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A CHARACTERIZATION OF EINSTEIN REAL
HYPERSURFACES IN QUATERNIONIC PROJECTIVE
SPACE

By

Soo Hyo Leg, Juan de Dios PEREz and Young Jin SuH

Abstract. On a real hypersurface of quaternionic projective space
QP™ we study the following condition: S(R(X, Y)SZ) =0 where
S denotes the cyclic sum, R, respectively S, the curvature tensor,
respectively the Ricci tensor, of the real hypersurface and X, Y € 2,
Ze 9, 2 and 2' being certain distributions on the real hyper-
surface. We prove that such a real hypersurface must be Einstein.

1. Introduction

Let M be a connected real hypersurface of the quaternionic projective space
QP™ m >3, endowed with the metric g of constant quaternionic sectional
curvature 4. Let N be a unit local normal vector field on M and U; = —J;N,
i=1,2,3, where {Ji},_;,; is a local basis of the quaternionic structure of QP™,
[2]. Several examples of such real hypersurfaces are well known, see for instance
1 31 [4D-

Let S be the Ricci tensor of M. In it is proved that the unique real
hypersurfaces of QP™ that are Einstein are geodesic hyperspheres of radius r,
0 <r< (n/2) and cot*(r) = (1/2m).

Recently, in the second author has studied real hypersurfaces of QP™,
m > 2, such that

(1.1) S(R(X, Y)SZ) =0

for any X, Y and Z tangent to M, where R denotes the curvature tensor of M
and € is the cyclic sum on X, Y, and Z, obtaining
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THEOREM A. A real hypersurface M of QP™. m > 2 satisfies (1.1) if and only
if it is FEinstein.

Now let us define a distribution 2 by 2(x)={XeT,M:X 1L Ux),
i=1,2,3}, xe M, of a real hypersurface M in QP™, which is orthogonal to the
structure vector fields {U;, U,, U3} and invariant with respect to structure tensors
{#1, 82,45}, and by 21 = Span{ U, U,, U3} its orthogonal complement in TM. In
order to obtain a weaker condition than it seems natural to propose to study
real hypersurfaces of QP™ satisfying

(1.2) S(R(X,Y)SZ) =0

for any X,Y e 2, and Ze 9+
The purpose of the present paper is to study such a condition. Concretely we
shall prove

THEOREM 1. A real hypersurface M of QP™, m > 3, satisfies (1.2) if and only
if it is Einstein.

2. Preliminaries

Let X be a tangent field to M. We write J.X = ¢,X + fi(X)N, i=1,2,3,
where ¢,X is the tangent component of J;X and fi(X) =g(X,U;), i =1,2,3. As
J? = —id, i =1,2,3, where id denotes the identity endomorphism on T7QP™, we
get

for any X tangent to M. As JiJ; = —J;J; = Ji, where (i, j,k) is a cyclic per-
mutation of (1,2,3) we obtain

(2.2) ¢ X = ;X — fiX)U; = =, X + f;(X) U
and
(2.3) fi(X) = fi($ X) = —fi(¢,X)

for any vector field X tangent to M, where (i, j,k) is a cyclic permutation of
(1,2,3). It is also easy to see that for any X, Y tangent to M and i=1,2,3

(2.4) 9(¢:X,Y)+9g(X,4,Y) =0, g(¢X,4,Y)=g(X,Y)—fi(X)fi(Y)
and
(2.5) ¢:Uj = —9;Ui = Uy
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(i, j,k) being a cyclic permutation of (1,2,3). From the expression of the
curvature tensor of QP™, m > 2, we have the equations of Gauss and Codazzi are
respectively given by

3
(26) R(X,Y)Z=9g(Y,2)X —g(X,2)Y + > _{9(4;Y,Z)$:X — 9($,X,2)$,Y
i=1

+29(X,,Y)$Z} + g(AY, Z)AX — g(AX,Z)AY,

and
3
27 (AY - (Vyd)X =) {fi(X)$Y —fi(Y)$:X +29(X,¢,Y) Ui}
i=1

for any X, Y, Z tangent to M, where R denotes the curvature tensor of M, see
[3] Moreover, the Ricci tensor S'(Z,Y) =g(SZ,Y) = Trace{X — R(X,Z)Y}
are defined by

(2.8) SZ = (4m+17)Z -3 fi(Z)Ur +hAZ — 4?2,
k
respectively.

From the expressions of the covariant derivatives of J;, i = 1,2, 3, it is easy to
see that

(2.9) Vx Ui = —pj(X) Uk + pu(X) U + $,AX
and
(2.10) (Vx$)Y = —pj(X)$ Y +pi(X)4; Y + fi(Y)AX — g(AX, Y)U;

for any X, Y tangent to M, (i, j,k) being a cyclic permutation of (1,2,3) and p;,
i=1,2,3, local 1-forms on QP™.

3. Key Lemma
Let M be a real hypersurface in a quaternionic projective space QP™ satisfying
(3.1) SR(X,Y)SZ=0
for any X,Y €2, and Z € 21. Now let us take an orthonormal basis
{E\,...,E4n-a, Uy, U, Us}

of the tangent space of 7,(M) at any point x € M. Then for a case where X = E;,
Y = ¢,E; and Z = U; the above formula gives
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(3.2) R(E;,$,E;)SU: + R(¢,E;, U1)SE; + R(U, E;)S¢, E; = 0.

Now let us denote by H = hAd — A2. Then the first term of the left side of
becomes

R(E;, $,E;)SUy = g(¢,Ei, HU\)E; — g(E;, HU, )¢, E;
— 9(Ei;, HU\)$,E; + g(¢, Ei, HU\)E; — 29($5 Ei, HU;)$, E;
+ 29(¢,Ei, HUI)$3E; — 26, HU, + g(A$, Ei, SUV)AE;
— g(AE;,SU,)A$, E;
The second term gives
R(¢,E;, U1)SE; = g(HU\, E;)$,\ E; — (4m + T)g(E;, $, E;) Uy
— g(HE;, $,E;) Uy + g(Us, HE;)$5E;
— 9(¢3Ei, HE;)Us — g(¢,E;, HE;) U,
+ g(Us, HE)U, — g(AU,, S$,E)) AE; + g(AE;, S$, E) AU,
Also the third term of gives
R(Uy, E;)S$,E; = —g(HUy, ¢, E))E; + (4m + T)g(E;i, 6, E;) Uy
+9g(H¢\Ei, E;)U, + g(Us, Hp, E;) $, E;
— g(Uz, H$, E))$3 E; — g($,Ei, HY, E;) Us
+ g(¢;E;, H)E;) Uy — g(AU,, S, E;)AE;
+ g(AE;, S E;)AU,.
Thus summing up the above formulas, we have
(3.3) SR(E;, ¢,E))SU\ = {g(¢3Ei, H$\ Ei) — g(H$,E;, E;) } Uy
— {9(H§E;, E;) + g(HP,Ei, $, Ei) } Us
+ g(¢,E;, HU,)E; — g(E;, HU,)¢,E; — 2¢, HU;
+ {9(Uz, HE;) + g(Us, H$, E;) — 2g($3Ei, HU1)}$, E;
+ {9(Us, HE;) — (U2, H$, E;) + 29($, E;, HU1) } 43 E;
+ 3g(AU,,E))Ad,E; — 3g(AU,, ¢, E;)AE;
=0.
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For a case where j =2 we can also calculate the following
(3.4) GR(E;, $,E;)SU, = {g($,Ei, Hp,E;) — g($3E:, HE;) } Us
—{9(H¢,E;, E;) + g(H3E;, $,Ei) } U
+ 9($,Ei, HU2)E; — g(E;, HU2)$,E; — 2¢,HU,
+{9(Us, HE;) + g(Ur, H$,E;) — 29(4,Ei, HU2) } 3 B
+ {9(U1, HE;) — g(Us, H$,E;) + 29(¢3E;, HU,) } 4, E;
+ 39(AU,, E))A¢,E; — 3g(AU,, ¢, E;)AE;
=0.
Similarly, for a case where j =3 we have
(3.5) SR(Ei, §:E))SUs = {g(¢,Ei, Hp3 E;) — g(4,Ei, HE;) } U,
—{9(H@,Ei, E;) + g(H¢, Ei, $3E;) } Ua
+ 9(¢3Ei, HU3)E; — g(E;, HU3)¢$3 E; — 2¢;HU;
+{9(U1, HE;) + g(Uz, H$3E;) — 29(4,Ei, HU3) } 4, E;
+ {9(V2, HE;) — g(Ur, H$3E;) + 29(¢, Ei, HU3) } §, E;
+39(AUs, E;)A¢sE; — 3g(AUs, $3E;) AE;
=0.

By contracting from i=1,...,4(m — 1) the formulas (3.3), (3.4) and (3.5) are
reduced by the followings respectively

(3.6) —(4m — 5)¢, HU, + ¢, HU, + ¢, HU,

4 3{A¢ AU\ — g(AUy, Us)AU; + g(AUy, Us)AUs} = 0,
3.7) —(4m = 5)$,HU; + ¢ HU3 + ¢, HU,

+ 3{A4¢,4U; — g(AU, U3)AU; + g(4U,, U1)AU3} =0,
and
(3.8) —(4m — 5)¢, HU + ¢, HU, + ¢, HU,

4 3{AsAUs — g(AUs, U) AU, + g(AUs, Up) AU} = 0.
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Now let us denote the curvature tensor and the Ricci tensor defined in section
2 respectively by

R(X’ Y)Z =g(Y, Z)X - g(X’Z)Y+ o(x, Y)Za

and
SZ = (4m+T7)Z -3 _ fi(Z) U + HZ,
k
where
3
OX,Y)Z=Y {9($,Y,Z)$X — g($,X,Z)$;Y

=1

+29(X,,Y)$Z} + g(AY,Z)AX — g(AX,Z)AY,
and

HZ = hAZ — A*Z

respectively, for any tangent vector fields X, Y and Z of M. In this section we
want to prove the following

LeEMMA 3.1. Let M be a real hypersurface in a quaternionic projective space
QP™ satisfying (3.1). Then

g(H2,2%) = 0.

Proor. The formula implies that
(3.9) O(X, Y)SZ + Q(Y,Z)SX + O(Z,X)SY = 0.

for any tangent vector fields X,Y € 2 and Z e 2. Now let us put X = E;,
Y=¢E and Z= U, in and use the basic formulas in section 2, then the
first term of the left hand side of gives

(3.10) Q(E;, $, Ei)SU, = —g(E;, HU2)$, E; + g(¢ Ei, HUL)E;
—8(m+1)Us — 2¢, HU, — 29($;E;, HU)$, E;
+29(¢,Ei, HU>) 3 E;
+ g(A¢,Ei, SU)AE; — g(AE;, SU>)A¢, E;,
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where we have used the fact that
¢1SU2 = 4(m + 1)U3 + ¢1HU2.
The second term of gives

(3.11) Q(¢,E;, UL)SE; = —g(Us, HE,)E; + g(E;, HE;) U;
— g(Uy, HE;)$, E;
+ g($,Ei, HE;) Uy + g(AU,, SE;)A¢, E;
— g(A¢E;, SE;)) AU, + (4m + T) Us,

where we have used SE; = (4m + 7)E; + HE;. Finally the third term of is
given by the following

(3.12) O(U, Ei)S$\Ei = (4m + T)Us + (¢ Ei, Hp, E;) Us
—g(Us, H$| E)) ¢, E;
— g($sEi, HY E) Uy + g(Ur, H, E;) 3 E;
+ g(AE;, S$ E;)AU, — g(AU,,S¢,E;)AE;.
Combining (3.10), together with and (3.12), we have
(3.13) 0 = SR(E;, 4, E)SUs
= GQ(Ei, $,Ei)SU,
= {g(#,E;, HE;) — g(¢;E;, H$, E;) } Uy
+{9(Ei, HE;) + 6 + g($,E;, H$, Ei) } Us
+ {9(¢1Ei, HU,) — g(Us, HE,) } E;
—{9(Ei, HUz) + g(Us, H$, E;) } ¢, E;
—~{29(¢3Ei, HU») + g(Uy, HE;) } 4, E;
+{29(,Ei, HUz) + g(Ur, H$, Ei) } 5 E;
—2¢,HU, + {g(A¢, E;, SU2) — g(AU, S¢, Ei) }AE;
+{9(4U,, SE;) — g(AE;, SUz) }A¢, E;
+ {g(AE;, S, E;) — g(A¢,E;, SE;)} AU,.
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From this let us take a summation given by ), = E?ﬁ'f‘l), then we know the

following informations

Zg(fﬁth HE;)) =0

and

Z g(¢3Ei7 H¢1E,) =0.

Moreover, by contracting we also have the followings

> " 9(Ei, HE)) = TrH — 52 g(U;, HU)),
i
> 9($1Ei, H}E;) = Tr H — g($, Uz, Hp, Us) — g($, Us, H$, Us),
i
Z 9($ Ei, HOL)E; = —¢, HU, — g(Us, HU;) U, + g(U,, HU,) Us,
Z g(Us, HE))E; = HU3 — 23_,g(Us, HU)) U;,
> 9(Ei, HU2)$,E; = ¢, HU, — g(Uz, HUy)Us + g(Us, HU) Uy,
i
Z g(Us, H$,E;) = HU; — fi(HU;) Uy — g(HU,, Us) Uy — g(HUs, Us) Us,
2 " g($sEi, HUz)$yE; = —2¢, HU, — 2f3(HU) U, + 29(HU,, Uy) Us,
i

and

> 9(Ui, HE))$,E; = $,HU, + g(Ur, HUY)Us — g(Uy, HU3) Uy.
i

Following with the proof, let us take a contraction to the latter terms of [3.13),
then we have

D> _{20(¢:E:, HU2) + g(Ur, H$\ i)} E;

= 2¢,HU, — 2f>,(HU>)Us — ¢, HU, — f1(HU;) Us
+ 2g(HU,, U3) U, + g(HUs, U;) Uy,
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> _{9(A4¢\Ei, SU2) — g(AUs, Sp,En) }AE;

=3A4¢,AU, + 3g(AU,, U3) AU, — 3g(AU,, Up)AUs,
> {9(4U, SE;) — g(AE;, SUs) } A, E;
i
= —3A4¢,AU; + 3g(AU,, U;)AU; + 3g(AU,, U3)A¢, Us,

> _{9(4E;, S$,Er) - g(A$\Er, SE)}AU, = 0.
Taking account of these formulas into [3.13), we have
(3.14) HU; = ¢, HU, — ¢p,HU, + 2g(HU,, U3) U, + 2g(HU,, U3) U,

—{9(HU,, ) + g(HU,, Uz) — g(HUs, Us)} Us

- 4(m — 1)¢1HU2

From this it follows that

(3.15) ¢ HU3 = —(4m — 5)¢,HU, + ¢, HU.
Using the similar method, we have the following

(3.16) ¢, HU, = —(4m — S)¢, HU, + ¢, HUs3,
(3.17) ¢ HU, = —(4m — 5)¢; HU3 + ¢, HU,.

Thus summing up [3.15), and (3.17), we have

3 3

3
> ¢HU; = —(4m—5)> $,HU;+ > ¢,HU,
i=1

i=1 i=1

so that
3
> " $,HU; =0.
i=1

On the other hand, from [3.6) and [3.15) we know that
(3.18) 2¢3HU3 + 3{A¢2AU2 - g(A U,, U3)AU] + g(A Us, Ul)A U3} =0.

Similarly, we can assert that

(3.19) 2¢0,HU; + 3{A¢34U; — g(AU3, Uh)AU, + g(AUs, U)AU, } = 0,

and

(3.20) 2¢2HU2 + 3{A¢1A U1 - g(A U], Uz)A U3 + g(A Ul, U3)A Uz} = 0.



174 S. H. Leg, J. D. Perez and Y. J. Sun

On the other hand, putting ¢, HU, + ¢;HU3 = —¢, HU, into and using
(3.20), we have

(3.21) —4(m — 1)¢,HU; — 2¢,HU, = 0.

Similarly, we also have

(3.22) —4(m - 1)¢2HU2 - 2¢3HU3 = 0,
and
(3.23) —4(m — 1)¢s HU; — 2¢, HU; = 0.

Thus and imply ¢;HUs = —2(m — 1)¢,HU, = 4(m — 1)?¢, HUj.
From this, together with it follows

{8(m —1)* + 1}¢,HU; = 0.

Similarly, we have ¢,HU, = 0, and ¢; HU3 = 0. From this we complete the proof
of our lemma.

4. The Proof of Main Theorem

In section 3 under the condition [3.1] we have proved that g(H2,2*) =0
for the distributions 2 and 2 = Span{U,, U,, U3} of real hypersurfaces in oprP™,
where H = hA — A?. But HA = AH. Thus we can find an orthonormal basis of
T:M, for any x e M, such that it diagonalizes simultaneously both H and A.
So on this decomposition of T,M such that LM =2 @ 2+ the fact that
g(H2,2") =0 is equivalent to g(42,2"') =0. Then by virtue of a theorem
given by J. Berndt we conclude that a real hypersurfaces satisfying is
locally congruent to one of geodesic hypersphere, a tube over QP* k=
I,...,n—1 with radius 0<r< (n/2), or a tube over CP™ with radius
0<r<(n/4).

Firstly, let us consider the case where M is a geodesic hypersphere. Then
its principal curvatures are given by a = 2cot2r, cotr with multiplicities 3 and
4(m — 1) respectively. That is, AU; =alU;, i=1,2,3 and AX = cotr X for any
X € 2. From this the Ricci tensor S, for any X in 2, is given by

SX = [(4m +7) + {(4m — 1) cotr — 3 tanr} cotr — cot*r| X
= [dm + 7 + (4m — 1) cot?r — 3 — cot*r|X

=[4m+ 4+ (4m — 2) cotzr]X.



A characterization of Einstein 175
On 9 = Span{Uy, Uy, U3} we have
SU; = [4m + 4 + {(4m — 1) cotr — 3 tanr}(cotr — tanr) — (cotr — tan 2 U;
= {4+ (4m — 2) cot®r + 2 tan’r} U,.
On the other hand, the condition implies that
(4.1) SR(X, Y)SU; = R(X, Y)SU; + R(Y, U)SX + R(U;, X)SY =0,

for i =1,2,3. Thus on this geodesic hypersphere we can put SU; =yU; and
SX =JX for any X in 9. Then it can be easily verify that y and J could be equal
to each other. This means that the geodesic hypersphere M in QP™ is Einstein.
From this and the above expression of the Ricci tensor we have

4 + (4m — 2) cot*r + 2 tan’r — (4m + 4) — (4m — 2) cot’r = 0.

That is, M is a Einstein real hypersurface in QP™, which is congruent to a tube
of radius r such that cot’r = (1/2m).

For the case where M is congruent to a tube over QP k=1,2,...,m— 1.
Its principal curvatures are also given by cotr, —tanr and 2cot 2r with their
multiplicities 4m — 4k — 4, 4k and 3, respectively. Thus 4 is given by

h=TrA= (4m — 4k — 4) cotr — 4k tanr + 3(cotr — tanr)
= (4m — 4k — 1) cotr — (4k + 3) tanr.

Now let us take principal vectors such that X € Vo, Y € V_yanr and
U; € 2+, where the distribution 2 is given by 2 = V.51, @ V_1an,. Then we have
the following

(4.2) SX = (4m+ 7)X + {(4m — 4k — 1) cotr — (4k + 3) tanr} cotr X — cot’rX
= {(4m — 4k + 4) + (4m — 4k — 2) cot’r}X,

(43) SY = (4m+ 7)Y — {(4m — 4k — 1) cotr — (4k + 3) tanr} tanr Y — tan’rY
= {4k + 8 + (4k + 2) tan’r} Y,

and
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(44) SU;=@m+4)U;+ (cotr —tanr){(4m — 4k — 1) cotr — (4k + 3) tanr
— (cotr — tanr)} U;
= {4 + (4m — 4k — 2) cot’r + (4k + 2) tan®*r} U;.

Thus if we put SX =9yX, SY =6Y for any X e V,,, and Y € V_,,, and
SU; = BU;, then the condition (4.1) implies that y = # = 4. Thus substracting (4.2)
and (4.3) from (4.4) respectively, then it follows respectively that

(4k + 2) tan’r = 4m — 4k
and
(4m — 4k — 2) cot’r = 4k + 4.

These imply (4m — 4k)(4k + 4) = (4m — 4k — 2)(4k +2). Thus 8m = —4. This
makes also a contradiction. Thus this case does not appear.

Finally let us consider for the case where M is congruent to a tube over CP".
Then its principal curvatures are given by cotr, —tanr, 2 cot2r and —2 tan2r with
multiplicities 2(m — 1), 2(m —1), 1 and 2 respectively. Then the trace of the
second fundamental form A is given by

h=2(m—1)(cotr —tanr) + 2 cot2r — 4 tan2r

= (2m — 1)(cotr — tanr) — 4 tan2r.

Now let us denote by its corresponding principal curvature vectors X € V.,
Y € V_ianr, Ui € Vacorar, and U, Us € V_34n2,. Then we have the following

SX = (4m+ )X + {(2m — 1)(cotr — tanr) — 4tan2r} cotr X — cot’rX
= {2m + 8 + 2(m — 1) cot>r — 4 tan2rcotr}X,
SY = (dm+ 7)Y — {(2m — 1)(cotr — tanr) — 4 tan2r} tanr Y — tan’*rY
= {2m+ 8+ 2(m — 1) tan*r + 4tan2rtanr}y,
SU; = (4m + 4)U, + (cotr — tanr){(2m — 1)(cotr — tanr) — 4 tan2r} U,
— 4 cot? 2rU;,

SUy = (—4m + 8 + 4tan®2r)Uy, k =2,3.
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On the other hand, let us put X € V., ¢, X € V_san, in [3.1). Then we have
R(X,¢,X)SU, + R(¢,X,U)SX + R(U;, X)S¢, X

= {(4m — 4) + (2m — 2)(cotr — tanr)*}R(X, $,X ) U
+ {(2m + 8) + (2m — 2) cot*r — 4 tan2rcotr}R($, X, U)X
+ {(2m + 8) + (2m — 2) tan*r 4 4 tan 2r tanr}R(Uy, X)$, X

= 2{(4m — 4) + 2(m — 1)(cot r — tanr)*} U
—2{(m+4) + (m — 1) cot*r — 2 tan2r cot r} Us
—2{(m+4) + (m — 1) tan®r + 2 tan 2r tanr} Us

=0.

So it follows
2{4(m — 1) + 2(m — 1)(cotr — tanr)*} — 2(2m + 8) — 4(m — 1)(cot*r + tanr)
+4tan2r(cotr — tanr) = 0.

Thus —4m — 8 = 0. This is impossible. Thus this case also can not occur.

Summing up this result, we conclude that a real hypersurface in QP™
satisfying is Einstein and it is congruent to a geodesic hypersphere, that is a
tube over one point with radius r such that cot?>r = (1/2m). This completes the
proof of our assertion.

REMARK. But if we consider the above situation for the shape operator 4 of
M in a quaternionic projective space QP™, we can verify that QP™ do not admit
any real hypersurfaces satisfying the corresponding condition. Using the same
method as in the proof of Theorem 1, we can assert this as follows:

THEOREM 2. There do not exist any real hypersurfaces M in a quaternionic
projective space QP™, m > 2, satisfying SR(X,Y)AZ =0 for any X, Y € D and
Z € 91, where S denotes the cyclic sum of X, Y and Z and R is the curvature
tensor of M.

COROLLARY 3. There do not exist any real hypersurfaces M in QP™, m > 2,
satisfying SR(X,Y)AZ =0 for any X, Y and Z tangent to M, where S denotes
the cyclic sum of X, Y and Z.
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