ON A CLASS OF SELF-INJECTIVE LOCALLY BOUNDED CATEGORIES

By

Zygmunt Pogorzały¹

Throughout the paper K denotes a fixed algebraically closed field. Let R be a locally bounded K-category in the sense of [3]. It is well-known that every locally bounded K-category R is isomorphic to a factor category KQ_R/I_R , where KQ_R is a path category of a locally-finite quiver and I_R is some admissible ideal in KQ_R . A locally bounded K-category $R \cong KQ_R/I_R$ is said to be triangular if Q_R has no oriented cycles.

For a locally bounded K-category R we denote by mod(R) the category of all finite-dimensional right R-modules.

We are interested in self-injective locally bounded K-categories. Assume that R is a self-injective locally bounded triangular K-category which is connected. Then there is the Nakayama K-automorphism $v_R: R \to R$ which is induced by a permutation π_R of the isoclasses of simple right R-modules such that $\pi_R(\text{top}(P)) = \text{soc}(P)$ for every indecomposable projective right R-module P. Consequently, the infinite cyclic group (v_R) generated by the Nakayama automorphism v_R acts freely on the objects of R. We consider self-injective, locally bounded, triangular and connected K-categories R whose quotient categories $R/(v_R)$ are finite-dimensional K-algebras and there is no indecomposable projective R-module of length smaller than 3.

Every basic finite-dimensional K-algebra A can be considered as a locally bounded K-category, because $A \cong KQ_A/I_A$ for a finite quiver Q_A . The repetitive category (see [5]) of a basic finite-dimensional K-algebra A is the self-injective locally bounded K-category \hat{A} whose objects are formed by the pairs $(z, x) = x_z$, $x \in ob(A)$, $z \in \mathbb{Z}$ and $\hat{A}(x_z, y_z) = \{z\} \times A(x, y)$, $\hat{A}(x_{z+1}, y_z) = \{z\} \times DA(y, x)$, and $\hat{A}(x_p, y_q) = 0$ if $p \neq q$, q + 1, where DV denotes the dual space $Hom_K(V, K)$. It is well-known that if A is triangular then \hat{A} is triangular. Moreover, $\hat{A}/(v_{\hat{A}})$ is

¹ Supported by Polish Scientific Grant KBN 2 PO3A 020 08. Received June 20, 1996 Revised January 7, 1997

isomorphic to the trivial extension T(A) of A by its minimal injective cogenerator bimodule D(A).

The class of K-categories satisfying the above conditions was studied by several authors [1, 5, 8, 9, 11]. These categories were considered mainly as Galois covers of some classes of finite-dimensional algebras. In particular, they always were isomorphic to the repetitive categories of triangular algebras. Nevertheless there is not given any general enough structural result on such K-categories. The aim of this note is to provide such a result for the considered class of K-categories. The main result is the following.

THEOREM. Let R be a locally bounded triangular and connected self-injective K-category whose quotient category $R/(v_R)$ is a finite-dimensional K-algebra and there is no indecomposable projective R-module of length smaller than 3. Then there is a triangular finite-dimensional connected K-algebra A such that $R \cong \hat{A}$.

The proof of our result is rather easy. Nevertheless it is worth to stress that our proof is independent of the representation type of R.

1. v-sections

- 1.1. Throughout the note let R be a locally bounded self-injective triangular and connected K-category whose quotient category $R/(\nu_R)$ is a finite-dimensional K-algebra and there is no indecomposable projective R-module of length smaller than 3. Moreover, we shall assume that $R = KQ_R/I_R$ for a bound quiver (Q_R, I_R) . All considered algebras are finite-dimensional, associative K-algebras with unit 1, basic and connected.
- 1.2. Recall from [12] that an algebra A is said to be weakly symmetric if each indecomposable projective left or right A-module has a simple socle which is isomorphic to its top.

LEMMA. $R/(v_R)$ is a weakly symmetric algebra.

Proof. Obvious.

1.3. Since the Nakayama automorphism permutes the objects of R, the group (ν_R) acts also on (Q_R, I_R) . $R/(\nu_R)$ is a finite-dimensional algebra by our assumption, hence there is only finitely many (ν_R) -orbits of vertices in Q_R .

A full convex subquiver (S, I) of (Q_R, I_R) is called a v_R -section of (Q_R, I_R) if it satisfies the following conditions:

- (1) For every vertex x of Q_R the intersection of its (v_R) -orbit with S consists of exactly one element.
- (2) If $x \in S$ and $y \in Q_R$ are such vertices that there is an arrow α (respectively, β) in Q_R sourced at x (respectively, y) and targetted at y (respectively, x) then either y or $v_R^{-1}(y)$ (respectively, either $v_R(y)$ or y) belongs to S.
 - (3) $I = KS \cap I_R$.
- 1.4. For a bound quiver (Q_R, I_R) of R we define a cone C_x at a vertex $x \in Q_R$ to be the full subquiver of Q_R formed by all the vertices y of Q_R such that there exists a path of finite length in Q_R sourced at x and targetted at y. A reduced cone S_x at a vertex $x \in Q_R$ is the full subquiver of Q_R formed by the vertices from $C_x \setminus C_{\nu_R(x)}$.
- **1.5.** LEMMA. Let S_x be a reduced cone at a vertex $x \in Q_R$. If $y \in S_x$ then $v_R^n(y) \notin S_x$ for every $n \in \mathbb{Z} \setminus \{0\}$.

PROOF. We prove our lemma by induction on the length l(w) of the shortest path w in Q_R from x to y. If l(w) = 0 then y = x and clearly $v_R^n(x) \notin S_x$ for n < 0, because Q_R is without oriented cycles. On the other hand $v_R^n(x) \notin S_x$ for n > 0, because there is a path in Q_R from $v_R(x)$ to $v_R^n(x)$ for every n > 0.

Assume that for all vertices y in S_x such that the length l(w) of the shortest path from x to y is not greater than l the required condition holds.

Consider a vertex $y_0 \in S_x$ such that $l(w_0) = l + 1$ for the shortest path w_0 from x to y_0 . Suppose to the contrary that there is $n \in \mathbb{Z} \setminus \{0\}$ such that $v_R^n(y_0) \in S_x$. Let $w_0 = w_1 \alpha$, where α is an arrow from y_1 to y_0 . It is clear that w_1 is the shortest path from x to y_1 , because w_0 would not be the shortest one otherwise. Moreover, there is an arrow $v_R^n(\alpha)$ from $v_R^n(y_1)$ to $v_R^n(y_0)$. Thus we know from the inductive assumption that $v_R^n(y_1) \notin S_x$. Hence there is a path $v_R^n(x)$ to $v_R^n(y_1)$. Then we have the path $v_R^n(x)$ from $v_R(x)$ to $v_R^n(y_0)$ which contradicts the above assumption. Consequently, $v_R^n(y_0) \notin S_x$ for every $n \in \mathbb{Z} \setminus \{0\}$ and the lemma follows by induction.

1.6. LEMMA. Let S_x be a reduced cone at a vertex $x \in Q_R$. Then S_x is a full convex connected and finite subquiver of Q_R .

PROOF. Connectedness of S_x is clear, because every two vertices of S_x are connected by a walk passing through x. Fullness of S_x is clear by the definition of S_x . Observe that S_x is finite. Indeed, there is only finitely many (v_R) -orbits of

vertices in Q_R . Thus S_x has only finitely many vertices by Lemma 1.5. Since Q_R is locally finite, S_x is finite.

In order to show that S_x is convex, consider a path w from y_1 to y_2 , where $y_1, y_2 \in S_x$. If there is a decomposition $w = w_1w_2$ such that w_1 is targetted at z with $z \notin S_x$ then there is a path v from $v_R(x)$ to z. Thus vw_2 is a path from $v_R(x)$ to y_2 which contradicts the fact that $y_2 \in S_x$. Consequently, $z \in S_x$ and our lemma is proved.

1.7. Lemma. Let S_x be a reduced cone at a vertex $x \in Q_R$. If $y \in C_{\nu_R(x)}$ then there exists a natural number $n \ge 1$ such that $\nu_R^{-n}(y) \in S_x$.

PROOF. We prove the lemma by induction on the length l(w) of the shortest path w from $v_R(x)$ to y. If l(w) = 0 then $y = v_R(x)$ and $v_R^{-1}(y) = x \in S_x$.

Assume that for any vertex y in $C_{\nu_R(x)}$ with $l(w) \le l$ there exists a natural number n such that $\nu_R^{-n}(y) \in S_x$, where w is the shortest path in Q_R from $\nu_R(x)$ to ν .

Consider a vertex $y \in C_{v_R(x)}$ such that the length l(w) = l+1 for the shortest path w in Q_R from $v_R(x)$ to y. Consider the decomposition $w = w_1 \alpha$, where α is an arrow sourced at y_0 and targetted at y. Then $y_0 \in C_{v_R(x)}$ and we obtain by the inductive assumption that there is a natural number n_0 such that $v_R^{-n_0}(y_0) \in S_x$. Consider the vertex $v_R^{-n_0}(y)$. Since $v_R^{-n_0}(y_0) \in S_x$, there is a path u from x to $v_R^{-n_0}(y_0)$. Hence there is the path $uv_R^{-n_0}(\alpha)$ from x to $v_R^{-n_0}(y)$. Therefore $v_R^{-n_0}(y) \in C_x$. If there is no path from $v_R(x)$ to $v_R^{-n_0}(y)$ then $v_R^{-n_0}(y) \in S_x$. If there is a path z from $v_R(x)$ to $v_R^{-n_0}(y)$ then there is the path $v_R^{-n_0}(z)$ from x to $v_R^{-n_0-1}(y)$, and so $v_R^{-n_0-1}(y) \in C_x$. If there is a path v from $v_R(x)$ to $v_R^{-n_0-1}(y)$ then we obtain a contradiction to the fact that $v_R^{-n_0}(y_0)$ belongs to S_x . Indeed, in the case there is a path v from $v_R(x)$ to $v_R^{-n_0-1}(y)$ to $v_R^{-n_0}(y_0)$ since v is self-injective. Thus there is the path v from v

1.8. Lemma. Let C_x be a cone at a vertex $x \in Q_R$. Then every (v_R) -orbit of a vertex $z \in Q_R$ has a common vertex with C_x .

PROOF. We prove the lemma by induction on the length l(w) of minimal walk in Q_R connecting a vertex $z \in Q_R$ to x. Such a walk always exists since Q_R is connected. If l(w) = 0 then x = z and the required condition holds.

Assume that for all vertices $z \in Q_R$ with $l(w) \le l_0$ the required condition holds, where w is a minimal walk connecting z to x.

Consider $z_0 \in Q_R$ such that there is a minimal walk w in Q_R connecting z_0 to x with $l(w) = l_0 + 1$. Then $w = \alpha w_1$ or $w = \alpha^{-1} w_1$, where α is an arrow sourced or targetted at z_0 , respectively. If $w = \alpha w_1$ and z_0 is the source of α then there is a path v in Q_R from x to $v_R^n(z_1)$ for the target z_1 of α and for some $n \in \mathbb{Z}$ by the inductive assumption. Since R is self-injective, there is a path $v_R^n(\alpha)u$ in Q_R from $v_R^n(z_0)$ to $v_R^{n+1}(z_0)$. Thus there is the path v_R from $v_R^{n+1}(z_0)$ in $v_R^{n+1}(z_0) \in C_X$.

If $w = \alpha^{-1}w_1$ and z_0 is the target of α then there is a path v in Q_R from x to $v_R^n(z_1)$ for the source z_1 of α and for some $n \in \mathbb{Z}$ by the inductive assumption. On the other hand we have the arrow $v_R^n(\alpha)$ from $v_R^n(z_1)$ to $v_R^n(z_0)$. Hence there is the path $vv_R^n(\alpha)$ from x to $v_R^n(z_0)$ in Q_R , and so $v_R^n(z_0) \in C_x$. Consequently, our lemma is proved by induction.

1.9. PROPOSITION. Let $R = KQ_R/I_R$ be a self-injective triangular and connected locally bounded K-category whose quotient category $R/(v_R)$ is a finite-dimensional K-algebra and there is no indecomposable projective R-module of length smaller than 3. Then there exists a v_R -section of (Q_R, I_R) .

PROOF. Fix a vertex $x \in Q_R$. Consider the reduced cone S_x at the vertex x. Let $I_x = KS_x \cap I_R$. We shall show that (S_x, I_x) is a v_R -section of (Q_R, I_R) . We infer by Lemma 1.6 that S_x is a full convex connected and finite subquiver of Q_R . Applying Lemma 1.8 to the cone $C_{v_R(x)}$ at the vertex $v_R(x)$, we obtain that every (v_R) -orbit of a vertex $z \in Q_R$ has a common vertex to $C_{v_R(x)}$. Furthermore, we deduce from Lemma 1.7 that every (v_R) -orbit of a vertex z in Q_R has a common vertex to S_x . Thus we obtain from Lemma 1.5 that there is only one such a common vertex. Consequently, 1.3(1) holds for (S_x, I_x) .

Suppose that a vertex z belongs to S_x and there is an arrow α in Q_R sourced at z and targeted at $y \in Q_R$. If $y \notin S_x$ then there is a path u in Q_R from $v_R(x)$ to y. Thus there is the path $v_R^{-1}(u)$ from x to $v_R^{-1}(y)$. Hence $v_R^{-1}(y) \in C_x$. If $v_R^{-1}(y) \notin S_x$ then there is a path v in Q_R from $v_R(x)$ to $v_R^{-1}(y)$. But R is self-injective hence there is a path $w\alpha$ in Q_R from $v_R^{-1}(y)$ to y. Consequently, there is the path vw from $v_R(x)$ to z which contradicts to the fact that $z \in S_x$. Therefore $v_R^{-1}(y) \in S_x$.

Now suppose that a vertex z belongs to S_x and there is an arrow β in Q_R sourced at $y \in Q_R$ and targetted at z, and suppose that there is a path βw in Q_R from y to $v_R(y)$. Since $z \in S_x$, there is a path u in Q_R from x to z. Thus the path uw connects x to $v_R(y)$ hence $v_R(y) \in C_x$. If $v_R(y) \in C_{v_R(x)}$ then there is a nonnegative integer n such that $v_R^{-n}(v_R(y)) \in S_x$ by Lemma 1.7. Since $y \notin S_x$, n > 1.

But there is a path v in Q_R from x to $v_R^{-n}(y)$. Hence there are a path v' from $v_R^n(x)$ to y of the form $v_R^n(v)$ and a path v'' from $v_R(x)$ to $v_R^n(x)$. Thus there exists the path $v''v'\beta$ from $v_R(x)$ to z which contradicts that $z \in S_x$. Consequently, $v_R(y) \notin C_{v_R(x)}$, and so $v_R(y) \in S_x$.

In this way we have proved that 1.3(2) holds. Since 1.3(3) is obvious by the definition of I_x , the proposition is proved.

2. v-sectional partitions

- **2.1.** Let (S, I) be a fixed v_R -section of (Q_R, I_R) , where S is a reduced cone at a vertex $x \in Q_R$. A collecting arrow with respect to (S, I) is any arrow α in Q_R which does not belong to S and such that there is an arrow β in S with $\beta \alpha \notin I_R$.
- **2.2.** LEMMA. Let $w = \alpha_1 \cdots \alpha_n$ be a maximal nonzero path in (Q_R, I_R) whose source is a vertex $s \in S$. Then w contains exactly one collecting arrow α with respect to (S, I).

PROOF. Suppose that $w = \alpha_1 \cdots \alpha_n$ is a maximal nonzero path in (Q_R, I_R) and $s \in S$ is its source. Since R is self-injective without indecomposable projective R-modules of length 2 then $n \geq 2$ and w connects s with $v_R(s)$ by the maximality of w. But if $s \in S$ then $v_R(s) \notin S$ by Lemma 1.5. Hence there is $i_0 \in \{1, \ldots, n\}$ such that α_{i_0} is a collecting arrow.

Now suppose that there are two collecting arrows α_{i_0} , α_{j_0} in w with $j_0 > i_0$. Since (S, I) is a full convex subquiver in (Q_R, I_R) , the target of α_{i_0} cannot belong to S, because $\alpha_{i_0} \notin S$. But again α_{j_0} has the source in S by the definition of collecting arrows. Thus the target of α_{i_0} belongs to S by the convexity of S. The obtained contradiction shows the lemma.

2.3. An (S,I)-partition of (Q_R,I_R) is the non-connected bound quiver $(P,I_P) = \coprod_{z \in Z} (v_R^z(S), v_R^z(I))$.

LEMMA. If an arrow α in Q_R does not belong to the (S,I)-partition (P,I_P) of (Q_R,I_R) then there exists $z_0 \in \mathbb{Z}$ such that α is a collecting arrow with respect to $(v_R^{z_0}(S),v_R^{z_0}(I))$.

PROOF. Let α be an arrow in Q_R which does not belong to P. Then there exists a maximal nonzero path in Q_R of the form $\beta_1 \cdots \beta_r \alpha$, because R is self-injective without indecomposable projective R-modules of length smaller than 3. Now look at the vertices of the arrows β_1 , α . Clearly for the source s of β_1 and

the target y of α it holds $v_R(s) = y$. Then there is $z_0 \in \mathbb{Z}$ such that $s \in v_R^{z_0}(S)$ by the definition of (P, I_P) . Observe that the target v of β_r belongs to $v_R^{z_0}(S)$. Indeed, if $v \notin v_R^{z_0}(S)$ then $v_R^{-1}(v) \in v_R^{z_0}(S)$ by 1.3(2) for the v_R -section $(v_R^{z_0+1}(S), v_R^{z_0+1}(I))$. Thus $v, y = v_R(s) \in v_R^{z_0+1}(S)$, and so $\alpha \in v_R^{z_0+1}(S)$ which contradicts the choice of α . Consequently, $v \in v_R^{z_0}(S)$ and $\beta \in v_R^{z_0}(S)$ since S is convex. Hence α is a collecting arrow with respect to $(v_R^{z_0}(S), v_R^{z_0}(I))$, because $\beta_r \alpha \notin I_P$.

2.4. For a fixed ν_R -section (S,I) of (Q_R,I_R) consider the (S,I)-partition (P,I_P) of (Q_R,I_R) . Define a two-sided ideal I_P in $R=KQ_R/I_R$ with respect to (P,I_P) as the ideal generated by the arrows α which do not belong to P.

LEMMA. $I_P^2 = 0$.

PROOF. Clearly it is sufficient to show that if we have two paths $u, v \in I_P$ then uv = 0. But if u is a path in I_P then $u = u_1\alpha_1u_2$, where $\alpha_1 \notin P$. The same holds for v, e.g. $v = v_1 \alpha_2 v_2$ with $\alpha_2 \notin P$. If u and v are not composable then clearly uv = 0. Consider the case when u and v are composable. Then we infer by Lemma 2.3 that there is $z_0 \in \mathbb{Z}$ such that α_1 is a collecting arrow with respect to $(v_R^{z_0}(S), v_R^{z_0}(I))$. The same holds for α_2 hence there is $z_1 \in \mathbb{Z}$ such that α_2 is a collecting arrow with respect to $(v_R^{z_1}(S), v_R^{z_1}(I))$. We may assume that u, v are nonzero in (Q_R, I_R) . Hence, by the triangularity of R, we infer that $z_1 = z_0 + 1$. Then $u_1\alpha_1u_2v_1\alpha_2v_2$ is a path which contains two collecting arrows (with respect to different v_R -sections). Consider the path $\alpha_1 u_2 v_1 \alpha_2$. The source s of it is in $v_R^{z_0}(S)$ and the target y of it is in $v_R^{z_0+2}(S)$. We deduce from the self-injectivity of R that if $\alpha_1 u_2 v_1 \alpha_2$ is nonzero in (Q_R, I_R) then there is a path $\gamma_1 \cdots \gamma_t$ from $v_R^{-1}(y)$ to s such that $\gamma_1 \cdots \gamma_t \alpha_1 u_2 v_1 \alpha_2$ is nonzero in (Q_R, I_R) . But $v_R^{-1}(y) \in v_R^{z_0+1}(S)$ and $s \in \nu_R^{z_0}(S)$. Since the target b of α_1 belongs to $\nu_R^{z_0+1}(S)$, we get by the convexity of $v_R^{z_0+1}(S)$ that $s \in v_R^{z_0+1}(S)$ which contradicts the above choice of α_1 . Thus $\alpha_1 u_2 v_1 \alpha_2$ is a zero path in (Q_R, I_R) and the lemma follows.

2.5. Proposition. $R/I_P \cong \bigoplus_{z \in \mathbb{Z}} K(v_R^z(S))/v_R^z(I)$.

PROOF. Consider a surjective functor $p: KQ_R/I_R \to \bigoplus_{z \in \mathbb{Z}} K(v_R^z(S))/v_R^z(I)$ defined as follows: for every vertex $q \in Q_R$, p(q) = q. For every path u in Q_R which does not contain a collecting arrow we put p(u) = u. For every path v in Q_R which contains a collecting arrow we put p(v) = 0. Then we extend p linearly to a functor. It is clear by the definition of p that $I_P = \ker(p)$. Moreover, we get that p is surjective by Lemma 2.3 and the definition of a v_R -section in (Q_R, I_R) .

3. Proof of the main result

3.1. PROPOSITION. Let $R = KQ_R/I_R$ be a self-injective triangular and connected locally bounded K-category whose quotient category $R/(v_R)$ is a finite-dimensional K-algebra and there is no indecomposable projective R-module of length smaller than 3. If (Q_R, I_R) contains a v_R -section then there is an epimorphism $p: R/(v_R) \to A$ such that A is a triangular connected algebra and ker(p) = I is such a two-sided ideal in $R/(v_R)$ that $I^2 = 0$.

PROOF. Let (S,I) be a v_R -section of (Q_R,I_R) . Consider the (S,I)-partition (P,I_P) of (Q_R,I_R) . Then we have an ideal I_P in R such $I_P^2=0$ by Lemma 2.4. Moreover, $R/I_P\cong\bigoplus_{z\in Z}K(v_R^z(S))/v_R^z(I)$ by Proposition 2.5. It is easily seen that the group (v_R) acts freely on R/I_P and on I_P , because it acts freely on R. Then we have an epimorphism $p:R/(v_R)\to (R/I_P)/(v_R)$ whose kernel is $I_P/(v_R)$. Put $I=I_P/(v_R)$ and $A=(R/I_P)/(v_R)$. We know from Lemma 2.4 that $I^2=0$. A is triangular and connected, because $A\cong KS/I$. Thus the proposition follows.

3.2. If A and I are as in Proposition 3.1 then we have.

LEMMA. D(A) = I as right A-modules.

PROOF. We shall prove our lemma considering KS/I as a subcategory of R, where (S,I) is a fixed v_R -section of (Q_R,I_R) . Then consider the two-sided ideal J in R generated by the collecting arrows in Q_R with respect to (S,I). We infer by Propositions 2.5, 3.1 that $I_P = \bigoplus_{z \in Z} v_R^z(J)$ and $R/I_P = \bigoplus_{z \in Z} v_R^z(KS/I)$. Since $I^2 = 0$, I is a right A-module. Thus I is a submodule of D(A), because $\operatorname{soc}_{R/(v_R)}(I) = \operatorname{soc}_{R/(v_R)}(R/(v_R)) = \operatorname{soc}_{R/(v_R)}(D(A))$. Suppose to the contrary that $I \neq D(A)$. Then there is a morphism from D(A) to A which is a nonzero morphism from $v_R(D(KS/I))$ to KS/I which does not factorize through J. Thus we have a path u in $(v_R(S), v_R(I))$ which is nonzero, sourced at s and targetted at s with $s \in S \cap v_R(S)$, $s \in v_R(S)$ which contradicts to the fact that $s \in S \cap v_R(S)$ by 1.3(1). Therefore $s \in S(A)$ is a $s \in S(A)$ therefore $s \in S(A)$ the fact that $s \in S(A)$ therefore $s \in S(A)$ is a $s \in S(A)$ therefore $s \in S(A)$ therefore $s \in S(A)$ therefore $s \in S(A)$ is a $s \in S(A)$ therefore $s \in S(A)$ the fact $s \in S(A)$ therefore $s \in S(A)$ therefore

3.3. The following fact was proved in [6].

LEMMA. Let I be such a two-sided ideal in a self-injective finite-dimensional K-algebra Λ that $I^2=0$ and Λ/I is triangular. If I is injective as a right Λ/I -module, then for any isomorphism $\varphi:I\to D(\Lambda/I)$ of right Λ/I -modules there is a Λ/I -bimodule isomorphism $\varphi':I\to D(\Lambda/I)$.

3.4. The following proposition in a weaker form was shown in [7]. We repeat the modified version of its proof for the convenience of the reader.

PROPOSITION. Let R_1 , R_2 be triangular connected self-injective locally bounded K-categories whose quotient categories $R_1/(v_{R_1})$, $R_2/(v_{R_2})$ are finite-dimensional K-algebras. If $R_1/(v_{R_1}) \cong R_2/(v_{R_2})$ then $R_1 \cong R_2$.

PROOF. Under the assumptions of the proposition fix some representatives $\{P_x\}_{x \in X}$ of the isomorphism classes of indecomposable projective R_1 -modules and some representatives $\{Q_y\}_{y \in Y}$ of the isomorphism classes of indecomposable projective R_2 -modules. Then $R_1 \cong \operatorname{End}_{R_1}(\bigoplus_{x \in X} P_x)^{op}$ and $R_2 \cong \operatorname{End}_{R_2}(\bigoplus_{y \in Y} Q_y)^{op}$. Let $F_{\lambda,t} : \operatorname{mod}(R_t) \longrightarrow \operatorname{mod}(R_t/(v_{R_t}))$, t = 1, 2, be the pushdown functors induced by the actions of (v_{R_t}) on R_t (see [3, 2]). It is well-known that indecomposable projective $R_t/(v_{R_t})$ -modules and their radicals are contained in the image of $F_{\lambda,t}$, t = 1, 2. Moreover, $F_{\lambda,t}$ preserves projectives and their radicals.

Fix some $x_0 \in X$. Let $LF_{\lambda,1}(P_{x_0}) \cong F_{\lambda,2}(Q_{y_0})$ for a fixed $y_0 \in Y$, where $L: \operatorname{mod}(R_1/(v_{R_1})) \longrightarrow \operatorname{mod}(R_2/(v_{R_2}))$ is the equivalence induced by a fixed isomorphism from $R_1/(v_{R_1})$ onto $R_2/(v_{R_2})$. Let $R_{1,1}$ be the subcategory of R_1 formed by P_{x_0} and the P_x , $P_{x'}$ such that the following conditions are satisfied:

- (a) there is a nonzero morphism $f_x: P_x \to P_{x_0}$ in $\operatorname{mod}(R_1)$ of the form $f_x = f^*f'_x$, where $f'_x: P_x \to \operatorname{rad}(P_{x_0})$ satisfies $\pi_{x_0} f'_x \neq 0$ for the canonical epimorphism $\pi_{x_0}: \operatorname{rad}(P_{x_0}) \to \operatorname{top}(\operatorname{rad}(P_{x_0}))$, and $f^*: \operatorname{rad}(P_{x_0}) \to P_{x_0}$ is the identity monomorphism;
- (b) there is a nonzero morphism $h_{x'}: P_{x_0} \to P_{x'}$ of the form $h_{x'} = h''_{x'}h'_{x'}$, where $h'_{x'}: P_{x_0} \to \operatorname{rad}(P_{x'})$ satisfies $\pi_{x'}h'_{x'} \neq 0$ for the canonical epimorphism $\pi_{x'}: \operatorname{rad}(P_{x'}) \to \operatorname{top}(\operatorname{rad}(P_{x'}))$, and $h''_{x'}: \operatorname{rad}(P_{x'}) \to P_{x'}$ is the identity monomorphism.
- If P, P' are objects of $R_{1,1}$ then $\operatorname{Hom}_{R_{1,1}}(P,P')$ is the subspace of $\operatorname{Hom}_{R_1}(P,P')$ generated by the isomorphisms between P and P' and the morphisms of the form $a=a_1a_2$, where $a_1=h_{x'}$ for some x' and a_2 is an automorphism of P_{x_0} , or $a_2=f_x$ for some x and a_1 is an automorphism of P_{x_0} , or else $a_1=h_{x'}$ for some x' and $a_2=f_x$ for some x. Since R_1 is locally bounded K-category, $R_{1,1}$ is finite.

Let $R_{2,1}$ be the subcategory of R_2 formed by Q_{y_0} and the Q_y , $Q_{y'}$ such that the following conditions are satisfied:

(a) there is a nonzero morphism $r_y: Q_y \to Q_{y_0}$ of the form $r_y = r^*r'_y$, where $r'_y: Q_y \to \operatorname{rad}(Q_{y_0})$ satisfies $\kappa_{y_0}r'_y \neq 0$ for the canonical epimorphism

 $\kappa_{y_0} : \operatorname{rad}(Q_{y_0}) \to \operatorname{top}(\operatorname{rad}(Q_{y_0})), \text{ and } r^* : \operatorname{rad}(Q_{y_0}) \to Q_{y_0} \text{ is the identity monomorphism;}$

- (b) there is a nonzero morphism $s_{y'}: Q_{y_0} \to Q_{y'}$ of the form $s_{y'} = s''_{y'}s'_{y'}$, where $s'_{y'}: Q_{y_0} \to \operatorname{rad}(Q_{y'})$ satisfies $\kappa_{y'}s'_{y'} \neq 0$ for the canonical epimorphism $\kappa_{y'}: \operatorname{rad}(Q_{y'}) \to \operatorname{top}(\operatorname{rad}(Q_{y'}))$, and $s''_{y'}: \operatorname{rad}(Q_{y'} \to Q_{y'})$ is the identity monomorphism.
- If Q, Q' are objects of $R_{2,1}$ then $\operatorname{Hom}_{R_{2,1}}(Q,Q')$ is the subspace of $\operatorname{Hom}_{R_2}(Q,Q')$ generated by the isomorphisms between Q and Q' and the morphisms of the form $w=w_1w_2$, where $w_1=s_{y'}$ for some y' and w_2 is an automorphism of Q_{y_0} , or $w_2=r_y$ for some y and w_1 is an automorphism of Q_{y_0} , or else $w_1=s_{y'}$ for some y' and $w_2=r_y$ for some y. Since R_2 is locally bounded K-category, $R_{2,1}$ is finite.

Observe that if $P_{x_1} \in R_{1,1}$ and $\operatorname{Hom}_{R_{1,1}}(P_{x_1}, P_{x_0}) \neq 0$ then there is a uniquely determined $Q_{y_1} \in R_{2,1}$ with $\operatorname{Hom}_{R_{2,1}}(Q_{y_1}, Q_{y_0}) \neq 0$ and $LF_{\lambda,1}(P_{x_1}) \cong F_{\lambda,2}(Q_{y_1})$. Indeed, if there are $Q_{y_1}, Q_{y_2} \in R_{2,1}$ with $\operatorname{Hom}_{R_{2,1}}(Q_{y_1}, Q_{y_0}) \neq 0$, l = 1, 2, and $LF_{\lambda,1}(P_{x_1}) \cong F_{\lambda,2}(Q_{y_l})$, then there is $z \in \mathbb{Z}$ such that $v_{x_2}(Q_{y_1}) \cong Q_{y_2}$. Furthermore, there are $0 \neq r_{y_1} : Q_{y_1} \to Q_{y_0}$, l = 1, 2, such that r_{y_l} factorize through $\operatorname{rad}(Q_{y_0})$ by the definition of $R_{2,1}$. Hence $\operatorname{top}(Q_{y_l})$, l = 1, 2, are direct summands in $\operatorname{top}(\operatorname{rad}(Q_{y_0}))$. Then in case z > 0 we get that there is a sequence Q'_1, \ldots, Q'_z of indecomposable projective R_2 -modules such that $\operatorname{soc}(Q'_m) \cong \operatorname{top}(Q'_{m-1})$, $m = 2, \ldots, z$, and $\operatorname{top}(Q_{y_1}) \cong \operatorname{soc}(Q'_1)$, $\operatorname{top}(Q'_2) \cong \operatorname{soc}(Q_{y_2})$. But $\operatorname{top}(Q_{y_0})$ is contained in the support of Q'_1 hence R_2 is not triangular which contradicts our assumption. Similarly we obtain a contradiction if z < 0. Thus z = 0 and $Q_{y_1} = Q_{y_2}$. Dually one proves that if $P_{x'_1} \in R_{1,1}$ and $\operatorname{Hom}_{R_{1,1}}(P_{x_0}, P_{x'_1}) \neq 0$ then there exists the uniquely determined $Q_{y'_1} \in R_{2,1}$ with $\operatorname{Hom}_{R_{2,1}}(Q_{y_0}, Q_{y'_1}) \neq 0$ and $LF_{\lambda,1}(P_{x'_1}) \cong F_{\lambda,2}(Q_{y'_1})$.

Now we define a functor $F_1:R_{1,1}\to R_{2,1}$ putting $F_1(P_{x_0})=Q_{y_0}$, and for all possible $x_1,\ x_1'$ we put $F_1(P_{x_1})=Q_{y_1},\ F_1(P_{x_1'})=Q_{y_1'}$. If $P,\ P'\in R_{1,1}$ then $\operatorname{Hom}_{R_{1,1}}(P,P')$ either consists of isomorphisms (if P=P') or is generated by the above a. If P=P' then $\operatorname{Hom}_{R_{1,1}}(P,P)\cong K\cdot\operatorname{id}_P\cong K\cdot\operatorname{id}_{F_{\lambda,1}(P)}$ as K-spaces and $\operatorname{Hom}_{R_{2,1}}(F_1(P),F_1(P))\cong K\cdot\operatorname{id}_{F_1(P)}\cong K\cdot\operatorname{id}_{F_{\lambda,2}(F_1(P))}$. Then, since L induces a K-space isomorphism, $K\cdot\operatorname{id}_{F_{\lambda,1}(P)}\cong K\cdot\operatorname{id}_{F_{\lambda,2}(F_1(P))}$, for every $f\in\operatorname{Hom}_{R_{1,1}}(P,P)$ there is exactly one $r\in\operatorname{Hom}_{R_{2,1}}(F_1(P),F_1(P))$ such that $LF_{\lambda,1}(f)=F_{\lambda,2}(r)$. Thus we put $F_1(f)=r$. If $P\neq P'$ then we define F_1 for the morphisms of the form a=a''a', where $a':P\to\operatorname{rad}(P')$ satisfies $\pi a'\neq 0$ for the canonical epimorphism $\pi:\operatorname{rad}(P')\to\operatorname{top}(\operatorname{rad}(P'))$ and $a'':\operatorname{rad}(P')\to P'$ is the inclusion monomorphism. If $a:P\to P'$ is such a morphism then there is the uniquely determined $r:F_1(P)\to F_1(P')$ in $\operatorname{Hom}_{R_{2,1}}(F_1(P),F_1(P'))$ such that $LF_{\lambda,1}(a)=F_{\lambda,2}(r)$. Indeed,

if r_1 , r_2 satisfy $LF_{\lambda,1}(a) = F_{\lambda,2}(r_1) = F_{\lambda,2}(r_2)$ then there are r'_1 , $r'_2: F_1(P) \to \operatorname{rad}(F_1(P'))$ such that $\pi'r'_1$, $\pi'r'_2 \neq 0$ for the canonical projection $\pi': \operatorname{rad}(F_1(P')) \to \operatorname{top}(\operatorname{rad}(F_1(P')))$. Furthermore, for the inclusion $r'': \operatorname{rad}(F_1(P')) \to F_1(P')$ we have $r_1 = r''r'_1$, $r_2 = r''r'_2$. But if r'_1 , r'_2 are different then $F_{\lambda,2}(r'_1) \neq F_{\lambda,2}(r'_2)$, because R_2 is triangular and $F_{\lambda,2}$ is induced by the action of (v_{R_2}) . Thus $F_{\lambda,2}(r_1) \neq F_{\lambda,2}(r_2)$ for $r_1 \neq r_2$. Consequently, $r_1 = r_2$ if $F_{\lambda,2}(r_1) = F_{\lambda,2}(r_2)$. Then we put $F_1(a) = r$. If $a = a_1a_2$ is a composition of either an isomorphism and a morphism of the above form or two morphisms of the above form then we put $F_1(a) = F_1(a_1)F_1(a_2)$. Finally we extend F_1 linearly to a K-functor. It is clear by the above considerations that we obtained a functor $F_1: R_{1,1} \to R_{2,1}$ which is dense and fully faithful. Thus F_1 yields an equivalence of categories.

Assume now that we defined a subcategory $R_{1,n}$ in R_1 such that for every pair P, P' of objects from $R_{1,n}$ it holds either P = P' and $\operatorname{Hom}_{R_{1,n}}(P,P')$ consists only of automorphisms or $P \neq P'$ and $\operatorname{Hom}_{R_{1,n}}(P,P')$ is generated by the morphisms of the form $a = a_s \cdots a_2 a_1$ such that:

- (i) $a_l: P_l \to P_{l+1}$ for some objects P_1, \ldots, P_{s+1} of $R_{1,n}$, where $P_1 = P$, $P_{s+1} = P'$;
- (ii) $a_l = a_l'' a_l'$, l = 1, ..., s, $a_l' : P_l \to rad(P_{l+1})$ satisfies $\pi_{l+1} a_l' \neq 0$ for the canonical epimorphism $\pi_{l+1} : rad(P_{l+1}) \to top(rad(P_{l+1}))$;
- (iii) $a_l'': \operatorname{rad}(P_{l+1}) \to P_{l+1}$ is the inclusion for $l = 1, \ldots, s$. Moreover, assume that we have defined a subcategory $R_{2,n}$ of R_2 satisfying the above conditions for morphisms, and a functor $F_n: R_{1,n} \to R_{2,n}$ which is a K-linear equivalence such that it maps the generators of $\operatorname{Hom}_{R_{2,n}}(P,P')$ onto the generators of $\operatorname{Hom}_{R_{2,n}}(F_n(P),F_n(P'))$.

Define a subcategory $R_{1,n+1}$ of R_1 in the following way. The objects of $R_{1,n+1}$ are those of $R_{1,n}$ and the objects P of R_1 such that either there is a nonzero morphism $a: P \to P'$ with $P' \in R_{1,n}$ and a = a''a', where $a': P \to \operatorname{rad}(P')$ satisfies $\pi'a' \neq 0$ for the canonical projection $\pi': \operatorname{rad}(P') \to \operatorname{top}(\operatorname{rad}(P'))$ and $a'': \operatorname{rad}(P') \to P'$ is the inclusion, or there is a nonzero morphism $h: P' \to P$ with $P' \in R_{1,n}$ and h = h''h', where $h': P' \to \operatorname{rad}(P)$ satisfies $\pi h' \neq 0$ for the canonical epimorphism $\pi: \operatorname{rad}(P) \to \operatorname{top}(\operatorname{rad}(P))$ and $h'': \operatorname{rad}(P) \to P$ is the inclusion. For every two objects P, P'' from $R_{1,n+1}$ the morphism space $\operatorname{Hom}_{R_{1,n+1}}(P, P'')$ is generated by the isomorphisms between P and P'' and the compositions $a = a_s \cdots a_2 a_1$ which satisfy conditions (i)–(iii) above. In the same way we define a subcategory $R_{2,n+1}$ of R_2 . Then repeating the arguments used for $R_{1,1}$ and $R_{2,1}$ we get that for every $P \in R_{1,n+1}$ such that there is a nonzero morphism $a: P \to P'$ with $P' \in R_{1,n}$ there is the uniquely determined object $Q \in R_{2,n+1}$ such that there is a nonzero morphism $a: P \to P'$

Furthermore, for every object $P \in R_{1,n+1}$ such that there is a nonzero morphism $h: P' \to P$ in $R_{1,n+1}$ with $P' \in R_{1,n}$ there is the uniquely determined object $Q \in R_{2,n+1}$ such that there is a nonzero morphism $r: F_n(P') \to Q$ in $R_{2,n+1}$ and $LF_{\lambda,1}(P) \cong F_{\lambda,2}(Q)$. Moreover, we have also the same uniqueness for generating morphisms $a: P \to P''$ with $P, P'' \in R_{1,n+1}$. Thus we define $F_{n+1}: R_{1,n+1} \to R_{2,n+1}$ in the following way. For every $P \in R_{1,n+1} \setminus R_{1,n}$ we put $F_{n+1}(P) = Q$, where Q is a uniquely determined object of $R_{2,n+1}$ as above. For every $P' \in R_{1,n}$ we put $F_{n+1}(P') = F_n(P')$. For every pair $P, P'' \in R_{1,n+1}$; if $a: P \to P''$ is a generator of $\operatorname{Hom}_{R_{1,n+1}}(P,P'')$ then we put $F_{n+1}(a)=r$, where r is a uniquely determined generator of $\operatorname{Hom}_{R_{2,n+1}}(F_{n+1}(P),F_{n+1}(P''))$. It is clear that for a generating morphism $a: P \to P''$ with $P, P'' \in R_{1,n}$ it holds $F_{n+1}(a) = F_n(a)$. If $a: P \to P''$ is an isomorphism then we put $F_{n+1}(a) = r$, where $LF_{\lambda,1}(a) = F_{\lambda,2}(r)$. Finally we extend F_{n+1} for the compositions of generating morphisms and isomorphisms $a = a_s \cdots a_1$ by putting $F_{n+1}(a) = F_{n+1}(a_s) \cdots F_{n+1}(a_1)$. Then we extend F_{n+1} to a K-linear functor. In this way we obtain a functor $F_{n+1}: R_{1,n+1} \to R_{2,n+1}$ which is dense and fully faithful. Thus F_{n+1} yields an equivalence of categories.

Consequently, we construct inductively a functor $F: R_1 \to R_2$ which is dense and fully faithful since R_1 , R_2 are connected locally bounded K-categories. Thus the proposition follows.

PROOF OF THEOREM. We prove that $R \cong \hat{A}$, where $A \cong KS/I$ for a v_R -section (S,I) of (Q_R,I_R) . Since D(A)=I as right A-modules by Lemma 3.2, where I is the two-sided ideal in $R/(v_R)$ chosen in Proposition 3.1, we get by Lemma 3.3 that the structures of A-bimodules on D(A) and on I coincide. Since A is triangular, the second Hochschild cohomology group vanishes (see [4, 10]). Thus $R/(v_R) \cong T(A)$. Then applying Proposition 3.4 we obtain that $R \cong \hat{A}$.

ACKNOWLEDGEMENT. The paper was written during the author's stay at Universität-GH Paderborn. He would like to express his gratitude to Helmut Lenzing for his hospitality and many stimulating discussions.

References

- [1] I. Assem and A. Skowroński, Algebras with Cycle-Finite Derived Categories, Math. Ann. 280 (1988), 441-463.
- [2] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337.
- [3] P. Gabriel, The universal cover of a representation-finite algebra, Proc. ICRA III (Puebla, 1980), (Lecture Notes in Math. Vol. 903, pp. 68-105), Berlin Heidelberg New York: Springer 1981.

- [4] D. Happel, Hochschild cohomology of finite dimensional algebras, Séminair d'Algèbre P. Dubreil et M.-P. Malliavin 1987–88, Lecture Notes in Math. Vol. 1404 (Springer, Berlin, 1989), 108–126.
- [5] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364.
- [6] Z. Pogorzaly, Algebras stably equivalent to the trivial extensions of hereditary and tubular algebras, preprint (Toruń 1994).
- [7] Z. Pogorzaly, On locally bounded categories stably equivalent to the repetitive algebras of tubular algebras, Coll. Math. 172 (1997), 123-146.
- [8] C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), 199-224.
- [9] A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-199.
- [10] A. Skowroński and K. Yamagata, Socle deformations of self-injective algebras, Proc. London Math. Soc. (3) 72 (1996), 545-566.
- [11] T. Wakamatsu, Stable equivalence between universal covers of trivial extension self-injective algebras, Tsukuba J. Math. 9 (1985), 299-316.
- [12] K. Yamagata, Frobenius Algebras, in: Handbook of Algebra Vol. 1 (ed. M. Hazewinkel), (Elssevier, Amsterdam, 1996), 841-887.

Zygmunt Pogorzały
Faculty of Mathematics and Informatics
Nicholas Copernicus University
ul. Chopina 12/18, 87-100 Toruń
Poland

e-mail: zypo@mat.uni.torun.pl