $Y,$ $Z\in UD(p)$ such that $Span\{X, Y\}$ and $Span\{X, Z\}$ are totally real,
and $g(Y, Z)=0$ . In the sequel, we shall denote by $(*)_{D}$ the component of $(*)$ in
$D$ . Take $\{U_{1}, U_{2}, U_{3}, E_{1}, \ldots, E_{4m-4}\}$ an orthonormal basis of $T_{p}M$ such that

(3.2) $(AE_{i})_{D}=a_{i}E_{i}$ $i=1,$ $\ldots,4m-4$

where $a_{i}$ are functions on $M$. Choose $i\in\{1, \ldots,4m-4\}$ . If we substitute $X=E_{i}$

in (3.1),

(3.3) $0=a_{i}g(AY, Z)$

where $Y,$ $Z\in UD,$ $Span\{Y, Z\}\perp Q(E_{i})$ and $g(Y, Z)=0$ . From (3.3), we have to
discuss two cases:

A) $a_{1}=\cdots=a_{4m-4}=0$ .
B) There exists $i\in\{1, \ldots, 4m-4\}$ such that $a_{j}\neq 0$ .
We begin by studying case A). In such a case, formulae (3.2) show

$g(AX, Y)=0$ for any $X,$ $Y\in D$ , and therefore $M$ is mled.
Next, we pay attention to case B). We can suppose without losing any

generality $i=1$ and $a_{1}\neq 0$ in an dense open subset of $M$. From (3.3),

(3.4) $g(AY, Z)=0$

for any $Y,$ $Z\in D$ such that $Y,$ $Z\in Q(E_{1})^{\perp}$ and $g(Y, Z)=0$ . Given $Y,$ $Z\in UD$ in
these latter conditions, we put $X=\phi_{k}E_{1},$ $k=1,2,3$ in (3.1) and we obtain

(3.5) $0=g(A\phi_{k}E_{1}, Y)g(A\phi_{k}E_{1}, Z)$ $k=1,2,3$ .

for any $Y,$ $Z\in UD$ such that $Y,$ $Z\in Q(E_{1})^{\perp}$ and $g(Y, Z)=0$ . Besides, the vectors
$Y^{\prime}=(1/\sqrt{2})(Y+Z),$ $Z^{\prime}=(1/\sqrt{2})(Y-Z)$ satisfy the conditions of (3.5), so we
can introduce them in that equation to obtain $g(A\phi_{k}E_{1}, Y)^{2}=g(A\phi_{k}E_{1},Z)^{2}$ . This
and (3.5) yield

(3.6) $g(A\phi_{k}E_{1}, Y)=0$ for any $Y\in D\cap Q(E_{1})^{\perp}$ , $k=1,2,3$ .

Moreover, given $Y,$ $Z\in UD$ which satisfy the conditions of (3.4), the vectors
$Y^{\prime}=Y+Z$ and $Z^{\prime}=Y-Z$ also satisfy them, and if we introduce these vectors



232 M. $0RTEGA$ and J. P\’EREZ

in (3.4), $0=g(A(Y+Z), Y-Z)$ and then

(3.7) $g(AY, Y)=g(AZ, Z)$

for any $Y,$ $Z\in D$ such that $Y,$ $Z\in Q(E_{1})^{\perp}$ and $g(Y, Z)=0$ . Now, from (3.4),

(3.6) and (3.7) there exists a local orthonormal basis $\{U_{1},$ $U_{2},$ $U_{3},$ $E_{1},$ $\phi_{1}E_{1},$ $\phi_{2}E_{1}$ ,
$\phi_{3}E_{1},$ $\ldots,E_{m-1},$ $\phi_{1}E_{m-1},$ $\phi_{2}E_{m-1},$ $\phi_{3}E_{m-1}$ } of $TM$ such that

$(AE_{1})_{D}=a_{1}E_{1}$ $a_{1}\neq 0$ ,

(3.8) $(A\phi_{k}E_{1})_{D}\in Span\{\phi_{1}E_{1}, \phi_{2}E_{1}, \phi_{3}E_{1}\}$ $k=1,2,3$ .

$(AX)_{D}=bX$ for any $X\in D\cap Q(E_{1})^{\perp}$

where $b$ is a function on $M$.
Let us suppose that the function $b$ vanishes in an open subset of $M$. If we

take $X=E_{1},$ $Y=E_{2}$ , by (2.9) and (3.8) we see

(3.9) $4T=q$ .

Next, we consider the vectors $X=(1/\sqrt{2})(E_{1}+E_{2}),$ $Y=(1/\sqrt{10})(2E_{1}+\phi_{k}E_{1}-$

$2E_{2}-\phi_{k}E_{2})$ . It is easy to check $Span\{X, Y\}$ is totally real. Introducing them in
(2.9) and bearing in mind (3.8) and (3.9), easy computations yield

(3.10) $0=g(A\phi_{k}E_{1}, \phi_{k}E_{1})$ $k=1,2,3$

Now, given $i=1,2,3$ , we choose $X=(1/\sqrt{2})(\phi_{j}E_{1}+\phi_{i}E_{2})$ and $Y=$

$(1/\sqrt{10})(2\phi_{i}E_{1}+\phi_{k}E_{1}-2\phi_{i}E_{2}-\phi_{k}E_{2})$ where $k\in\{1,2,3\}\backslash \{i\}$ . By virtue of (2.9),

(3.8), (3.9) and (3.10) we obtain

(3.11) $0=g(A\phi_{i}E_{1}, \phi_{k}E_{1})$ $i\neq k$ .

The assumption $b=0$ and formulae (3.8), (3.10) and (3.11) yield there exists a
tangent vector field $E$ and a non-vanishing function a in an open subset of $M$

such that

(3.12) $(AX)_{D}=ag(X, E)E$ for any $X\in D$

If we introduce (3.12) in (2.10) we see that $M$ has constant quatemionic sectional
curvature $q$ . By Theorem 1 and Theorem 2, $M$ must be mled, and therefore
$g(AX, Y)=0$ for any $X,$ $Y\in D$ . This implies that the function a must vanish,
which is a contradiction.

As we have shown, $b$ does not vanish in an dense open subset of $M$. Now we
choose $X=E_{2}$ and $Y,$ $Z\in Q(E_{1})\cap UD$ such that $g(Y, Z)=0$ . Introducing them
in (3.1) we see $0=bg(AY, Z)$ , that is to say, $g(AY, Z)=0$ for any $Y,$ $Z\in Q(E_{1})$
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such that $g(Y, Z)=0$ . From this and (3.8) it is easy to check $g(AX, Y)=0$ for
any $X,$ $Y\in D$ such that $g(X, Y)=0$ . If $X,$ $Y$ are unitary, the vectors $X+Y$ and
$X-Y$ are orthogonal, so $g(A(X+Y), X-Y)=0$ , which implies $g(AX, X)=$

$g(AY, Y)$ . From this and (3.8) we deduce

(3.13) $g(AX, Y)=bg(X, Y)$ for any $X,$ $Y\in D$

where $b$ is a non-vanishing function in an dense open subset of $M$. Introducing
(3.13) in (2.9) we obtain $4T=q+4b^{2}$ , which implies that $b$ must be constant.
From this, (3.13) and (2.10), $M$ has constant quatemionic sectional curvature.
But all model spaces of Theorem 1 and Theorem 2 have constant totally real
sectional curvature. This finishes the proof. $\blacksquare$
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