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ON A CLASS OF SELF-INJECTIVE LOCALLY BOUNDED
CATEGORIES

By

Zygmunt POGORZALY1

Throughout the paper $K$ denotes a fixed algebraically closed field. Let $R$ be a
locally bounded K-category in the sense of [3]. It is well-known that every locally
bounded K-category $R$ is isomorphic to a factor category $KQ_{R}/I_{R}$ , where $KQ_{R}$ is
a path category of a locally-finite quiver and $I_{R}$ is some admissible ideal in $KQ_{R}$ .
A locally bounded K-category $R\cong KQ_{R}/I_{R}$ is said to be triangular if $Q_{R}$ has no
oriented cycles.

For a locally bounded K-category $R$ we denote by $mod (R)$ the category of all
finite-dimensional right R-modules.

We are interested in self-injective locally bounded K-categories. Assume that
$R$ is a self-injective locally bounded triangular K-category which is connected.
Then there is the Nakayama K-automorphism $v_{R}$ : $R\rightarrow R$ which is induced by
a permutation $\pi_{R}$ of the isoclasses of simple right R-modules such that
$\pi_{R}(top(P))=soc(P)$ for every indecomposable projective right R-module $P$ .
Consequently, the infinite cyclic group $(v_{R})$ generated by the Nakayama auto-
morphism $v_{R}$ acts freely on the objects of $R$ . We consider self-injective, locally
bounded, triangular and connected K-categories $R$ whose quotient categories
$R/(v_{R})$ are finite-dimensional K-algebras and there is no indecomposable pro-
jective R-module of length smaller than 3.

Every basic finite-dimensional K-algebra $A$ can be considered as a locally
bounded K-category, because $A\cong KQ_{A}/I_{A}$ for a finite quiver $Q_{A}$ . The repetitive
category (see [5]) of a basic finite-dimensional K-algebra $A$ is the self-injective
locally bounded K-category $\hat{A}$ whose objects are formed by the pairs $(z, x)=x_{z}$ ,
$x\in ob(A),$ $z\in Z$ and $\hat{A}(x_{z},y_{z})=\{z\}\times A(x,y),\hat{A}(x_{z+1},y_{z})=\{z\}\times DA(y,x)$ , and
$\hat{A}(x_{p},y_{q})=0$ if $p\neq q,$ $q+1$ , where $DV$ denotes the dual space $Hom_{K}(V, K)$ . It is
well-known that if $A$ is triangular then $\hat{A}$ is triangular. Moreover, $\hat{A}/(v_{\hat{4},4})$ is
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isomorphic to the trivial extension $T(A)$ of $A$ by its minimal injective cogenerator
bimodule $D(A)$ .

The class of K-categories satisfying the above conditions was studied by
several authors [1, 5, 8, 9, 11]. These categories were considered mainly as Galois
covers of some classes of finite-dimensional algebras. In particular, they always
were isomorphic to the repetitive categories of triangular algebras. Nevertheless
there is not given any general enough structural result on such K-categories. The
aim of this note is to provide such a result for the considered class of K-
categories. The main result is the following.

THEOREM. Let $R$ be a locally bounded triangular and connected self-injective
K-category whose quotient category $R/(v_{R})$ is a finite-dimensional K-algebra and
there is no indecomposable projective R-module of length smaller than 3. Then there
is a triangular finite-dimensional connected K-algebra $A$ such that $R\cong\hat{A}$ .

The proof of our result is rather easy. Nevertheless it is worth to stress that
our proof is independent of the representation type of $R$ .

1. v-sections

1.1. Throughout the note let $R$ be a locally bounded self-injective triangular
and connected K-category whose quotient category $R/(v_{R})$ is a finite-dimensional
K-algebra and there is no indecomposable projective R-module of length smaller
than 3. Moreover, we shall assume that $R=KQ_{R}/I_{R}$ for a bound quiver $(Q_{R},I_{R})$ .
All considered algebras are finite-dimensional, associative K-algebras with unit 1,
basic and connected.

1.2. Recall from [12] that an algebra $A$ is said to be weakly symmetric if
each indecomposable projective left or right A-module has a simple socle which is
isomorphic to its top.

LEMMA. $R/(v_{R})$ is a weakly symmetric algebra.

PROOF. Obvious.

1.3. Since the Nakayama automorphism permutes the objects of $R$ , the
group $(v_{R})$ acts also on $(Q_{R}, I_{R})$ . $R/(v_{R})$ is a finite-dimensional algebra by our
assumption, hence there is only finitely many $(v_{R})$ -orbits of vertices in $Q_{R}$ .

A full convex subquiver $(S, I)$ of $(Q_{R}, I_{R})$ is called a $v_{R}$ -section of $(Q_{R}, I_{R})$ if
it satisfies the following conditions:
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(1) For every vertex $x$ of $Q_{R}$ the intersection of its $(v_{R})$ -orbit with $S$ consists
of exactly one element.

(2) If $x\in S$ and $y\in Q_{R}$ are such vertices that there is an arrow $\alpha$

(respectively, $\beta$) in $Q_{R}$ sourced at $x$ (respectively, y) and targetted at $y$

(respectively, x) then either $y$ or $v_{R}^{-1}(y)$ (respectively, either $v_{R}(y)$ or y) belongs
to $S$.

(3) $I=KS\cap I_{R}$ .
1.4. For a bound quiver $(Q_{R},I_{R})$ of $R$ we define a cone $C_{x}$ at a vertex

$x\in Q_{R}$ to be the full subquiver of $Q_{R}$ formed by all the vertices $y$ of $Q_{R}$ such that
there exists a path of finite length in $Q_{R}$ sourced at $x$ and targetted at $y$ . A
reduced cone $S_{x}$ at a vertex $x\in Q_{R}$ is the full subquiver of $Q_{R}$ formed by the
vertices from $C_{x}\backslash C_{v_{R}(x)}$ .

1.5. LEMMA. Let $S_{\chi}$ be a reduced cone at a vertex $x\in Q_{R}$ . If $y\in S_{X}$ then
$v_{R}^{n}(y)\not\in S_{x}$ for every $n\in Z\backslash \{0\}$ .

PROOF. We prove our lemma by induction on the length $l(w)$ of the shortest
path $w$ in $Q_{R}$ from $x$ to $y$ . If $l(w)=0$ then $y=x$ and clearly $v_{R}^{n}(x)\not\in S_{x}$ for $n<0$ ,
because $Q_{R}$ is without oriented cycles. On the other hand $v_{R}^{n}(x)\not\in S_{x}$ for $n>0$ ,
because there is a path in $Q_{R}$ from $v_{R}(x)$ to $1^{f_{R^{l}}}(x)$ for every $n>0$ .

Assume that for all vertices $y$ in $S_{x}$ such that the length $l(w)$ of the shortest
path from $x$ to $y$ is not greater than 1 the required condition holds.

Consider a vertex $y0\in S_{x}$ such that $l(w_{0})=l+1$ for the shortest path $w_{0}$

from $x$ to $y0$ . Suppose to the contrary that there is $n\in Z\backslash \{0\}$ such that
$v_{R}^{n}(yo)\in S_{\chi}$ . Let $ w_{0}=w_{1}\alpha$ , where $\alpha$ is an arrow from $y1$ to $y0$ . It is clear that $w_{1}$ is
the shortest path from $x$ to $y1$ , because $w_{0}$ would not be the shortest one
otherwise. Moreover, there is an arrow $v_{R}^{n}(\alpha)$ from $v_{R}^{n}(y1)$ to $v_{R}^{n}(yo)$ . Thus we
know from the inductive assumption that $v_{R}^{n}(y1)\not\in S_{x}$ . Hence there is a path $v$

from $v_{R}(x)$ to $v_{R}^{n}(yl)$ . Then we have the path $v1^{f_{R^{\iota}}}(\alpha)$ from $v_{R}(x)$ to $V_{R}^{l}(yo)$ which
contradicts the above assumption. Consequently, $v_{R}^{n}(yo)\not\in S_{x}$ for every $n\in Z\backslash \{0\}$

and the lemma follows by induction.

1.6. LEMMA. Let $S_{x}$ be a reduced cone at a vertex $x\in Q_{R}$ . Then $S_{x}$ is a full
convex connected and finite subquiver of $Q_{R}$ .

PROOF. Connectedness of $S_{\chi}$ is clear, because every two vertices of $S_{X}$ are
connected by a walk passing through $x$ . Fullness of $S_{x}$ is clear by the definition of
$S_{x}$ . Observe that $S_{x}$ is finite. Indeed, there is only finitely many $(v_{R})$ -orbits of
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vertices in $Q_{R}$ . Thus $S_{x}$ has only finitely many vertices by Lemma 1.5. Since $Q_{R}$

is locally finite, $S_{x}$ is finite.
In order to show that $S_{x}$ is convex, consider a path $w$ from $yl$ to $y_{2}$ , where

$y1,$ $y2\in S_{x}$ . If there is a decomposition $w=w_{1}w_{2}$ such that $w_{1}$ is targetted at $z$

with $z\not\in S_{x}$ then there is a path $v$ from $v_{R}(x)$ to $z$ . Thus $vw_{2}$ is a path from $v_{R}(x)$

to $y2$ which contradicts the fact that $y2\in S_{x}$ . Consequently, $z\in S_{x}$ and our lemma
is proved.

1.7. LEMMA. Let $S_{x}$ be a reduced cone at a vertex $x\in Q_{R}$ . If $y\in C_{v_{R}(x)}$ then
there exists a natural number $n\geq 1$ such that $v_{R}^{-n}(y)\in S_{X}$ .

PROOF. We prove the lemma by induction on the length $l(w)$ of the shortest
path $w$ from $v_{R}(x)$ to $y$ . If $l(w)=0$ then $y=v_{R}(x)$ and $v_{R}^{-1}(y)=x\in S_{X}$ .

Assume that for any vertex $y$ in $C_{v_{R}(x)}$ with $l(w)\leq l$ there exists a natural
number $n$ such that $v_{R}^{-n}(y)\in S_{x}$ , where $w$ is the shortest path in $Q_{R}$ from $v_{R}(x)$ to
$y$ .

Consider a vertex $y\in C_{v_{R}(x)}$ such that the length $l(w)=l+1$ for the shortest
path $w$ in $Q_{R}$ from $v_{R}(x)$ to $y$ . Consider the decomposition $ w=w_{1}\alpha$ , where $\alpha$ is
an arrow sourced at $y0$ and targetted at $y$ . Then $y0\in C_{v_{R}(x)}$ and we obtain by the
inductive assumption that there is a natural number $n_{0}$ such that $v_{R}^{-n_{0}}(yo)\in S_{X}$ .
Consider the vertex $v_{R}^{-n_{0}}(y)$ . Since $v_{R}^{-no}(yo)\in S_{x}$ , there is a path $u$ from $x$ to
$v_{R}^{-n_{0}}(yo)$ . Hence there is the path $uv_{R}^{-n_{0}}(\alpha)$ from $x$ to $v_{R}^{-n_{0}}(y)$ . Therefore
$v_{R}^{-n_{0}}(y)\in C_{X}$ . If there is no path from $v_{R}(x)$ to $v_{R}^{-n_{0}}(y)$ then $v_{R}^{-n_{0}}(y)\in S_{x}$ . If there is
a path $z$ from $v_{R}(x)$ to $v_{R}^{-n_{0}}(y)$ then there is the path $v_{R}^{-1}(z)$ from $x$ to $v_{R}^{-n0-1}(y)$ ,
and so $v_{R}^{-n_{0}-1}(y)\in C_{x}$ . If there is a path $v$ from $v_{R}(x)$ to $v_{R}^{-n_{0}}$

‘1
$(y)$ then we obtain

a contradiction to the fact that $v_{R}^{-n_{0}}(yo)$ belongs to $S_{X}$ . Indeed, in the case there is
a path $b$ from $v_{R}^{-n0-1}(y)$ to $v_{R}^{-n_{0}}(yo)$ since $R$ is self-injective. Thus there is the path
$vb$ from $v_{R}(x)$ to $v_{R}^{-n_{0}}(yo)$ which contradicts the choice of $v_{R}^{-n_{0}}(yo)$ . Consequently,
$v_{R}^{-n_{0}-1}(y)\in S_{X}$ and the lemma is proved by induction.

1.8. LEMMA. Let $C_{X}$ be a cone at a vertex $x\in Q_{R}$ . Then every $(v_{R})$ -orbit of a
vertex $z\in Q_{R}$ has a common vertex with $C_{X}$ .

PROOF. We prove the lemma by induction on the length $l(w)$ of minimal
walk in $Q_{R}$ connecting a vertex $z\in Q_{R}$ to $x$ . Such a walk always exists since $Q_{R}$

is connected. If $l(w)=0$ then $x=z$ and the required condition holds.
Assume that for all vertices $z\in Q_{R}$ with $l(w)\leq l_{0}$ the required condition

holds, where $w$ is a minimal walk connecting $z$ to $x$ .
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Consider $z_{0}\in Q_{R}$ such that there is a minimal walk $w$ in $Q_{R}$ connecting $z_{0}$ to
$x$ with $l(w)=l_{0}+1$ . Then $w=\alpha w_{1}$ or $w=\alpha^{-1}w_{1}$ , where $\alpha$ is an arrow sourced or
targetted at $z_{0}$ , respectively. If $w=\alpha w_{1}$ and $z_{0}$ is the source of $\alpha$ then there is a
path $v$ in $Q_{R}$ from $x$ to $v_{R}^{n}(z_{1})$ for the target $z_{1}$ of $\alpha$ and for some $n\in Z$ by the
inductive assumption. Since $R$ is self-injective, there is a path $v_{R}^{n}(\alpha)u$ in $Q_{R}$ from
$v_{R}^{n}(z_{0})$ to $v_{R}^{n+1}(z_{0})$ . Thus there is the path $vu$ from $x$ to $v_{R}^{n+1}(z_{0})$ in $Q_{R}$ , and so
$v_{R}^{n+1}(z_{0})\in C_{X}$ .

If $w=\alpha^{-1}w_{1}$ and $z_{0}$ is the target of $\alpha$ then there is a path $v$ in $Q_{R}$ from $x$ to
$v_{R}^{n}(z_{1})$ for the source $z_{1}$ of $\alpha$ and for some $n\in Z$ by the inductive assumption. On
the other hand we have the arrow $/_{R^{l}}(\alpha)$ from $v_{R}^{n}(z_{1})$ to $v_{R}^{n}(z_{0})$ . Hence there is the
path $vv_{R}^{n}(\alpha)$ from $x$ to $v_{R}^{n}(z_{0})$ in $Q_{R}$ , and so $v_{R}^{n}(z_{0})\in C_{x}$ . Consequently, our lemma
is proved by induction.

1.9. PROPOSITION. Let $R=KQ_{R}/I_{R}$ be a self-injective triangular and con-
nected locally bounded K-category whose quotient category $R/(v_{R})$ is a finite-
dimensional K-algebra and there is no indecomposable projective R-module of
length smaller than 3. Then there exists a $v_{R}$-section of $(Q_{R}, I_{R})$ .

PROOF. Fix a vertex $x\in Q_{R}$ . Consider the reduced cone $S_{x}$ at the vertex $x$ .
Let $I_{X}=KS_{X}\cap I_{R}$ . We shall show that $(S_{X}, I_{X})$ is a $v_{R}$-section of $(Q_{R},I_{R})$ . We
infer by Lemma 1.6 that $S_{x}$ is a full convex connected and finite subquiver of $Q_{R}$ .
Applying Lemma 1.8 to the cone $C_{v_{R}(x)}$ at the vertex $v_{R}(x)$ , we obtain that every
$(v_{R})$ -orbit of a vertex $z\in Q_{R}$ has a common vertex to $C_{v_{R}(x)}$ . Furthermore, we
deduce from Lemma 1.7 that every $(v_{R})$ -orbit of a vertex $z$ in $Q_{R}$ has a common
vertex to $S_{x}$ . Thus we obtain from Lemma 1.5 that there is only one such a
common vertex. Consequently, 1.3(1) holds for $(S_{x}, I_{X})$ .

Suppose that a vertex $z$ belongs to $S_{X}$ and there is an arrow $\alpha$ in $Q_{R}$ sourced
at $z$ and targeted at $y\in Q_{R}$ . If $y\not\in S_{\chi}$ then there is a path $u$ in $Q_{R}$ from $v_{R}(x)$

to $y$ . Thus there is the path $v_{R}^{-1}(u)$ from $x$ to $v_{R}^{-1}(y)$ . Hence $v_{R}^{-1}(y)\in C_{x}$ . If
$v_{R}^{-1}(y)\not\in S_{X}$ then there is a path $v$ in $Q_{R}$ from $v_{R}(x)$ to $v_{R}^{-1}(y)$ . But $R$ is self-
injective hence there is a path $ w\alpha$ in $Q_{R}$ from $v_{R}^{-1}(y)$ to $y$ . Consequently, there is
the path $vw$ from $v_{R}(x)$ to $z$ which contradicts to the fact that $z\in S_{X}$ . Therefore
$v_{R}^{-1}(y)\in S_{x}$ .

Now suppose that a vertex $z$ belongs to $S_{x}$ and there is an arrow $\beta$ in $Q_{R}$

sourced at $y\in Q_{R}$ and targetted at $z$ , and suppose that there is a path $\beta w$ in $Q_{R}$

from $y$ to $v_{R}(y)$ . Since $z\in S_{x}$ , there is a path $u$ in $Q_{R}$ from $x$ to $z$ . Thus the path
$uw$ connects $x$ to $v_{R}(y)$ hence $v_{R}(y)\in C_{x}$ . If $v_{R}(y)\in C_{v_{R}(x)}$ then there is a non-
negative integer $n$ such that $v_{R}^{-n}(v_{R}(y))\in S_{X}$ by Lemma 1.7. Since $y\not\in S_{X},$ $n>1$ .
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But there is a path $v$ in $Q_{R}$ from $x$ to $v_{R}^{-n}(y)$ . Hence there are a path $v^{\prime}$ from
$v_{R}^{n}(x)$ to $y$ of the form $\#_{R}(v)$ and a path $v^{\prime\prime}$ from $v_{R}(x)$ to $V_{R}(x)$ . Thus there exists
the path $ v^{\prime\prime}v^{\prime}\beta$ from $v_{R}(x)$ to $z$ which contradicts that $z\in S_{x}$ . Consequently,
$v_{R}(y)\not\in C_{v_{R}(x)}$ , and so $v_{R}(y)\in S_{X}$ .

In this way we have proved that 1.3(2) holds. Since 1.3(3) is obvious by the
definition of $I_{\chi}$ , the proposition is proved.

2. v-sectional partitions

2.1. Let $(S, I)$ be a fixed $v_{R}$-section of $(Q_{R},I_{R})$ , where $S$ is a reduced cone
at a vertex $x\in Q_{R}$ . A collecting arrow with respect to $(S, I)$ is any arrow $\alpha$ in $Q_{R}$

which does not belong to $S$ and such that there is an arrow $\beta$ in $S$ with $\beta\alpha\not\in I_{R}$ .

2.2. LEMMA. Let $w=\alpha_{1}\cdots\alpha_{n}$ be a maximal nonzero path in $(Q_{R}, I_{R})$ whose
source is a vertex $s\in S$ . Then $w$ contains exactly one collecting arrow $\alpha$ with
respect to $(S, I)$ .

PROOF. Suppose that $w=\alpha_{1}\cdots\alpha_{n}$ is a maximal nonzero path in $(Q_{R}, I_{R})$

and $s\in S$ is its source. Sinoe $R$ is self-injective without indecomposable projective
R-modules of length 2 then $n\geq 2$ and $w$ connects $s$ with $v_{R}(s)$ by the maximality
of $w$ . But if $s\in S$ then $v_{R}(s)\not\in S$ by Lemma 1.5. Hence there is $i_{0}\in\{1, \ldots,n\}$

such that $\alpha_{i_{0}}$ is a collecting arrow.
Now suppose that there are two collecting arrows $\alpha_{i_{0}},$ $\alpha_{j_{0}}$ in $w$ with $j_{0}>i_{0}$ .

Sinoe $(S, I)$ is a full convex subquiver in $(Q_{R}, I_{R})$ , the target of $\alpha_{i_{0}}$ cannot belong
to $S$, because $\alpha_{i_{0}}\not\in S$ . But again $\alpha_{jo}$ has the source in $S$ by the definition of
collecting arrows. Thus the target of $\alpha_{i_{0}}$ belongs to $S$ by the convexity of $S$. The
obtained contradiction shows the lemma.

2.3. An $(S,I)$ -partition of $(Q_{R}, I_{R})$ is the non-connected bound quiver
$(P, I_{P})=\coprod_{z\in Z}(v_{R}^{z}(S), v_{R}^{z}(I))$ .

LEMMA. If an arrow $\alpha$ in $Q_{R}$ does not belong to the $(S,I)$ -partition $(P,I_{P})$ of
$(Q_{R}, I_{R})$ then there exists $z_{0}\in Z$ such that $\alpha$ is a collecting arrow with respect to
$(v_{R^{0}}^{z}(S), v_{R^{0}}^{z}(I))$ .

$PR\infty F$ . Let $\alpha$ be an arrow in $Q_{R}$ which does not belong to $P$ . Then there
exists a maximal nonzero path in $Q_{R}$ of the form $\beta_{1}\cdots\beta_{r}\alpha$ , because $R$ is self-
injective without indecomposable projective R-modules of length smaller than 3.
Now look at the vertices of the arrows $\beta_{1},$ $\alpha$ . Clearly for the source $s$ of $\beta_{1}$ and
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the target $y$ of $\alpha$ it holds $v_{R}(s)=y$ . Then there is $z_{0}\in Z$ such that $s\in v_{R^{0}}^{Z}(S)$ by
the definition of $(P, I_{P})$ . Observe that the target $v$ of $\beta_{r}$ belongs to $v_{R^{0}}^{z}(S)$ . Indeed,
if $v\not\in v_{R^{0}}^{z}(S)$ then $v_{R}^{-1}(v)\in v_{R^{0}}^{z}(S)$ by 1.3(2) for the $v_{R}$-section $(v_{R^{0}}^{z+1}(S), v_{R^{0}}^{z+1}(I))$ .
Thus $v,$

$y=v_{R}(s)\in v_{R^{0+1}}^{Z}(S)$ , and so $\alpha\in v_{R^{0}}^{z+1}(S)$ which contradicts the choice of $\alpha$ .
Consequently, $v\in v_{R^{0}}^{z}(S)$ and $\beta\in v_{R^{0}}^{Z}(S)$ since $S$ is convex. Hence $\alpha$ is a collecting
arrow with respect to $(v_{R^{0}}^{z}(S), v_{R^{0}}^{z}(I))$ , because $\beta_{r}\alpha\not\in I_{P}$ .

2.4. For a fixed $v_{R}$ -section $(S, I)$ of $(Q_{R},I_{R})$ consider the $(S, I)$ -partition
$(P, I_{P})$ of $(Q_{R}, I_{R})$ . Define a two-sided ideal $I_{P}$ in $R=KQ_{R}/I_{R}$ with respect to
$(P, I_{P})$ as the ideal generated by the arrows $\alpha$ which do not belong to $P$ .

LEMMA. $I_{P}^{2}=0$ .

PROOF. Clearly it is sufficient to show that if we have two paths $u,$ $v\in I_{P}$

then $uv=0$ . But if $u$ is a path in $I_{P}$ then $u=u_{1}\alpha_{1}u_{2}$ , where $\alpha_{1}\not\in P$ . The same
holds for $v$, e.g. $v=v_{1}\alpha_{2}v_{2}$ with $\alpha_{2}\not\in P$ . If $u$ and $v$ are not composable then clearly
$uv=0$ . Consider the case when $u$ and $v$ are composable. Then we infer by
Lemma 2.3 that there is $z_{0}\in Z$ such that $\alpha_{1}$ is a collecting arrow with respect to
$(v_{R^{0}}^{z}(S), v_{R^{0}}^{z}(I))$ . The same holds for $\alpha_{2}$ hence there is $z_{1}\in Z$ such that $\alpha_{2}$ is a
collecting arrow with respect to $(v_{R^{1}}^{Z}(S), v_{R^{1}}^{z}(I))$ . We may assume that $u,$ $v$ are
nonzero in $(Q_{R}, I_{R})$ . Hence, by the triangularity of $R$ , we infer that $z_{1}=z_{0}+1$ .
Then $u_{1}\alpha_{1}u_{2}v_{1}\alpha_{2}v_{2}$ is a path which contains two collecting arrows (with respect to
different $v_{R}$-sections). Consider the path $\alpha_{1}u_{2}v_{1}\alpha_{2}$ . The source $s$ of it is in $v_{R^{0}}^{z}(S)$

and the target $y$ of it is in $v_{R^{0}}^{z+2}(S)$ . We deduce from the self-injectivity of $R$ that
if $\alpha_{1}u_{2}v_{1}\alpha_{2}$ is nonzero in $(Q_{R}, I_{R})$ then there is a path $\gamma_{1}\cdots\gamma_{t}$ from $v_{R}^{-1}(y)$ to $s$

such that $\gamma_{1}\cdots\gamma_{t}\alpha_{1}u_{2}v_{1}\alpha_{2}$ is nonzero in $(Q_{R}, I_{R})$ . But $v_{R}^{-1}(y)\in v_{R^{0+1}}^{Z}(S)$ and
$s\in v_{R^{0}}^{z}(S)$ . Since the target $b$ of $\alpha_{1}$ belongs to $v_{R^{0}}^{z+1}(S)$ , we get by the convexity of
$v_{R}^{zo+1}(S)$ that $s\in v_{R^{0}}^{z+1}(S)$ which contradicts the above choice of $\alpha_{1}$ . Thus $\alpha_{1}u_{2}v_{1}\alpha_{2}$

is a zero path in $(Q_{R},I_{R})$ and the lemma follows.

2.5. PROPOSITION. $R/I_{P}\cong\oplus_{z\in Z}K(v_{R}^{z}(S))/\Psi_{R}(I)$ .

PROOF. Consider a surjective functor $p:KQ_{R}/I_{R}\rightarrow\oplus_{z\in Z}K(v_{R}^{z}(S))/v_{R}^{z}(I)$

defined as follows: for every vertex $q\in Q_{R},$ $p(q)=q$ . For every path $u$ in $Q_{R}$

which does not contain a collecting arrow we put $p(u)=u$ . For every path $v$ in
$Q_{R}$ which contains a collecting arrow we put $p(v)=0$ . Then we extend $p$ linearly
to a functor. It is clear by the definition of $p$ that $I_{P}=ker(p)$ . Moreover, we get
that $p$ is surjective by Lemma 2.3 and the definition of a $v_{R}$-section in $(Q_{R},I_{R})$ .
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3. Proof of the main result

3.1. PROPOSITION. Let $R=KQ_{R}/I_{R}$ be a self-injective triangular and con-
nected locally bounded K-category whose quotient category $R/(v_{R})$ is a finite-
dimensional K-algebra and there is no indecomposable projective R-module of
length smaller than 3. If $(Q_{R}, I_{R})$ contains a $v_{R}$ -section then there is an epi-
morphism $p:R/(v_{R})\rightarrow A$ such that $A$ is a triangular connected algebra and
$ker(p)=I$ is such a two-sided ideal in $R/(v_{R})$ that $I^{2}=0$ .

PROOF. Let $(S, I)$ be a $v_{R}$-section of $(Q_{R}, I_{R})$ . Consider the $(S, I)$ -partition
$(P, I_{P})$ of $(Q_{R}, I_{R})$ . Then we have an ideal $I_{P}$ in $R$ such $I_{P}^{2}=0$ by Lemma 2.4.
Moreover, $R/I_{P}\cong\oplus_{z\in Z}K(v_{R}^{z}(S))/v_{R}^{z}(I)$ by Proposition 2.5. It is easily seen
that the group $(v_{R})$ acts freely on $R/I_{P}$ and on $I_{P}$ , because it acts freely on $R$ .
Then we have an epimorphism $p:R/(v_{R})\rightarrow(R/I_{P})/(v_{R})$ whose kemel is
$I_{P}/(v_{R})$ . Put $I=I_{P}/(v_{R})$ and $A=(R/I_{P})/(v_{R})$ . We know from Lemma 2.4 that
$I^{2}=0.$ $A$ is triangular and connected, because $A\cong KS/I$ . Thus the proposition
follows.

3.2. If $A$ and $I$ are as in Proposition 3.1 then we have.

LEMMA. $D(A)=I$ as right A-modules.

PROOF. We shall prove our lemma considering $KS/I$ as a subcategory of $R$ ,
where $(S, I)$ is a fixed $v_{R}$-section of $(Q_{R}, I_{R})$ . Then consider the two-sided ideal $J$

in $R$ generated by the collecting arrows in $Q_{R}$ with respect to $(S, I)$ . We infer by
Propositions 2.5, 3.1 that $I_{P}=\oplus_{z\in Z}v_{R}^{z}(J)$ and $R/I_{P}=\oplus_{z\in Z}v_{R}^{z}(KS/I)$ . Since
$I^{2}=0,$ $I$ is a right A-module. Thus $I$ is a submodule of $D(A)$ , because
$soc_{R/(v_{R})}(I)=soc_{R/(v_{R})}(R/(v_{R}))=soc_{R/(v_{R})}(D(A))$ . Suppose to the contrary that
$I\neq D(A)$ . Then there is a morphism from $D(A)$ to $A$ which is a nonzero
morphism from $v_{R}(D(KS/I))$ to $KS/I$ which does not factorize through $J$ . Thus
we have a path $u$ in $(v_{R}(S), v_{R}(I))$ which is nonzero, sourced at $s$ and targetted
at $y$ with $s\in S\cap v_{R}(S),$ $y\in v_{R}(S)$ which contradicts to the fact that $(S, I)$ is a
$v_{R}$ -section of $(Q_{R}, I_{R})$ by 1.3(1). Therefore $D(A)=I$ .

3.3. The following fact was proved in [6].

LEMMA. Let I be such a two-sided ideal in a self-injective finite-dimensional
K-algebra $\Lambda$ that $I^{2}=0$ and $\Lambda/I$ is triangular. If I is injective as a right $\Lambda/I-$

module, then for any isomorphism $\varphi:I\rightarrow D(\Lambda/I)$ of right $\Lambda/I$-modules there is a
$\Lambda/I$-bimodule isomorphism $\varphi^{\prime}$ : $I\rightarrow D(\Lambda/I)$ .
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3.4. The following proposition in a weaker form was shown in [7]. We
repeat the modified version of its proof for the convenience of the reader.

PROPOSITION. Let $R_{1}$ , $R_{2}$ be triangular connected self-injective locally
bounded K-categories whose quotient categories $R_{1}/(v_{R_{1}}),$ $R_{2}/(v_{R_{2}})$ are finite-
dimensional K-algebras. If $R_{1}/(v_{R_{1}})\cong R_{2}/(v_{R_{2}})$ then $R_{1}\cong R_{2}$ .

PROOF. Under the assumptions of the proposition fix some representatives
$\{P_{x}\}_{x\in X}$ of the isomorphism classes of indecomposable projective $R_{1}$ -modules
and some representatives $\{Q_{y}\}_{y\in Y}$ of the isomorphism classes of indecomposable
projective $R_{2}$ -modules. Then $R_{1}\cong End_{R_{1}}(\oplus_{x\in X}P_{x})^{op}$ and $ R_{2}\cong$

$End_{R_{2}}(\oplus_{y\in Y}Q_{y})^{op}$ . Let $F_{\lambda,t}$ : $mod (R_{l})\rightarrow mod (R_{t}/(v_{R_{l}})),$ $t=1,2$ , be the push-
down functors induced by the actions of $(v_{R_{l}})$ on $R_{t}$ (see [3, 2]). It is well-known
that indecomposable projective $R_{l}/(v_{R_{t}})$ -modules and their radicals are contained
in the image of $F_{\lambda,t},$ $t=1,2$ . Moreover, $F_{\lambda,t}$ preserves projectives and their
radicals.

Fix some $x_{0}\in X$ . Let $LF_{\lambda,1}(P_{x_{0}})\cong F_{\lambda,2}(Q_{\mathcal{Y}0})$ for a fixed $y0\in Y$ , where
$L:mod (R_{1}/(v_{R_{1}}))\rightarrow mod (R_{2}/(v_{R_{2}}))$ is the equivalence induced by a fixed iso-
morphism from $R_{1}/(v_{R_{1}})$ onto $R_{2}/(v_{R_{2}})$ . Let $R_{1,1}$ be the subcategory of $R_{1}$

formed by $P_{x_{0}}$ and the $P_{x},$ $P_{X^{\prime}}$ such that the following conditions are satisfied:
(a) there is a nonzero morphism $f_{x}$ : $P_{x}\rightarrow P_{x_{0}}$ in $mod (R_{1})$ of the form

$f_{x}=f^{*}f_{X}^{\prime}$ , where $f_{x}^{\prime}$ : $P_{x}\rightarrow rad(P_{x_{0}})$ satisfies $\pi_{x_{0}}f_{x}^{\prime}\neq 0$ for the canonical epi-
morphism $\pi_{x_{0}}$ : rad $(P_{x_{0}})\rightarrow top(rad(P_{x_{0}}))$ , and $f^{*}$ : rad $(P_{x_{0}})\rightarrow P_{x_{0}}$ is the identity
monomorphism;

(b) there is a nonzero morphism $h_{x}/$ : $P_{x_{0}}\rightarrow P_{X^{\prime}}$ of the form $h_{X}/=h_{x}^{\prime\prime},h_{x}^{\prime},$ ,
where $h_{x}^{\prime}$ , : $P_{x_{0}}\rightarrow rad(P_{x}/)$ satisfies $\pi_{X}/h_{x}^{\prime},$ $\neq 0$ for the canonical epimorphism
$\pi_{X}/:rad(P_{X}/)\rightarrow top(rad(P_{X^{\prime}}))$ , and $h_{x}^{\prime\prime}$ , : rad $(P_{X^{\prime}})\rightarrow P_{X^{\prime}}$ is the identity mono-
morphism.

If $P$, $P$ are objects of $R_{1,1}$ then $Hom_{R_{1,1}}(P, P^{\prime})$ is the subspace of
$Hom_{R_{1}}(P, P)$ generated by the isomorphisms between $P$ and $P^{\prime}$ and the mor-
phisms of the form $a=a_{1}a_{2}$ , where $a_{1}=h_{X^{\prime}}$ for some $x^{\prime}$ and $a_{2}$ is an auto-
morphism of $P_{x_{0}}$ , or $a_{2}=f_{x}$ for some $x$ and $a_{1}$ is an automorphism of $P_{x_{0}}$ , or else
$a_{1}=h_{X}/$ for some $x^{\prime}$ and $a_{2}=f_{x}$ for some $x$ . Since $R_{1}$ is locally bounded K-
category, $R_{1,1}$ is finite.

Let $R_{2,1}$ be the subcategory of $R_{2}$ formed by $Q_{\mathcal{Y}0}$ and the $Q_{y},$ $Q_{y}/such$ that
the following conditions are satisfied:

(a) there is a nonzero morphism $r_{y}$ : $Q_{y}\rightarrow Q_{y0}$ of the form $r_{y}=r^{*}r_{y}^{\prime}$ , where
$r_{y}^{\prime}$ : $Q_{y}\rightarrow rad(Q_{y0})$ satisfies $\kappa_{y0}r_{y}^{\prime}\neq 0$ for the canonical epimorphism
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$\kappa_{y0}$ : rad $(Q_{y0})\rightarrow top(rad(Q_{y0}))$ , and $r^{*}$ : rad $(Q_{\mathcal{Y}0})\rightarrow Q_{\mathcal{Y}0}$ is the identity mono-
morphism;

(b) there is a nonzero morphism $s_{y^{\prime}}$ : $Q_{y0}\rightarrow Q_{y^{\prime}}$ of the form $s_{y^{\prime}}=s_{y}^{\prime\prime},s_{y}^{\prime},$ ,
where $s_{y}^{\prime}$ , : $Q_{y_{0}}\rightarrow rad(Q_{y^{\prime}})$ satisfies $\kappa_{y^{\prime}}s_{y}^{\prime},$

$\neq 0$ for the canonical epimorphism
$\mathcal{K}_{y}/$ : rad $(Q_{y}/)\rightarrow top(rad(Q_{y}/))$ , and $S_{y}^{\prime\prime}$ : rad( $Q_{y^{\prime}}\rightarrow Q_{y^{\prime}}$ is the identity mono-
morphism.

If $Q,$ $Q^{\prime}$ are objects of $R_{2,1}$ then $Hom_{R_{2,1}}(Q, Q^{\prime})$ is the subspaoe of
$Hom_{R_{2}}(Q, Q^{\prime})$ generated by the isomorphisms between $Q$ and $Q^{\prime}$ and the
morphisms of the form $w=w_{1}w_{2}$ , where $w_{1}=s_{y}/$ for some $y^{\prime}$ and $w_{2}$ is an
automorphism of $Q_{y0}$ , or $w_{2}=r_{y}$ for some $y$ and $w_{1}$ is an automorphism of $Q_{y0}$ ,
or else $w_{1}=s_{y^{\prime}}$ for some $y^{\prime}$ and $w_{2}=r_{y}$ for some $y$ . Since $R_{2}$ is locally bounded
K-category, $R_{2,1}$ is finite.

Observe that if $P_{x_{1}}\in R_{1,1}$ and $Hom_{R_{1,1}}(P_{x_{1}}, P_{x_{0}})\neq 0$ then there is a uniquely
determined $Q_{y_{1}}\in R_{2,1}$ with $Hom_{R_{2,1}}(Q_{y_{1}}, Q_{\mathcal{Y}0})\neq 0$ and $LF_{\lambda,1}(P_{x_{1}})\cong F_{\lambda,2}(Q_{y1})$ .
Indeed, if there are $Q_{y_{1}},$ $Q_{y_{2}}\in R_{2,1}$ with $Hom_{R_{2,1}}(Q_{yl}, Q_{y_{0}})\neq 0,$ $l=1,2$ , and
$LF_{\lambda,1}(P_{x_{1}})\cong F_{\lambda,2}(Q_{yl})$ , then there is $z\in Z$ such that $\prime_{R_{2}}(Q_{y1})\cong Q_{y2}$ . Furthermore,
there are $0\neq r_{\mathcal{Y}l}$ : $Q_{\mathcal{Y}l}\rightarrow Q_{y0},$ $l=1,2$ , such that $r_{yl}$ factorize through rad $(Q_{y0})$

by the definition of $R_{2,1}$ . Hence top $(Q_{yl}),$ $l=1,2$ , are direct summands in
top $(rad(Q_{y0}))$ . Then in case $z>0$ we get that there is a sequence $Q_{1}^{\prime},$

$\ldots,$
$Q_{z}$ of

indecomposable projective $R_{2}$-modules such that soc $(q_{m})\cong top(Q_{m-1}),$ $m=$

$2,$
$\ldots,$

$z$, and top $(Q_{y_{1}})\cong soc(Q_{1}^{\prime}),$ $top(Q_{z}^{\prime})\cong soc(Q_{\mathcal{Y}2})$ . But top $(Q_{y0})$ is contained
in the support of $Q_{1}^{\prime}$ hence $R_{2}$ is not triangular which contradicts our assumption.
Similarly we obtain a contradiction if $z<0$ . Thus $z=0$ and $Q_{yl}=Q_{y2}$ . Dually
one proves that if $P_{x_{1}^{\prime}}\in R_{1,1}$ and $Hom_{R_{1,1}}(P_{x_{0}}, P_{x_{1}^{\prime}})\neq 0$ then there exists the
uniquely determined $Q_{y_{1}^{\prime}}\in R_{2,1}$ with $Hom_{R_{2,1}}(Q_{y_{0}}, Q_{y_{1}^{\prime}})\neq 0$ and $ LF_{\lambda,1}(P_{x_{1}^{\prime}})\cong$

$F_{\lambda,2}(Q_{y_{1}^{\prime}})$ .
Now we define a functor $F_{1}$ : $R_{1,1}\rightarrow R_{2,1}$ putting $F_{1}(P_{x_{0}})=Q_{\mathcal{Y}0}$ , and for

all possible $x_{1},$ $x$ { we put $F_{1}(P_{x_{1}})=Q_{yl},$ $F_{1}(P_{x_{1}^{\prime}})=Q_{y_{1}^{\prime}}$ . If $P,$ $P\in R_{1,1}$ then
$Hom_{R_{1,1}}(P, P)$ either consists of isomorphisms (if $P=P$ ) or is generated by the
above $a$ . If $P=P$ then $Hom_{R_{1,1}}(P, P)\cong K\cdot id_{P}\cong K\cdot id_{F_{\lambda,1}(P)}$ as K-spaces and
$Hom_{R_{2,1}}(F_{1}(P), F_{1}(P))\cong K\cdot id_{F_{1}(P)}\cong K\cdot id_{F_{\lambda,2}(F_{1}(P))}$ . Then, since $L$ induces a K-
space isomorphism, $K\cdot id_{F_{\lambda,1}(P)}\cong K\cdot id_{F_{\lambda,2}(F_{1}(P))}$ , for every $f\in Hom_{R_{1,1}}(P, P)$ there
is exactly one $r\in Hom_{R_{2,1}}(F_{1}(P), F_{1}(P))$ such that $LF_{\lambda,1}(f)=F_{\lambda,2}(r)$ . Thus we
put $F_{1}(f)=r$ . If $P\neq P$ then we define $F_{1}$ for the morphisms of the form
$a=a^{\prime\prime}a^{\prime}$ , where $a^{\prime}$ : $P\rightarrow rad(P)$ satisfies $\pi a^{\prime}\neq 0$ for the canonical epimorphism
$\pi$ : rad$(P)\rightarrow top(rad(P))$ and $d^{\prime}$ : rad $(P)\rightarrow P$ is the inclusion monomorphism.
If $a:P\rightarrow P$ is such a morphism then there is the uniquely determined
$r:F_{1}(P)\rightarrow F_{1}(P)$ in $Hom_{R_{2,1}}(F_{1}(P),F_{1}(P))$ such that $LF_{\lambda,1}(a)=F_{\lambda,2}(r)$ . Indeed,
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if $r_{1},$ $r_{2}$ satisfy $LF_{\lambda,1}(a)=F_{\lambda,2}(r_{1})=F_{\lambda,2}(r_{2})$ then there are $r_{1}^{\prime},$ $r_{2}^{\prime}$ : $ F_{1}(P)\rightarrow$

$rad(F_{1}(P^{\prime}))$ such that $\pi^{\prime}r_{1}^{\prime},$ $\pi^{\prime}r_{2}^{\prime}\neq 0$ for the canonical projection $\pi^{\prime}$ : rad $(F_{1}(P^{\prime}))\rightarrow$

$top(rad(F_{1}(P^{\prime})))$ . Furthermore, for the inclusion $r^{\prime\prime}$ : rad $(F_{1}(P^{\prime}))\rightarrow F_{1}(P)$ we
have $r_{1}=r^{\prime\prime}r_{1}^{\prime},$ $r_{2}=r^{\prime\prime}r_{2}^{\prime}$ . But if $r_{1}^{\prime},$ $r_{2}^{\prime}$ are different then $F_{\lambda,2}(r_{1}^{\prime})\neq F_{\lambda,2}(r_{2}^{l})$ ,

because $R_{2}$ is triangular and $F_{\lambda,2}$ is induced by the action of $(v_{R_{2}})$ . Thus
$F_{\lambda,2}(r_{1})\neq F_{\lambda,2}(r_{2})$ for $r_{1}\neq r_{2}$ . Consequently, $r_{1}=r_{2}$ if $F_{\lambda,2}(r_{1})=F_{\lambda,2}(r_{2})$ . Then we
put $F_{1}(a)=r$ . If $a=a_{1}a_{2}$ is a composition of either an isomorphism and a
morphism of the above form or two morphisms of the above form then we put
$F_{1}(a)=F_{1}(a_{1})F_{1}(a_{2})$ . Finally we extend $F_{1}$ linearly to a K-functor. lt is clear by
the above considerations that we obtained a functor $F_{1}$ : $R_{1,1}\rightarrow R_{2,1}$ which is
dense and fully faithful. Thus $F_{1}$ yields an equivalence of categories.

Assume now that we defined a subcategory $R_{1,n}$ in $R_{1}$ such that for every
pair $P,$ $P^{\prime}$ of objects from $R_{1,n}$ it holds either $P=P$ and $Hom_{R_{1,n}}(P, P)$ consists
only of automorphisms or $P\neq P^{\prime}$ and $Hom_{R_{1,n}}(P, P)$ is generated by the
morphisms of the form $a=a_{s}\cdots a_{2}a_{1}$ such that:

(i) $a_{l}$ : $P_{l}\rightarrow P_{l+1}$ for some objects $P_{1},$
$\ldots,$

$P_{s+1}$ of $R_{1,n}$ , where $P_{1}=P$,
$P_{s+1}=P^{\prime}$ ;

(ii) $a_{l}=a_{l}^{\prime\prime}a_{l}^{\prime},$ $l=1,$ $\ldots,s,$ $a_{l}^{\prime}$ : $P_{l}\rightarrow rad(P_{l+1})$ satisfies $\pi_{l+1}a_{l}^{\prime}\neq 0$ for the
canonical epimorphism $\pi_{l+1}$ : rad $(P_{l+1})\rightarrow top(rad(P_{l+1}))$ ;

(iii) $a_{l}^{\prime\prime}$ : rad $(P_{l+1})\rightarrow P_{l+1}$ is the inclusion for $l=1,$ $\ldots,$
$s$ .

Moreover, assume that we have defined a subcategory $R_{2,n}$ of $R_{2}$ satisfying the
above conditions for morphisms, and a functor $F_{n}$ : $R_{1,n}\rightarrow R_{2,n}$ which is a K-
linear equivalenoe such that it maps the generators of $Hom_{R_{1,n}}(P, P^{\prime})$ onto the
generators of $Hom_{R_{2,n}}(F_{n}(P), F_{n}(P))$ .

Define a subcategory $R_{1,n+1}$ of $R_{1}$ in the following way. The objects of $R_{1,n+1}$

are those of $R_{1,n}$ and the objects $P$ of $R_{1}$ such that either there is a nonzero
morphism $a:P\rightarrow P^{\prime}$ with $P\in R_{1,n}$ and $a=a^{\prime\prime}a^{l}$ , where $a^{\prime}$ : $P\rightarrow rad(P)$ satisfies
$\pi^{\prime}a^{\prime}\neq 0$ for the canonical projection $\pi^{\prime}$ : rad $(P)\rightarrow top(rad(P))$ and
$a^{\prime\prime}$ : rad $(P)\rightarrow P^{\prime}$ is the inclusion, or there is a nonzero morphism $h:P\rightarrow P$ with
$P^{\prime}\in R_{1,n}$ and $h=h^{\prime\prime}h^{\prime}$ , where $h^{\prime}$ : $P^{\prime}\rightarrow rad(P)$ satisfies $\pi h^{\prime}\neq 0$ for the canonical
epimorphism $\pi:rad(P)\rightarrow top(rad(P))$ and $h^{J/}:$ rad $(P)\rightarrow P$ is the inclusion. For
every two objects $P,$ $P^{J/}$ from $R_{1,n+1}$ the morphism space $Hom_{R_{1,n+1}}(P, P^{\prime})$ is
generated by the isomorphisms between $P$ and $P^{\prime}$ and the compositions
$a=a_{s}\cdots a_{2}a_{1}$ which satisfy conditions $(i)-(iii)$ above. In the same way we define
a subcategory $R_{2,n+1}$ of $R_{2}$ . Then repeating the arguments used for $R_{1,1}$ and $R_{2,1}$

we get that for every $P\in R_{1,n+1}$ such that there is a nonzero morphism $a:P\rightarrow P^{\prime}$

with $P^{\prime}\in R_{1,n}$ there is the uniquely determined object $Q\in R_{2,n+1}$ such that there
is a nonzero morphism $r:Q\rightarrow F_{n}(P^{\prime})$ in $R_{2,n+1}$ and $LF_{\lambda,1}(P)\cong F_{\lambda,2}(Q)$ .
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Furthermore, for every object $P\in R_{1,n+1}$ such that there is a nonzero morphism
$h:P^{\prime}\rightarrow P$ in $R_{1,n+1}$ with $P\in R_{1,n}$ there is the uniquely determined object
$Q\in R_{2,n+1}$ such that there is a nonzero morphism $r:F_{n}(P)\rightarrow Q$ in $R_{2,n+1}$ and
$LF_{\lambda,1}(P)\cong F_{\lambda,2}(Q)$ . Moreover, we have also the same uniqueness for generating
morphisms $a:P\rightarrow P^{\prime}$ with $P,$ $P^{\prime}\in R_{1,n+1}$ . Thus we define $F_{n+1}$ : $R_{1,n+1}\rightarrow R_{2,n+1}$

in the following way. For every $P\in R_{1,n+1}\backslash R_{1,n}$ we put $F_{n+1}(P)=Q$ , where $Q$ is
a uniquely determined object of $R_{2,n+1}$ as above. For every $P\in R_{1,n}$ we put
$F_{n+1}(P)=F_{n}(P)$ . For every pair $P,$ $P^{\prime}\in R_{1,n+1}$ ; if $a:P\rightarrow P^{\prime}$ is a generator of
$Hom_{R_{1,n+1}}(P, P^{\prime})$ then we put $F_{n+1}(a)=r$, where $r$ is a uniquely determined
generator of $Hom_{R_{2,n+1}}(F_{n+1}(P), F_{n+1}(P^{\prime}))$ . It is clear that for a generating
morphism $a:P\rightarrow P^{\prime}$ with $P,$ $P^{\prime}\in R_{1,n}$ it holds $F_{n+1}(a)=F_{n}(a)$ . If $a:P\rightarrow P^{\prime}$ is
an isomorphism then we put $F_{n+1}(a)=r$, where $LF_{\lambda,1}(a)=F_{\lambda,2}(r)$ . Finally we
extend $F_{n+1}$ for the compositions of generating morphisms and isomorphisms
$a=a_{s}\cdots a_{1}$ by putting $F_{n+1}(a)=F_{n+1}(a_{s})\cdots F_{n+1}(a_{1})$ . Then we extend $F_{n+1}$ to a
K-linear functor. In this way we obtain a functor $F_{n+1}$ : $R_{1,n+1}\rightarrow R_{2,n+1}$ which is
dense and fully faithful. Thus $F_{n+1}$ yields an equivalenoe of categories.

Consequently, we constmct inductively a functor $F:R_{1}\rightarrow R_{2}$ which is dense
and fully faithful sinoe $R_{1},$ $R_{2}$ are connected locally bounded K-categories. Thus
the proposition follows.

PROOF OF THEOREM. We prove that $R\cong\hat{A}$, where $A\cong KS/I$ for a $v_{R}$ -section
$(S, I)$ of $(Q_{R}, I_{R})$ . Since $D(A)=I$ as right A-modules by Lemma 3.2, where $I$ is
the two-sided ideal in $R/(v_{R})$ chosen in Proposition 3.1, we get by Lemma 3.3
that the structures of A-bimodules on $D(A)$ and on $I$ coincide. Sinoe $A$ is
triangular, the second Hochschild cohomology group vanishes (see [4, 10]). Thus
$R/(v_{R})\cong T(A)$ . Then applying Proposition 3.4 we obtain that $R\cong\hat{A}$ .
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