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EXISTENCE OF GLOBAL SOLUTIONS TO NONLINEAR
MASSLESS DIRAC SYSTEM AND WAVE EQUATION WITH

SMALL DATA

By

Nickolay TZVETKOV*

Abstract. We prove existence of global solutions to a semilinear
massless Dirac system with small initial data. We study solutions in
generalised Sobolev spaces suggested by S. Klainerman. Our
approach is based on using conservation law of charge together with
Sobolev type weighted estimates for the spinor field. Our result seems
to be sharp in a view of blowing-up results obtained by F. John (see

[7]). We also study decay properties of the spinor field.
With similar methods we prove global existence for a nonlinear

wave equation in three space dimension. The same equation was
studied by T. Sideris [14] and H. Takamura [15]. They proved global
existence for spherically symmetrical initial data. In this work we
remove this condition on the initial data.

1. Introduction

We consider the Cauchy problem for the semilinear massless Dirac equation
in Minkovski space-time $R^{1+3}$ :

$\mathscr{D}\psi=F(\psi)$ ,
(1)

$\psi(0,x)=\eta(x)$ ,

where $\mathscr{D}\equiv i\gamma^{\mu}\partial_{\mu}$ (with usual summation convention) is the Dirac operator,
$\partial_{0}=\partial_{t},$ $\partial_{j}=\partial_{x_{j}},$ $1\leq j\leq 3,$ $\psi=(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4})^{t}$ is the spinor field and $\gamma^{\mu}$ are the
Dirac matrices. Dirac matrices satisfy the following commutator relations:
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$)^{\mu}\gamma^{v}+\gamma^{v})^{\parallel}=2g_{\mu v}I_{4}$ ,

$ 0\leq\mu$ , $v\leq 3$ ,

where $(g_{\mu v})=diag(-1,1,1,1)$ is the Minkovski metric and $I_{4}$ is the unit $4\times 4$

matrice.
For the nonlinearity $F=(F_{1},F_{2},F_{3}, F_{4})^{t}$ we assume $F(\psi)=O(|\psi|^{p})$ .
Various problems in quantum mechanics can be reduced to (1) (see [2]). We

are interested for which $p$ the Cauchy problem (1) has global solution. As an
extension of the preveous work [16] we prove that (1) has a global solution for
$p>2$ providing the initial data are sufficiently small with respect to suitable
Sobolev norms. With the method we prove global existence for $p>2$ we can
obtain local solution in the case $p=2$ . In a view of [7] one may conjecture that
this local solution blows-up in finite time for some nonlinearities $F(\psi)$ . If we
follow ideas of T. Sideris (see [14]), we have to require some symmetry of the
initial data $\eta$ (spherical symmetry is not appropriate for the case of Dirac
equation). One also may conjecture that global existence of (1) when $p=2$ could
be obtained if the nonlinearity $F$ satisfy some structural condition similar to the
well-known null condition of S. Klainerman (see Klainerman [10], Bachelot [1]).
In the case $p=2$ we show that for every $\epsilon>0$ , there exists $\eta$ such that $|\eta|_{L^{2}}=\epsilon$

and $|\psi(t, \cdot)|_{L^{2}}$ tends to $\infty$ in finite time (see Theorem 2).

We constmct global solutions of (1) for $p>2$ in generalized Sobolev spaces
following ideas of Klainerman (see [9], [10], [11]).

We introduce the following vector fields:

$\partial_{t}=\frac{\partial}{\partial t}$ , $\partial_{j}=\frac{\partial}{\partial x_{j}}$ , $1\leq j\leq 3$ ,

$\Omega_{0j}=t\frac{\partial}{\partial x_{j}}+x_{j^{\frac{\partial}{\partial t}}}$ , $1\leq j\leq 3$ ,

$\Omega_{ij}=x_{j}\frac{\partial}{\partial x_{i}}-x_{i}\frac{\partial}{\partial x_{j}}$ , $1\leq i,j\leq 3$ ,

$L=t\frac{\partial}{\partial t}+x_{1}\frac{\partial}{\partial x_{1}}+x_{2}\frac{\partial}{\partial x_{2}}+x_{3}\frac{\partial}{\partial x_{3}}$ .

The above vector fields are a part of the full conformal group in Minkovski space
time.

Since $\Omega_{\mu v}$ does not commute with the Dirac operator we introduce Fermi
vector fields (see [1]):
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$\hat{\Omega}_{\mu v}=\Omega_{\mu v}+\frac{1}{2}\gamma_{\mu}\gamma_{v}$ ,

$ 0\leq\mu$ , $v\leq 3$

Let us denote:

$\Gamma=(\Gamma_{1}, \ldots, \Gamma_{11})$ ,

where $\Gamma_{1},$ $\ldots\Gamma_{11}$ are $\partial_{\mu},$ $\Omega_{\mu v}$ and $L$ .

$\hat{\Gamma}=(\hat{\Gamma}_{1}, \ldots,\hat{\Gamma}_{11})$ ,

where $\hat{\Gamma}_{1},$ $\ldots,\hat{\Gamma}_{11}$ are $\partial_{\mu},\hat{\Omega}_{\mu v}$ and $L$ .
We have:

$[\Gamma_{i}, \Gamma_{j}]=c_{ij}^{k}\Gamma_{k}$ ,

$[\hat{\Gamma}_{j},\hat{\Gamma}_{j}]=\hat{c}_{ij}^{k}\hat{\Gamma}_{k}$ ,

$1\leq i$ , $j\leq 11$ ,

where $c_{ij}^{k},\hat{c}_{ij}^{k}$ are constants (see [9] and [1]) and $[\cdot, \cdot]$ is the usual commutator of
vector fields. Therefore the linear span of vector fields from $\Gamma$ forms a Lie
algebra. The same is tme for $\hat{\Gamma}$ .

If $\alpha=(\alpha_{1}, \ldots, \alpha_{11})$ is a multiindex, then we set:

$\Gamma^{\alpha}=\Gamma_{1}^{\alpha_{1}}\ldots\Gamma_{11}^{\alpha_{11}}$ ,

$\hat{\Gamma}^{\alpha}=\hat{\Gamma}_{1}^{\alpha_{1}}\ldots\hat{\Gamma}_{11}^{\alpha_{11}}$ .

We define the following norms:

$|u(t)|_{\Gamma,s,p}=\sum_{|\alpha|\leq s}|\Gamma^{\alpha}u(t, \cdot)|_{L^{p}}$
,

$|\psi(\iota)|_{\hat{\Gamma},s,p}=\sum_{|\alpha|\leq s}|\hat{\Gamma}^{\alpha}\psi(t, \cdot)|_{L^{p}}$
.

Further we set:

$\Vert u\Vert_{\Gamma,s,p}=\sup_{t\in R_{+}}|u(t)|_{\Gamma,s,p}$
,

$\Vert\psi\Vert_{\hat{\Gamma},s,p}=\sup_{t\in R+}|\psi(t)|_{\hat{\Gamma},s,p}$
,
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$W_{\Gamma}^{s,p}=\{u:\Vert u\Vert_{\Gamma,s,p}<\infty\}$ ,

$W_{\hat{\Gamma}}^{s,p}=\{\psi : \Vert\psi\Vert_{\hat{\Gamma},s,p}<\infty\}$

REMARK. For simplicity we shall omit in most of the cases the index $\Gamma$

(respectively $\hat{\Gamma}$ ) from norms $\Vert\cdot\Vert_{\Gamma,s,p}$ (respectively $\Vert\cdot\Vert_{\hat{\Gamma},s,p}$ ).

We have the following relation between elements of $\hat{\Gamma}$ and Dirac operator:

$[\mathscr{D},\hat{\Omega}_{\mu,v}]=0$ ,

$[\mathscr{D}, \partial_{\mu}]=0$ ,

$[\mathscr{D},L]=\mathscr{D}$ ,

$ 0\leq\mu$ , $v\leq 3$ .

Taking into account the above relation one can obtain the following form of the
conservation law of charge for Dirac equation:

LEMMA 1. If $\psi$ is such that:

$\mathscr{D}\psi=F$ ,

then for any $m\geq 0$ one has:

$|\psi(t)|_{m,2}\leq c(|\psi(0)|_{m,2}+\int_{0}^{t}|F(s)|_{m,2}ds)$ .

Now we can formulate our first result:

THEOREM 1. (a) Suppose that $p>2$ and the initial data of (1) satisfy:

(2)
$\sum_{|\alpha|\leq 2}|(1+|\cdot|)^{|\alpha|}\partial^{\alpha}\eta(\cdot)|_{L^{2}}\leq\epsilon$

.

If:
$X_{\delta}=\{\psi : \Vert\psi\Vert_{2,2}\leq\delta\}$ ,

then there exists $\epsilon_{0}>0$ such that for $p>2$ the initial value problem (1) has a
unique global solution in $X_{\delta}$ for $0<\epsilon\leq\epsilon_{0}$ , providing $\delta>0$ sufficiently small.

(b) If $p=2$ and the initial data satisfy (2) then we have:

$T_{\epsilon}\geq\exp(c/\epsilon)-1$ ,

where $T_{\epsilon}$ is the life span of the solution.
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(c) Suppose the initial data (1) satisfy:

$\sum_{|\alpha|\leq 2}|(1+|\cdot|)^{|\alpha|}\partial^{\alpha}\eta(\cdot)|_{L^{2}}+|(1+|\cdot|)^{p-1}\eta(\cdot)|_{L^{\infty}}+|(1+|\cdot|)^{p}\nabla\eta(\cdot)|_{L^{\infty}}\leq\epsilon$
.

Then (1) has global solution with the following decay property:

$|\psi(t, x)|\leq\frac{c}{(1+t+|x|)(1+|t-|x||)^{\kappa}}$

where $\kappa=\max(1/2,p-3)$ .

REMARK. It seems to be tme that the local solution obtained in part (b)

blows-up in finite time for some special nonlinearities.

We can prove the following.

THEOREM 2. Suppose the nonlinearity $F$ in (1) has the form:
$ F(\psi)=G(\psi)\gamma^{0}\psi$ ,

where $G(\psi)=O(|\psi|)$ and $G(\psi)\geq c|\psi|$ .
Then for every $\epsilon>0$ there exists $\eta$ , such that:

$|\eta|_{L^{2}}=\epsilon$

and the solution of (1) with initial data $\eta$ is such that $|\psi(t, \cdot)|_{L^{2}}$ tends to $\infty$ in finite
time.

REMARK 1. We can take for example:

$ F(\psi)=(|\psi_{1}|+|\psi_{2}|+|\psi_{3}|+|\psi_{4}|)\gamma^{0}\psi$ ,

$ F(\psi)=|\psi|\gamma^{0}\psi$ .

REMARK 2. If $F(\psi)=\langle\gamma^{0}\psi, \psi\rangle e$ or $F(\psi)=\langle\gamma^{0}\gamma^{5}\psi, \psi\rangle e$ , then due to
Klainerman and Bachelot (see [10] and [1]), one may conjecture that there exists
global solution of (1) (here $e$ is a constant vector and $\gamma^{5}=-i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}$ ).

In this paper we shall also consider the Cauchy problem for the nonlinear
wave equation:
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$u_{tt}-\Delta u=|u_{t}|^{v}$ ,

(3) $u(0, x)=f(x)$ ,

$u_{t}(0,x)=g(x)$ ,

where $(t, x)\in[0, \infty)\times R^{n},f,$ $g$ are the initial data and $\Delta$ is the Laplace operator
on $R^{n}$ . In [14] T. Sideris obtained global solution of (3) in the case $n=3$ for
$v>2$ requiring the initial data are spherically symmetric functions and they have
compact support. H. Takamura [15] removed the assumption on the support of
data for integer $v$ . The case of spherically symmetrical data is in fact one
dimensional problem and classical Sobolev inequalities are well adapted to the
Cauchy problem (3).

Here in the case $n=3$ we obtain solution of (3) for $v>2$ in generalised
Sobolev spaces with the same idea of the proof of Theorem 1. We have the
following.

THEOREM 3. (a) Suppose $n=3$ and the initial data of (3) satisfy:

$\sum_{|\alpha|\leq 3}|(1+|\cdot|)^{|\alpha|-1}\partial^{\alpha}f(\cdot)|_{L^{2}}+\sum_{|\alpha|\leq 2}|(1+|\cdot|)^{|\alpha|}\partial^{\alpha}g(\cdot)|_{L^{2}}\leq\epsilon$
.

Let $H_{D}$ be the closure of $C_{0}^{\infty}$ with respect to the seminorm:

$|1u\Vert_{H_{D}}=\Vert$ Vu $\Vert_{2,2}$

If:
$Y_{\delta}=\{u\in H_{D} : \Vert u\Vert_{H_{D}}\leq\delta\}$ .

then there exists $\epsilon_{0}>0$ such that for $v>2$ the initial value problem (3) has a
unique global solution in $Y_{\delta}$ for $0<\epsilon\leq\epsilon_{0}$ , providing $\delta>0$ sufficiently small.

(b) Suppose the initial data of (3) satisfy:

$\sum_{|\alpha|\leq 3}|(1+|\cdot|)^{|\alpha|-1}\partial^{\alpha}f(\cdot)|_{L^{2}}+\sum_{|\alpha|\leq 2}|(1+|\cdot|)^{|\alpha|}\partial^{\alpha}g(\cdot)|_{L^{2}}$

$+|(1+|\cdot|)^{v-1}f(\cdot)|_{L^{\infty}}+|(1+|\cdot|)^{v}(|g(\cdot)|+|\nabla f(\cdot)|)|_{L^{\infty}}\leq\epsilon$ .

Then (3) has global solution with the following decay property:

$|u(t, x)|\leq\frac{c}{(1+t+|x|)(1+|t-|x||)^{\kappa}}$

where $\kappa=\max(1/2, v-2)$ .



Existence of global solutions 199

REMARK 1. The same result holds when the nonlinearity has the form $|\nabla u|^{v}$ ,

where $\nabla=(\partial_{t}, \nabla_{x})$ .

REMARK 2. This result is sharp taking into account [7], where it is shown
that for $v=2$ the solution of (3) blows-up in finite time.

REMARK 3. If $n=2$ one can obtain solution of (3) for $v>3$ with the same
arguments of the proof of Theorem 3.

After this work was completed, the author leamed that earlier K. Hidano
and K. Tsutaya obtained independently the same global existence result for the
Cauchy problem (3) (see [4]), by using similar methods.

For the general case for $n$ we can define in the same way the spaces $W_{\Gamma}^{s,p}$ .
For the general case for $n$ we can obtain result just for the integer case for $v$ .

THEOREM 4. If $n\geq 4$ and the initial data $(\nabla f, g)\in W_{\Gamma}^{s,2}\times W_{\Gamma}^{s-1,2}(s>n)$ is
sufficiently small then (3) has global solution for $v=2,3,4,$ $\ldots$

2. Proof of Theorem 1 and Theorem 2

We need the following Sobolev inequality due to H\"ormander (see [5]) and
Klainerman (see [11]).

LEMMA 2. If $u(t, x)\in C_{0}^{\infty}(R_{+}\times R^{n})$ then the following inequalities $hold$:

(a) $|u(t, x)|\leq c(1+t+|x|)^{-(n-1)/p}(1+|t-|x||)^{-1/p}|u(t)|_{s,p}$ ,

where $s>n/p$ .

(b) $|u(t, \cdot)|_{L^{q}}\leq c(1+t)^{-(n-1)(1/p-1/q)}|u(t)|_{s,p}$ ,

where $ p\leq q<\infty$ and $s\geq n(1/p-1/q)$ .

PROOF OF THEOREM 1. We define a map:

$M$ : $\psi\leftarrow\rangle$ $\phi$

For given $\psi$ we define $\phi$ as a solution of the following linear Dirac equation:

$\mathscr{D}\phi=F(\psi)$ ,

$\phi(0,x)=\eta(x)$ .
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Using lemma 1, lemma 2 and H\"older inequality, one can obtain:

$|\phi(t)|_{2,2}\leq c(\epsilon+\int_{0}^{t}|F(\psi(\tau, \cdot))|_{2,2}d\tau)$

$\leq c(\epsilon+\int_{0}^{t}(\sum_{|\alpha|\leq 2}|\hat{\Gamma}^{\alpha}\psi(\tau, \cdot)|_{L^{2}}|\psi(\tau, \cdot)|_{L^{\infty}}^{p-1}$

$+\sum_{|\alpha|\leq 1,|\beta|\leq 1}|\hat{\Gamma}^{\alpha}\psi(\tau, \cdot)|_{L^{4}}|\hat{\Gamma}^{\beta}\psi(\tau, \cdot)|_{L^{4}}|\psi(\tau, \cdot)|_{L^{\infty}}^{p-2})d\tau)$

$\leq c(\epsilon+\int_{0}^{t}((1+\tau)^{-p+1}|\psi(\tau)|_{2,2}^{p}+(1+\tau)^{-1/2-1/2-(p-2)}|\psi(\tau)|_{2,2})^{p}d\tau)$

$\leq c(\epsilon+\Vert\psi\Vert_{2,2}^{p})$

Hence:

(4) $\Vert M\psi\Vert_{2,2}\leq c(\epsilon+\Vert\psi\Vert_{2,2}^{p})$ .

Therefore, if we take $\epsilon$ and $\delta$ such that $ c(\epsilon+\delta^{p})<\delta$, then we obtain $M\psi\in X_{\delta}$ ,
when $\psi\in X_{\delta}$ .

If $\psi,\tilde{\psi}\in X_{\delta}$ , then using lemma 1, we obtain:

$|(M\psi-M\tilde{\psi})(r)|_{1,2}\leq c\int_{0}^{t}\sum_{|\alpha|\leq 1}|\hat{\Gamma}^{\alpha}(F(\psi)-F(\tilde{\psi}))(\tau, \cdot)|_{L^{2}}d\tau$

Further, for any $\alpha$ such that $|\alpha|\leq 1$ via H\"older inequality, one has:

$|\hat{\Gamma}^{\alpha}(F(\psi)-F(\tilde{\psi}))(\tau, \cdot)|_{L^{2}}\leq|\psi(\tau, \cdot)|_{L^{-1}}^{p_{\infty}}|\hat{\Gamma}^{\alpha}(\psi-\tilde{\psi})(\tau, \cdot)|_{L^{2}}$

$+|\hat{\Gamma}^{\alpha}\tilde{\psi}(\tau, \cdot)|_{L^{4}}|(\psi-\tilde{\psi})(\tau, \cdot)|_{L^{4}}(|\psi(\tau, \cdot)|_{L^{\infty}}^{p-2}+|\tilde{\psi}(\tau, \cdot)|_{L^{\infty}}^{p-2})$ .

Using lemma 2 one obtains:

$|(M\psi-M\tilde{\psi})(t)|_{1,2}\leq c\int_{0}^{t}(1+\tau)^{-p+1}|(\psi-\tilde{\psi})(\tau)|_{1,2}|\psi(\tau)|_{2,2}^{p-1}d\tau\leq c\delta^{p-1}\Vert\psi-\tilde{\psi}\Vert_{1,2}$ .

Hence, if we take $\delta$ such that $ae^{p-1}<c_{1}<1$ , then for any $\psi,\tilde{\psi}\in X_{\delta}$ we have:

(5) $\Vert M\psi-M\tilde{\psi}\Vert_{1,2}\leq c_{1}\Vert\psi-\tilde{\psi}\Vert_{1,2}$ ,

Further for arbitrary $\psi,\tilde{\psi}\in X_{\delta}$ using lemma 1 one has:



Existence of global solutions 201

$|(M\psi-M\tilde{\psi})(t)|_{2,2}\leq c\int_{0}^{t}|(F(\psi)-F(\tilde{\psi}))(\tau)|_{2,2}d\tau$

$\leq c\int_{0}^{t}\sum_{|\alpha|\leq 2}|(F^{\prime}(\psi)\hat{\Gamma}^{\alpha}\psi-F^{\prime}(\tilde{\psi})\hat{\Gamma}^{\alpha}\tilde{\psi})(\tau, \cdot)|_{L^{2}}d\tau$

$+c\int_{0}^{t}\sum_{|\alpha|\leq 1,|\beta|\leq 1}\sum_{j=1}^{4}|(F_{j}^{\prime\prime}(\psi)\hat{\Gamma}^{\alpha}\psi\hat{\Gamma}^{\beta}\psi-F_{j}^{;/}(\tilde{\psi})\hat{\Gamma}^{\alpha}\tilde{\psi}\hat{\Gamma}^{\beta}\tilde{\psi})(\tau, \cdot)|_{L^{2}}d\tau$,

where $F^{\prime}$ is the matrice with entries $\partial_{k}F_{j},$ $1\leq k,$ $j\leq 4$ , and $F_{j}^{\prime\prime}$ is the Hesse
matrice of $F_{j}$ .

Using H\"older inequality we obtain:

(6) $|(F^{\prime}(\psi)\hat{\Gamma}^{\alpha}\psi-F^{\prime}(\tilde{\psi})\hat{\Gamma}^{\alpha}\tilde{\psi})(\tau, \cdot)|_{L^{2}}$

$=|(F^{\prime}(\psi)(\hat{\Gamma}^{\alpha}\psi-\hat{\Gamma}^{\alpha}\tilde{\psi})+(F^{\prime}(\psi)-F^{\prime}(\tilde{\psi}))\hat{\Gamma}^{\alpha}\tilde{\psi})(\tau, \cdot)|_{L^{2}}$

$\leq|\psi(\tau, \cdot)|_{L^{\infty}}^{p-1}|\hat{\Gamma}^{\alpha}(\psi-\tilde{\psi})(\tau, \cdot)|_{L^{2}}$

$+|\hat{\Gamma}^{\alpha}\tilde{\psi}(\tau, \cdot)|_{L^{2}}|(\psi-\tilde{\psi})(\tau, \cdot)|_{L^{\infty}}(|\psi(\tau, \cdot)|_{L^{-2}}^{p_{\infty}}+|\tilde{\psi}(\tau, \cdot)|_{L^{-2}}^{p_{\infty}})$ .

Further we have:

(7) $|(F_{j}^{\prime\prime}(\psi)\hat{\Gamma}^{\alpha}\psi\hat{\Gamma}^{\beta}\psi-F_{j}^{\prime\prime}(\tilde{\psi})\hat{\Gamma}^{\alpha}\tilde{\psi}\hat{\Gamma}^{\beta}\tilde{\psi})(\tau, \cdot)|_{L^{2}}$

$\leq|((F_{j}^{\prime\prime}(\psi)-F_{j}^{\prime\prime}(\tilde{\psi}))\hat{\Gamma}^{\alpha}\psi\hat{\Gamma}^{\beta}\psi+F_{j}^{\prime\prime}(\tilde{\psi})\hat{\Gamma}^{\alpha}\psi(\hat{\Gamma}^{\beta}\psi-\hat{\Gamma}^{\beta}\tilde{\psi})$

$+F_{j}^{\prime\prime}(\tilde{\psi})(\hat{\Gamma}^{\alpha}\psi-\hat{\Gamma}^{\alpha}\tilde{\psi})\hat{\Gamma}^{\beta}\tilde{\psi})(\tau, \cdot)|_{L^{2}}$

$\leq|((F_{j}^{\prime\prime}(\psi)-F_{j}^{\prime\prime}(\tilde{\psi}))\hat{\Gamma}^{\alpha}\psi\hat{\Gamma}^{\beta}\psi)(\tau, \cdot)|_{L^{2}}$

$+|\tilde{\psi}(\tau, \cdot)|_{L^{-2}}^{p_{\infty}}|\hat{\Gamma}^{\alpha}\psi(\tau, \cdot)|_{L^{4}}|\hat{\Gamma}^{\beta}(\psi-\tilde{\psi})(\tau, \cdot)|_{L^{4}}$

$+|\tilde{\psi}(\tau, \cdot)|_{L^{\infty}}^{p-2}|\hat{\Gamma}^{\beta}\tilde{\psi}(\tau, \cdot)|_{L^{4}}|\hat{\Gamma}^{\alpha}(\psi-\tilde{\psi})(\tau, \cdot)|_{L^{4}}$ .

Using (6), (7) and lemma 2 one has:

(8) $|(M\psi-M\tilde{\psi})(t)|_{2,2}$

$\leq c\int_{0}^{t}(1+\tau)^{-p+1}\Vert\psi-\tilde{\psi}\Vert_{2,2}(\Vert\psi\Vert_{2,2}^{p-1}+\Vert\tilde{\psi}\Vert_{2,2}^{p-1})d\tau$

$+c\int_{0}^{t}\sum_{|\alpha|\leq 1,|\beta|\leq 1}\sum_{j=1}^{4}|((F_{j}^{\prime\prime}(\psi)-F_{j}^{\prime\prime}(\tilde{\psi}))\hat{\Gamma}^{\alpha}\psi\hat{\Gamma}^{\beta}\psi)(\tau, \cdot)|_{L^{2}}d\tau$ .

We shall consider two cases for $p$ .
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CASE 1. Let $2<p\leq 3$ . We shall use the following inequality which is valid
for $0<k\leq 1$

(9) $|x^{k}-y^{k}|\leq c|x-y|^{k}$ .

Using (9) and H\"older inequality we obtain:

$|((F_{j}^{\prime\prime}(\psi)-F_{j}^{\prime\prime}(\tilde{\psi}))\hat{\Gamma}^{\alpha}\psi\hat{\Gamma}^{\beta}\psi)(\tau, \cdot)|_{L^{2}}\leq c|(|\psi-\tilde{\psi}|^{p-2}\hat{\Gamma}^{\alpha}\psi\hat{\Gamma}^{\beta}\psi)(\tau, \cdot)|_{L^{2}}$

$\leq c|\hat{\Gamma}^{\alpha}\psi(\tau, \cdot)|_{Lq}|\hat{\Gamma}^{\beta}\psi(\tau, \cdot)|_{Lq}|(\psi-\tilde{\psi})(\tau, \cdot)|_{L^{6}}^{p-2}$ ,

where:

$1/q+1/q+(p-2)/6=1/2$ , i.e. $q=12/(5-p)$ .

Hence:

$6\geq q>4$

Now we are in a situation to apply lemma 2:

$|((F_{j}^{\prime\prime}(\psi)-F_{j}^{\prime\prime}(\tilde{\psi}))\hat{\Gamma}^{\alpha}\psi\hat{\Gamma}^{\beta}\psi)(\tau, \cdot)|_{L^{2}}\leq c(1+\tau)^{-p+1}|\psi(\tau)|_{2,2}^{2}|(\psi-\tilde{\psi})(\tau)|_{1,2}^{p-2}$ .

Hence for any $\psi,\tilde{\psi}\in X_{\delta}$ one has:

$|1^{M\psi-M\tilde{\psi}\Vert_{2,2}\leq\Vert\psi-\tilde{\psi}\Vert_{2,2}(\Vert\psi\Vert_{2,2}^{p- 1}+\Vert\tilde{\psi}\Vert_{2,2}^{p- 1})+c\Vert\psi-\tilde{\psi}\Vert_{1,2}^{p- 2}\Vert\psi\Vert_{2,2}^{2}}$

$\leq c(\delta^{p-1}\Vert\psi-\tilde{\psi}\Vert_{2,2}+\delta^{2}\Vert\psi-\tilde{\psi}\Vert_{1,2}^{p-2})$ .

Therefore if $c(\delta^{p-2}+\delta^{2})<c_{2}/2$ , then:

(10) $\Vert M\psi-M\tilde{\psi}\Vert_{2,2}\leq c_{2}(\Vert\psi-\tilde{\psi}\Vert_{2,2}+\Vert\psi-\tilde{\psi}\Vert_{1,2}^{p-2})$ ,

where $0<c_{2}<1$ .
We take $\psi_{0}$ to be the solution of the linear Dirac equation:

$\mathscr{D}\psi=0$ ,

$\psi(0, x)=\eta(x)$ .

We consider the usual iteration:

$\psi_{m+1}=M\psi_{m}$ .

For $\epsilon$ sufficiently small $\psi_{0}\in X_{\delta}$ . Hence $\psi_{m}\in X_{\delta}$ for every $m$ . Therefore, taking
into account (5) and (10) we obtain:
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(11) $\Vert\psi_{m+1}-\psi_{m}\Vert_{2,2}+\Vert\psi_{m+1}-\psi_{m}\Vert_{1,2}^{p-2}$

$\leq 1/2(\Vert\psi_{m}-\psi_{m-1}\Vert_{2,2}+\Vert\psi_{m}-\psi_{m-1}\Vert_{1,2}^{p-2})$ ,

providing $c_{1}$ and $c_{2}$ sufficiently small (i.e. $\delta$ ).

Inductively from (11) we get:

$\Vert\psi_{m+1}-\psi_{m}\Vert_{2,2}+\Vert\psi_{m+1}-\psi_{m}\Vert_{1,2}^{p-2}\leq\frac{c}{2^{m}}$ .

Hence:

$\Vert\psi_{m+1}-\psi_{m}\Vert_{2,2}\leq\frac{c}{2^{m}}$ ,

and we conclude that $\psi_{m}$ is a Cauchy sequence in $W_{\hat{\Gamma}}^{2,2}$ . Hence $\psi_{m}$ converges in
$W_{\hat{\Gamma}}^{2,2}$ to the solution of (1) providing $\epsilon$ sufficiently small (i.e. the initial data).

CASE 2. Let $p>3$ . When $p>3$ one has:

$|((F_{j}^{\prime\prime}(\psi)-F_{j}^{\prime\prime}(\tilde{\psi}))\hat{\Gamma}^{\alpha}\psi\hat{\Gamma}^{\beta}\psi)(\tau, \cdot)|_{L^{2}}$

$\leq c|\hat{\Gamma}^{\alpha}\psi(\tau, \cdot)|_{L^{4}}|\hat{\Gamma}^{\beta}\psi(\tau, \cdot)|_{L^{4}}|(\psi-\tilde{\psi})(\tau, \cdot)|_{L^{\infty}}(|\psi(\tau, \cdot)|_{L^{\infty}}^{p-3}+|\tilde{\psi}(\tau, \cdot)|_{L^{\infty}}^{p-3})$ .

Using the above estimate in (8) we obtain for any $\psi,\tilde{\psi}\in X_{\delta}$ :

$\Vert M\psi-M\tilde{\psi}\Vert_{2,2}\leq c\delta^{p-1}\Vert\psi-\tilde{\psi}\Vert_{2,2}$ .

It remains to use similar arguments like in case 1. This completes the proof of
part (a).

PROOF OF PART (b). We denote:

$ X_{z,T}=\{\psi$ : $\sup_{0\leq\tau\leq T}|\psi(\tau)|_{2,2}\leq z\}$ .

Application of lemma 1 and lemma 2, like in the proof of part (a) leads to:

$|\psi_{m+1}(\tau)|_{2,2}\leq c(\epsilon+\ln(1+t)\sup_{0\leq\tau\leq t}|\psi_{m}(\tau)|_{2,2}^{2})$ .

In order the iteration to be such that $\psi_{m+1}\in X_{z,T}$ , when $\psi_{m}\in X_{z,T}$ it is necessary
that the following quadratic equation has real roots:

(12) $\ln(1+t)\cdot z^{2}-z+c\epsilon=0$
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It is easy to be seen that (12) has real roots, iff:

$t\leq\exp(c/\epsilon)-1$ .

If we denote by $z_{0}$ the smaller positive root of (12) then the iteration provides
local solution of (1) in $X_{z,T}$ , where:

$0\leq z\leq z_{0}$ ,

$T\leq\exp(c/\epsilon)-1$ .

This completes the proof of part (b).

PROOF OF PART (c). The proof is direct consequence of lemma 2 and
Theorem 4 of [16].

This completes the proof of Theorem 1.

$PR\infty F$ OF THEOREM 2. We shall choose $\eta\in L^{2}$ such that:

$supp\eta\subset\{x:|x|<R\}$

Hence for solutions of (1) we have:

$supp\psi(t, \cdot)\subset\{x:|x|<t+R\}$

Multiplying the equation (1) with $-\gamma^{0}\psi$ and integrating over $x$ we obtain:

$\frac{d}{dt}\int_{|x|\leq t+R}|\psi(t, x)|^{2}dx=\int_{|x|\leq t+R}G(\psi(t,x))|\psi(t,x)|^{2}dx$

Taking into account the requirements for $G$ and via H\"older inequality, one
obtains:

$\frac{d}{dt}\int_{R^{3}}|\psi(t,x)|^{2}dx\geq\int_{|x|\leq t+R}|\psi(t,x)|^{3}dx\geq c(t+R)^{-3/2}(\int_{R^{3}}|\psi(t, x)|^{2}dx)^{3/2}$

Further we set:

$y(t)=\int_{R^{3}}|\psi(t,x)|^{2}dx$

Hence we have that:

(13)
$y^{\prime}\geq\frac{cy^{3/2}}{(t+R)^{3/2}}$ ,

$0\leq y(0)=y0$ .
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Integrating the inequality (13) we obtain:

$y(t)\geq(\frac{c}{(t+R)^{1/2}}+\frac{1}{y_{0}^{1/2}}-\frac{c}{R^{1/2}}I^{-2}$

Hence if $R<c^{2}y0$ then $y(t)$ goes to infinity in finite time. We can choose $\eta\in L^{2}$

such that $|\eta|_{L^{2}}=\epsilon$ and $supp\eta\subset\{x:|x|<c^{2}yo\}$ . A direct computation shows
that we can set:

$\eta(x)=\frac{1}{|x|^{k}}\Phi(\frac{x}{R})$ ,

where $2<k<3$ , and:

$\Phi\in C_{0}^{\infty}$ , $supp\Phi\subset\{x:|x|<1\}$ .

This completes the proof of Theorem 2.

3. Proof of Theorem 3 and Theorem 4

PROOF OF THEOREM 3.

PROOF OF PART (a). As in the proof of Theorem 1 we define a map:
$L:v\}\rightarrow w$

For any $v$ we define $w$ as a solution of the following linear wave equation:

$(\partial_{t}^{2}-\Delta)w=|u_{t}|^{v}$

$w(0, x)=f(x)$

$w_{t}(0, x)=g(x)$

We have the following relations between the elements of $\Gamma$ and $\partial_{\iota}^{2}-\Delta$ :

$[\partial_{t}^{2}-\Delta, \Omega_{\mu v}]=[\partial_{t}^{2}-\Delta, \partial_{\mu}]=0$ ,

$[\partial_{l}^{2}-\Delta, L]=\partial_{t}^{2}-\Delta$ ,

$ 0\leq\mu$ , $v\leq 3$ .

Hence we have the following form of the classical energy estimate:

LEMMA 3. If $u(t, x)$ is such that:

$(\partial_{t}^{2}-\Delta)u=F(t, x)$ ,
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then for any $m\geq 0$ one has:

$|\nabla u(t)|_{\Gamma,m,2}\leq c(|Vu(0)|_{\Gamma,m,2}+\int_{0}^{t}|F(s)|_{\Gamma,m,2}ds)$ .

Using lemma 2 and lemma 3 like in the proof of Theorem 1 one can obtain:

(14) $\Vert VLv\Vert_{2,2}\leq c(\epsilon+\Vert Vv\Vert_{2,2}^{v})$ .

Moreover for any $v,\tilde{v}\in Y_{\delta}$ we have:

(15) $\Vert V(Lv-L\tilde{v})\Vert_{1,2}\leq c_{1}\Vert V(v-\tilde{v})\Vert_{1,2}$

(16) $\Vert\nabla(Lv-L\tilde{v})\Vert_{2,2}\leq c_{2}(\Vert V(v-\tilde{v})\Vert_{2,2}+\Vert V(v-\tilde{v})\Vert_{1,2}^{v-2})$ ,

where $0<c_{1}<1,0<c_{2}<1$ , providing $\delta$ sufficiently small.
Further we take $u_{0}$ to be the solution of the homogeneous problem. We

consider the iteration:

$u_{m+1}=Lu_{m}$

Taking into account (14) we see that $u_{m+1}\in Y_{\delta}$ , when $u_{m}\in Y_{\delta}$ for $\epsilon,\delta$ sufficiently
small. Considering (15) and (16) one obtains:

$\Vert V(u_{m+1}-u_{m})\Vert_{2,2}+\Vert V(u_{m+1}-u_{m})\Vert_{1,2}^{v-2}$

$\leq\frac{1}{2}(\Vert V(u_{m}-u_{m-1})\Vert_{2,2}+\Vert V(u_{m}-u_{m-1})\Vert_{1,2}^{v-2})$ ,

providing $c_{1}$ and $c_{2}$ sufficiently small (i.e. $\delta$ ).

Hence:

(17) $\Vert\nabla(u_{m+p}-u_{m})\Vert_{2,2}\rightarrow 0$ ,

when $ m,p\rightarrow\infty$ .
In fact $u_{m}$ converges to the solution of (3) because via Newton formula for

every $T>0$ and $t\in[0, T$) one has:

$|(u_{m+1}-u_{m})(t)|_{2,2}\leq CT\sup_{0\leq\tau\leq T}|\nabla(u_{m+1}-u_{m})(\tau)|_{2,2}$ .

Therefore, from (17), for any $T>0$ , we see that $u_{m}$ converges with respect to
norm:

$\sup_{0\leq\tau\leq T}|\cdot(\tau)|_{2,2}$

to the solution of (3).
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This completes the proof of part (a).

PROOF OF PART (b). To prove part (b) we need the following two lemmas:

LEMMA 4 (see [12]). If $f$ is a continuous function and $r:=|x|$ , then:

$\int_{|y-x|=t}f(|y|)dS_{y}=2\pi\frac{t}{r}\int_{|r-t|}^{r+\iota}\lambda f(\lambda)d\lambda$ .

LEMMA 5. If $n\geq 2$ , then:

$\int_{a}^{b}\frac{ds}{(c+s)^{n}}\leq\frac{b-a}{(c+a)^{n-1}(c+b)}$ ,

where $b\geq a\geq 0$ , and $c\geq 0$ .

PROOF. We have that:

$\int_{a}^{b}\frac{ds}{(c+s)^{n}}\leq\frac{1}{(c+a)^{n-2}}\int_{a}^{b}\frac{ds}{(c+s)^{2}}=\frac{b-a}{(c+a)^{n-1}(c+b)}$ .

This completes that proof of the lemma 5.
Using the representation formula for the solution of the wave equation we

see that for every solution $u(t, x)$ of (3) we have:

$u(t, x)=u_{0}(t, x)+\frac{1}{4\pi}\int_{0}^{\iota}\frac{1}{t-s}(\int_{|y-x|=t-s}|u_{t}(s,y)|^{v}dS_{y})ds$ ,

where $u_{0}(t, x)$ is the solution of the homogeneous problem with initial data $(f, g)$ .
We have the following estimate for the linear equation due to Pecher (see

[12]):

$|u_{0}(t, x)|\leq\frac{c}{(1+t+|x|)(1+|t-|x||)^{v-2}}$ .

Using lemma 2 and lemma 4 one obtains:

$|\int_{0}^{t}\frac{1}{t-s}(\int_{|y-x|=t-s}|u_{t}(s,y)|^{v}dS_{y})ds|$

$\leq c\Vert\nabla u\Vert_{2,2}^{v}\int_{0}^{l}(\int_{|y-x|=\iota-s}(1+s+|y|)^{-v}(1+|s-|y||)^{-v/2}dS_{y})ds$

$=c\Vert\nabla u\Vert_{2,2}^{v}\cdot r^{-1}\cdot\int_{0}^{t}\int_{|r-l+s|}^{r+t-s}\frac{\lambda d\lambda}{(1+s+\lambda)^{v}(1+|s-|\lambda||)^{v/2}}ds$ .
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It is easy to be seen that:

$|r-t|\leq s+\lambda\leq r+t$ ,

when:

$s\in[0, t]$ ,

$\lambda\in[|r-t+s|, r+t-s]$ .

Therefore by changing variables:

$\alpha=s+\lambda$ , $\beta=s-\lambda$ ,

one can obtain via lemma 5:

$\int_{0}^{t}\frac{1}{t-s}(\int_{|y-x|=t-s}|u_{t}(s,y)|^{v}dS_{y})ds|$

$\leq c\Vert\nabla u\Vert_{2,2}^{v}\cdot r^{-1}\cdot\int_{r-t}^{r+t}\int_{-\infty}^{\infty}\frac{d\beta}{(1+\alpha)^{v-1}(1+\beta)^{v/2}}d\alpha$

$\leq c\Vert$ Vu $\Vert_{2,2}^{v}\cdot r^{-1}\cdot\int_{r-t}^{r+t}\frac{d\alpha}{(1+\alpha)^{v-1}}$

$\leq c\Vert Vu\Vert_{2,2}^{v}\cdot r^{-1}\cdot\frac{r+t-|r-t|}{(1+r+t)(1+|r-t|)^{v-2}}$

$\leq\frac{c||\nabla u\Vert_{2,2}^{v}}{(1+t+x)(1+|t-|x||)^{v-2}}$ ,

since $r+t-|r-t|\leq 2r$ .
Hence:

$|u(t, x)|\leq\frac{c}{(1+t+|x|)(1+|t-|x||)^{v-2}}$ .

Combining the last estimate with lemma 2 completes the prove of part (b). This
completes the proof of Theorem 3.

REMARK. One has difficulty to use the idea of proving theorem 3 for the
general space dimensions, since Sobolev inequality costs losses of derivatives. One
may try to overcome the difficulty by estimates similar to these obtained in
Georgiev [3]. One also may try to use some generalised form of Strihartz
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inequality (see [8]). Another approach is this developed by Ruis and Vega (see

[13]). The idea is to estimate more refined mean values of fractional derivatives of
the solution of the equation (3).

PROOF OF THEOREM 4.
To prove Theorem 4 we need the following lemma:

LEMMA 6. (a) If $f,$ $g\in\dot{C}_{0}^{\infty}$ then the following inequality holds for $m\geq 0$

integer:

$|fg(t)|_{2m,2}\leq c(|f(t)|_{m,\infty}|g(t)|_{2m,2}+|f(t)|_{m,2}|g(t)|_{2m,\infty})$ .

(b) If $f\in C_{0}^{\infty}$ and $m\geq 0$ is an integer then the following inequality holds:

$|f^{v}(t)|_{2m,2}\leq c|f(t)|_{m,\infty}^{v-1}|f(t)|_{2m,2}$ .

PROOF. Obviously (b) is a direct consequence of (a). To prove (a) we should
notice that for any multiindex $\alpha$ such that $|\alpha|\leq 2m$ we have:

$|\Gamma^{\alpha}fg(t)|\leq c\sum_{\alpha_{i}+\beta_{i}=\alpha}|\Gamma^{\alpha_{i}}f(t)||\Gamma^{\beta}{}^{t}g(t)|$
,

where the sum is taken over all pairs $(\alpha_{j},\beta_{i})$ such that $\alpha_{i}+\beta_{i}=\alpha$ . 0bviously
$|\alpha_{i}|\leq m$ or $|\beta_{i}|\leq m$ . Now it remains to use Holder inequality:

$|ab|_{L^{2}}\leq|a|_{L^{\infty}}|b|_{L^{2}}$ ,

as many times as it is necessary in order to derive the desired estimate. This
completes the proof of lemma 6.

As in the proof of Theorem 3 we consider the map:

$M:v\mapsto\rangle w=Mv$ ,

where $w$ is the solution of the linear equation:

$(\partial_{t}^{2}-\Delta)w=|v_{t}|^{v}$ ,

$w(0, x)=f(x)$ ,

$w_{t}(0, x)=g(x)$ .

For $m>n/2$ one has via lemma 2, lemma 3 and lemma 6:



210 Nickolay TZVETKOV

(18) $|\nabla w(t)|_{2m,2}\leq c(|\nabla w(0)|_{2m,2}+\int_{0^{t}}|v_{t}^{v}(\tau)|_{2m,2}d\tau)$

$\leq c(|\nabla w(0)|_{2m,2}+\int_{0}^{t}|\nabla v(\tau)|_{2m,2}|\nabla v(\tau)|_{m,\infty}^{v-1}d\tau)$

$\leq c(|\nabla w(0)|_{2m,2}+\Vert\nabla v\Vert_{2m,2}^{v}\int_{0}^{l}(1+\tau)^{-(n-1)(v-1)/2}d\tau)$ .

For the converges of the last integral we need:

$\frac{n-1}{2}(v-1)>1\Rightarrow v>\frac{n+1}{n-1}$

For $n\geq 4,$ $v=2,3,4,$ $\ldots$ fulfiled the inequality $v>(n+1)/(n-1)$ .
Hence we obtained:

$\Vert\nabla Mv\Vert_{2m,2}\leq c(\epsilon+\Vert Vv\Vert_{2m,2}^{v})$ ,

providing $f$ and $g$ sufficiently small. Now it remains to use the same arguments
like in the proof of Theorem 3 to complete the proof of Theorem 4.

REMARK. In a view of (18) one may conjecture that for $v>(n+1)/(n-1)$
(3) has global solution.
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