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0. Introduction

For quasilinear strictly hyperbolic operators the Cauchy problem is inves-
tigated in many papers and books (see, for instance, [I], [7], [16], [21], [22)).
Although there are a lot of interesting open problems for the strictly hyperbolic
operators, nevertheless we reckon that it is important also to investigate quasi-
linear operators with characteristics of variable multiplicity.

For that type linear operators considered in Sobolev spaces very important
are Levi conditions. These conditions are found out for many classes of such
operators from the point of view of well-posedness in the Cauchy problem. At the
same time almost nothing is known for quasilinear case. Moreover, even the role
of hyperbolicity in the quasilinear Cauchy problem is not clear. We mean that
even an analog of the Lax-Mizohata theorem for the quasilinear operators is not
found out and is not proved still (see, Example 0.1 below).

Levi conditions are very closed to hyperbolicity. This is clear due to Garding
hyperbolicity condition (Hadamard hyperbolicity condition, see, also [9] for
Gevrey classes) for operators with constant coefficients, while for some classes of
operators with variable coefficients and multiple characteristics it is noted in [23].

In there is given example which hints at importance of the Levi con-
ditions for the stable global solvability (see Definition 0.1, below) in the Cauchy
problem for the quasilinear equations. For the second-order equations there also
are given Levi conditions which are sufficient to the Cauchy problem to be stably
globally solvable in the Gevrey classes.

We consider an equation
(0.1) D"u + Z a; 5 (t, x,{ck p(t, Dy, Dx)u})cjo(t, Ds, Dx)u

Jt|a|<m, j<m

— F(t, X, {ck,p(t, D,, Dx)u})
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with smooth coefficients a;,(t,x,z) € C*(J x R™) and right-hand side Fe
C®(J x R™), where te J :=[0,T], x € R", and assume that all the functions are
periodic in x, therefore we will write also x € T”. Here T" is an n-dimensional
torus, though any compact could be treated with minor modifications, as well as
the case T" = R". Operators c;(t,D;, Dy) in are the following

A" (A" () DI D*u,  when |a] # 0;

(02) cj,a(t7 Dt, Dx)u = .
D/u, when |a| =0,

and cig(t, Dy, Dx)u is defined by (0.2), too, where j+ |a| < m, while k + |B| <
m — 1. It is clear that lower order terms of the left-hand side of can be
included in the right-hand side.

We describe the class of the operators of by means of a real-valued
function A e C%([0, T]) such that A(0) = A'(0) =0, A'(£) >0 when ¢t #0. In the
following A’ means di/dt. For A(t) we define A(f) = f(; A(r)dr and assume that

clA(6)/A()] < X (8)/A(1)] < colA(2)/A(D)],

(0.3)
1AD(1)] < ol ()A()/A(2)]  forall e (0, T],

with a positive constants ¢, ¢y, where ¢ > (m —1)/m.
The simplest examples of the functions, satisfying (0.3) are the following:

Mry=1', () =exp(—||™), () = exp(—exp---exp |f| ),
k

where /, k are integer numbers, k > 2 and / > m — 1, while r is a positive number.

We assume that all the roots 7;(¢,x,w, &), ..., tm(t, x,w, &) of the equation

(0.4) T+ Y aa(tx,w)tiE =0

J+laj=m, j<m
are real and distinct for all 7€ [0,7T], xe T", £ € R"\O when w belongs to any
compact set.

Thus the equation has characteristics  A(#)7i(z, x,w, &), ...,
A(t)tm(t, x, w, &) which coincide at ¢ = 0 while for ¢ # 0 they are distinct. That is
why equation [(0.1) is said to be an equation with the characteristics of variable
multiplicity.

For equation [0.1) consider the Cauchy problem

(0.5) D'u(0,x) = gi(x), 1=0,...,m—1.

The main theorem of the present paper is the following
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THEOREM 0.1. Assume that for the operator (0.1) the above mentioned
conditions are satisfied. Then there are non-negative numbers y and M such that
Sor gi(x) e H"*MAm=I(T") [ =0,...,m— 1, for T, sufficiently small, there is a
solution u(t, x),

(0.6) Dlue c([0, Th]; HM*™/(T"), 1=0,...,m—1,

to the Cauchy problem [0.1), [0.5).

For y and M sufficiently large a solution u(t,x) is unique.

In is studied how much regularity of initial data (M in our notations) is
needed to ensure existence of a local solution to a semi-linear wave equation.

For linear weakly hyperbolic Cauchy problem there is very developed theory
which allows to prove that hyperbolicity and Levi condition are necessary for the
problem to be C* well-posed (See, for example, [4]). That theory is based on the
closed graph theorem and on the constructions of the geometrical optics.
Unfortunately, for nonlinear equations to apply that approach is very difficult
(See, for details, [T]). But if we replace C* well-posedness by the following stable
global solvability concept, then, for some examples, at least, we can prove
necessity of the Levi conditions as well as the Lax-Mizohata theorem.

DEFINITION 0.1. Let Scoer, SF and Sia be spaces for coefficients a;,, right-
hand side F and initial data {gl}g’_l, respectively. The Cauchy problem (0.1), (0.5)
is said to be stably globally solvable in the space Sso1, in the neighbourhood of the
solution u(t,x) to that problem with given functions a;,, F, g, if there are
neighbourhoods Qceett © Scoeft, QF < Sk and Qug = Sig, of ajy, F and {g;}:)""l,
respectively, and positive number T such that for every a;, € Qcoefr, FeQr and
{330 € Qua, a Cauchy problem

D}'u + Z a; (1, x, {ck p(t, Dy, Dx)u})cju(t, Dt, Dx)u

jtlel<m,j<m
= F(t, X, {ck,ﬁ(ty Dl?Dx)u})
Du(0,x) = §i(x), 1=0,...,m—1.

has a unique solution i(t,x) defined for all te |0, T).

The next example shows that in general without hyperbolicity not in the
neighbourhood of every solution the Cauchy problem is stably globally solvable.
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ExaMmpLE 0.1. Consider an equation
(0.7) uy + Pt + 2 (1)’ + () = 0.

There is a smooth solution u = #(t,x) to the Cauchy problem with initial data
#(0,x) =1, #,(0,x) = 0, defined for all # > 0. That is a function #(¢,x) = 1. This
solution is unique in C*® space.

Then, if u = u(x, ) is a solution to [0.7), then v(x,?) = expu(x,?) solves the
following linear equation

(0.8) v+ v = 0.

Let us look for a real-valued solutions v of this equation, of the form v (x, f) =
a" (t) cos(nx) + b™(¢) sin(nx). Consequently, the function w® () = a® () + ib™ (z)
is a solution of the equation

(0.9) w (1) — HnPw™ (1) = 0.

Add the initial conditions w®(0) =0, w{(0) =p™ (p™® is real) which are
equivalent to @™ (0) = M (0) = 0, a’™(0) = p™®, 5" (0) = 0, where the sequence
{p™} will be chosen later.

Further, a function

W(t,n) = te“’”“”F(l;Z —y;=20t'*'n), w:=1/(1+1), y:=lo,
is a solution to with initial data
(0.10) W(0,n) =0, W!(0,n)=1.

Here F(a;y;z) is the solution of the Kummer’s equation [2] and is represented in
the following form

() 1
T (y — a) (1 — 27(r-a))(1 — g2min)

F(a;y;2) =

(14,04,1-,0-)
x J (1= o de.
C

The function F(a;y;z) is an entire analytic function with respect to z.
Thus we have

(0.11) w(")(t) = p(")te“”l+l"F(l; 2 — y; 2wt n).

According to Sec. 6.13.1 [2] the function F(a;y;z) has the following asymptotic
behavior as Rez — —oo:
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(0.12) Fl@7i2) = £ s (-2) (1 + O(fl ™)

Let us suppose, that for some n which will be chosen later, u(x, t) is a solution of
with the data u(x,0) =1 and u(x,0) =e 'p™ cos(nx). Then v(x,?) =
expu(x,t) is a solution of with initial data v(x,0) =e and v,(x,0) =
p™ cos(nx). On the other hand the function e+ v (x,f) is a solution of
with the same initial values. Uniqueness in the Cauchy problem (Holmgren’s
theorem) for implies, that v(x,?) = e + v (x, ).

Furthermore, if p( = —n=" then for every s<s; the sequence
SUP; <5 xe (027 | D%e™! p™ cos(nx)| tends to 0 when n tends to infinity. At the same
time for any fixed 7 > 0 there is a point x such that v((x,?) tends to —oo as
n — co. That brings blowup of the function u(x,?).

Thus, for every time interval [0,0] and for every e-neighbourhood of the
initial data (1,0) in the space C° there exist initial data from this neighbourhood
such that the solution of does not exist in C2([0,9] x T).

As it is shown in [I8], one can not expect stability of global solution to
weakly hyperbolic equation in Gevrey classes, if lower order terms do not satisfy
some conditions, usually called Levi conditions. Below we use the example and
arguments of to show that stable global solvability does not hold in general
in Sobolev spaces, too, if these conditions are not satisfied. For equation
that conditions mean a special form (0.2) of the operators c¢j«(t, D;, Dx).

ExaMpPLE 0.2. Let us consider the equation (b is real)
(0'13) Uy — tzjuxx - btkux - t2j(ux)2 + (ut)2 =0.

If Kk <j—1, j > 1, then the Levi condition (0.2) (see, also, [14], [15], [18) is
not satisfied. If u = u(x,t) is a solution, then v(x, ) = expu(x, ) is a solution of
the following linear equation

(0.14) i — Y0y — bt*v, = 0.

Again, as in the first example we seek for real-valued solutions v of this
equation of the form o™ (x,?) = a®™(¢)cos(nx) + b™ (¢) sin(nx). Consequently,
function ¢®(¢) = a®(¢) + ib™(¢) is a solution of the equation

Cgl)(t) + t¥n2e™ (1) + ibt*nc™ (1) = 0.

Adding the initial conditions ¢™(0) =0, ¢ (0) = p® (p® is real) which are
equivalent to a®(0) = 5™ (0) = 0, a(0) = p®, b (0) = 0, where the sequence
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{p™} will be chosen later, then according to [19], for ¢ the following rep-
resentation holds:

(0.15) ™ (5) = p™ Xz:a,,,(t)n‘1 exp[Cmn’ + in(—=1)"t/*1 /(j + 1)](1 + 0(1)),

m=1

where 6 = (j— k —1)/(2j — k), am(t) # 0 and the real part of at least one C,, is
positive.

To consider a global solution #(x,?) =1 we repeat an argument which has
been used in Example 0.1. Furthermore, if p® = n~, then for every s < s; the
sequence p(™ sup; ;. p | DX cos(nx)| tends to 0 when n tends to infinity. At the
same time n~!p™ exp(C,n°) tends to infinity when Re C,, > 0.

Thus, by (0.15) for every time interval [0,d] and for every e-neighbourhood of
the initial data (1,0) in the space C° there exist initial data from this neigh-
bourhood such that the solution of does not exist in C?([0,d] x T).

We note that according to the Cauchy problem for with
k =j—1 is locally solvable in Sobolev spaces. (See, also, where a second-
order equation with linear principal part independent of x, is considered.)

REMARK 0.1. We emphasize that to get a contradiction in the above both
examples we used blowup phenomenon appearing in nonlinear equations, instead
of the closed graph theorem and an a priori estimate.

Local solvability, established in [Theorem 0.1 leads to stable global solvability
at the neighbourhood of the sufficiently smooth solutions to equation [0.1). This
is an essence of the following theorem.

THEOREM 0.2. Assume that for the operator (0.1) above mentioned conditions
are satisfied. Then there are non-negative numbers y and M such that the Cauchy
problem (0.1), (0.5) is stably globally solvable at the neighbourhood of the every
solution wue ﬂ;:)l C!([0, T); H"*M+m=!(T™)) in the spaces H'*M+m-i(T™)
SJor gi(x), 1=0,....m—1, C* for a;, (with real roots of (0.4)) and F, while

7:01 C!([0, T); HM+™=I(T™)) for the solutions u(t,x).

The last theorem is a simple consequence of [Theorem 0.1. Indeed, it is
enough only to take into account strict hyperbolicity of the operators of
when ¢ > 0.
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REMARK 0.2. We do not know whether the Cauchy problem [0.1),
is stably globally solvable at the neighbourhood of the solution
ue (1 C'([0, Th]; HM+m~(T")) which is not smooth enough, or not.

1. Linear equation with non-smooth coefficients

In order to treat the problem [0.1), we will deal with pseudodifferential
operators with less than C* symbols. We use the following symbol classes (see

[21]:

DeFINITION 1.1. We say p(x,&) € HM ST, provided that
IDEp(, )l (g < CLEY™ ™, for all |a] < M.

One can find main properties of such operators in Ch. IV [2I] We write
some of them here for the sake of completeness.

Lemma 1.1. If p(x,é)eHMS?,o and M > n/2, then p(x,D):L*(T") —
L*(T"). More generally, p(x,Dy): H(T") — H*(T") for |s| < u, provided that
M >n/2+ .

LeMMA 1.2. Given any M, my, my there is a u such that, if pj(x,D)e
OPH/‘SZ%, then pi(x,D)pi(x,D) e OPHMS;'f(’)+m2, pi1(x,D)" € OPHMS;"’(‘,, and

[Pl (x, D),pl(x, D)] € OPHMST(‘)+'"2_1.

Firstly we consider a linear case. For the linear system (or scalar equation)
one can not use results of [20] and because the coefficients are not C*. On
the other hand one can not apply immediately a result of [I5], too, because
conditions of that paper differ from our ones (0.2). Nevertheless, we use

approaches of and to prove the result of this section.
We consider the equation

(1.1) Du+ Y @u(t,x)cja(t, Dy, Dy)u = f(1,%)

JHel<m, j<m

with coefficients a;4(¢, x) € C'([0, T); H**M+s(T")), f e C([0,T); H'*(T")). The
operators cj,(t, Dy, Dx) in are the following
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TN (DI D*u,  when |af # 0;

cj,a(t»Dt»Dx)u = .
D]u, when |a| =0,

where j+ |¢| < m. For equation consider the Cauchy problem
(1.2) D'u(0,x) = gi(x), 1=0,....m—1,
with g,(x) e H"!/(T"), I=0,...,m—1.
THEOREM 1.1. Assume that all the roots t(t,x,&),...,Tm(t,x,&) of the

equation

(1.3) Tt Y @t x)UE =0

j+laj=m, j<m

are real and distinct for all t € [0,T), x € T", £ € R"\0. Then there are non-negative
numbers y and M such that for g)(x)e H'*tm-!(T"), 1=0,....m—1, fe€
C([0, T); H**(T")) for T\ sufficiently small, there is a unigque solution u(t,x),

Dlue C([0, Th); H**™!(T™), 1=0,...,m—1,

to the Cauchy problem (1.1, [1.2). This solution satisfies the estimate

1

m—1 m— 4
(14) > IDu@) | gosm-signy < Cs (Z gi G| prrestm-1(my + L WS N rresmy df)
=0

1=0

for all te[0,T).

Proor. Let

2 m—1
(%) = 90(x) + 191 (%) + 37 92(5) + oy Imt (3,

then a function v(z,x) = u(t, x) — upm (2, x) solves

Do+ Y aja(t,%)cja(t, Dy, De)v = fo(t, %)

J+la) <m, j<m
and
va(O,x) =0, [I=0,....m—1,

with fo =f — L[us,), where L is an operator of the left-hand side of [I.1).
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Let 4 be a solution of the following the Cauchy problem for an ordinary
differential equation

DI+ 3" a4t X)¢alt, Dy D) = fo(2,x)

|e|=0, j<m
with parameter x € T” and initial data
Du®0,x)=0, 1=0,...,m—1.

On the other hand one can regard the last Cauchy problem as an equivalent

problem for a new unknown vector-valued function #%(® :=* (01150), w0 =
‘W@, Du®, ... D" 14©®) and a linear symmetric hyperbolic system of first

order. For the solution of the Cauchy problem with vanishing initial data, for the
linear symmetric hyperbolic system there is an energy estimate which leads to the
following one

t
1200, < & | 15O, =
If we denote

fi=— Z aj,a(l, x)Cj,a(t, D,, Dx)u(o)(ta x)’
|a| #0

then
Llu — up — 0] = fi

and for every given s € R we have an estimate

IAON, < > laja(t x)eja(t, Di, Dx)u® (2, %))

[a] £0

o.5,0
< G0 Y gt D2,
ja[#0

< CE@) | 1h@lmdr, o€ O.m=(m=1)/e)

provided that y is large enough.

Indeed, the function A" (f)A/*PI=™(s) (with |a| #£0) can be majorized
by A°()(A"*(£)A'~™(¢)). The non-negative function A" *(¢)A!~™(¢) has a non-
negative derivative due to condition ¢ > (m — 1)/m in the inequality (0.3) when
we choose ¢ < m — (m—1)/c. Hence, the function A"~(£)A!=™(¢) is bounded.
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One can consider recursively defined

Dru® + 3" aa(t,%)¢ia(t, Dy, Da)u® = fi(t, %),

|t|=0, j<m

D'u®(©0,x) =0, 1=0,...,m—1,

.ﬂ€+l = Z aj,d(t’ x)cj,a(ta Dtan)u(k)(t’ X),
Joe| # O
Llu — thiny — W@ u(k)] = fit1

k=1,...,K—1, where

t
st Ol < Cut“) | 1) .
Hence, for every given N and s one has
(1.5) Jx € ANC([0, T); H*(T™))

provided that K, and consequently y, are large enough.
Thus, instead of [1.1), one can look for the solution w(t,x) of the
Cauchy problem

(1.6) D7'w + Z aj (1, X)¢ju(t, Dy, Dx)w = fx(t, X),
Jt|e| <m, j<m
(1.7) D'w(0,x) =0, I=0,...,m~—1,

with property [1.5). Above described reduction was used in [14], [15].
Further for the solution w of we consider a vector-valued function

(1.8) =" (U',..., ™), U= "*@){DH"*D¥'w, k=1,...,m,

where {(D,) is a pseudo-differential operator with the symbol (). For the
¢ju(t, Dy, Dyx)w of we have

m—I—|a|
i(l) (DYDY, if |a] #£0, I=j+1;
(1.9)  ¢o(t, D, Dy)w={ A\A

ATmD YY) i |a| =0, I=j+1,
where |a| +j < m. Thus we obtain

(110) DA™+ Y au(t, ) A () DID YT AD YU =

JH|aj<m, j<m
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(1.11) (0, x) = 0.
On the other hand according to (1.8) we have

A1)
A?)

Due to the reduction in the beginning of the section and in view of the initial
value, it follows

(1.12) D' (t,x) = A(O){D DU (t,x) — i(m = 1) A(t,x), I=1,....m—1.

t
(1.13) %I(t,x)=i<Dx),1”’"(t)J P At (o x) de, [=1,...,m— 1.
0

Hence, in (1.10) for the terms with m —~j— 1 — |a| > 1 one can conclude

(1.14) (DI DRY It (2, x) = iDLy D2

R t T1 Tm—|a|—j—2
a7 [de [ [T P G age)
0 0 0

X U™ (T 15 %) AT —jm1-
We will use for brevity the following writing
(1.15) (DY DRI (1, %) = imTHTTI(D M DA T (1)
x [mlel=i=1 -l gym—la|

(m—j—1—|a] = 1) where I denotes integration with respect to time.
The equations (1.10), (1.12) and initial condition can be rewritten as
the following, equivalent to [1.1), [(1.2), Cauchy problem

(1.16) %‘?— = K(t,x,Dx)% + Ko(t, %, Dx)U + Kint,pa(t, x, Dx, A, A, I, A)U + F (1, x),

(1.17) (0,x) =0,

where

(1.18) K(t,x,&) € ACY([0, T); HMSY), Ko(t,x,&) € %,C([O, T); HMS9),
(1.19) F e NC(0,T) : H(T™)),

while Ky pa(t,x,Dx, A, A,I,2) is the operator-valued matrix with the following
elements:
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(1.20) (Kins,pa(t, %, Dx, Ay 2,1, 4))y
(0 when k#morl=1,

= { Z|a|=m_1 Z,l;é imle=i=1g; (8, x)<Dx YT DA () A () I A

when /=2,...,m.

Equation (1.16) contains Fuchsian type operators if A(z) = ¢/, but in general,

it is more singular.

For the symbol K(t, x, &) there is a symmetrizer R(¢, x,£) in the sense of Sec.
5, ch. IV [21], that is if K € HYS],, then there is Re HM S}, with (0/0f)Re
HMS?,, such that

(1.21) (R(t, %, D), %) > col|||2,,
(1.22) RK + K*Re HMS)

for M sufficiently large.
To complete the proof of Theorem 1.1 it remains to prove the following

THEOREM 1.2. Consider the Cauchy problem (1.16), (1.17). For every given
u there are M and N € N such that if (1.18), (1.19) are satisfied and R e
c'([o, T];HMS?’O) satisfies (1.21), (1.22), then the Cauchy problem (1.16), (1.17)
has a unique solution % e A¥C([0, T]; H*(T")) N XA¥~'CI([0, T); H*-(T™)), for
given & € AN C([0, T); H*(T")), and |s| < p. Such solution satisfies the estimates,

for |s| < p,

(1.23) 1% (). < cA¥ (1) L IN@IF @)l dr, €0, T].

Proor. Consider a sequence {#;}, defined as follows:

0Uyx

(124) 7 = K(t, X, Dx)%k + Ko(t, X, Dx)%k-l
+ Kint,pd(ta X, Dx,A, '1’ 17 j‘)02[16—1 + .9—(1, X),
(1.25) Up(0,x) =0, fork=1,2,...,

while %g := 0. The function %; € C([0, T]; H*(T")) N C'([0, T); H*"}(T")) exists
due to Proposition 5.4 [21] provided that M is large enough. Moreover, according
to (5.4) [21] one has
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t t
(126) 1Ol <€ | 1F @l de < ()| TV @IF@lgdr, re 0.7
Then the function %, e C([0, T); H*(T")) N C'([0, T}; H*~'(T")) exists, too, and

t
1220 s < CJ 1Ko (2, %, Dx)%1 + Kint pa (1, X, Dx, A, 4, 1, ) U1 + F (7)|| gs A7
0

t
< CL 1Ko (t, %, D)1 | s d

t t
+ CJ | King, pa (2, X, Dx, A, A, 1, A) U1 || s AT + CJ |Z ()| g d=
0 0

270! ’
< ccoj 2ty e de + cj 1% (2) |
0 /1(7) 0

t
+C j 1K pa (2, %, Dy A, 2,1, )1 | g .
0

To estimate last integral of the right-hand side we remind assumption (0.3) where
c¢>(m—1)/m, m>2. For every k > 2 and every / > 0 it follows an inequality

m
mk+ml+1—-k

¢
(1.27) JAk(r)A’(r)drsCk,l/lk"l(t)Al“(t), Ciey = <1,
0

so that C,; — 0 when k — oo. In particular Cx; < 2/(k + 21+ 1). Using (1.27)
we estimate

t
.[0 “Kint,pd(ta X, DX7 A) '1) 17 '1)0”1 “H-‘ dt

m |- t . . T T Ti—j-2
<C) J Af-’(r)/l'"—f(r)J dnJ dry - J dt_j_1
=2 j=0 Y0 0 0 0

x A7 (w11 U (Timj=1) || o

m =2 , N T T1 T)—j-2
sCZZJ AJ—I(T)/I"’—J(T)J d‘clj dtz...J "

1=2 j=0 Y0 0 0 0

TI—j—-1
A g) [ A )| () iy
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-

< C(J; R OIEZGI™ dr) zm:

=2 j

2

i o Fi N+l-m
X J dn J dty-- J A (t1—j—1) dti—j1
0 0 0

< CCyiM (1) jo V@ IF @) de,

where Cy < 1 and is decreasing function of N and m, while C is independent of
N.
Thus

(1.28) 12(2) || s < C(l + % + CCN)AN(t) JO AN @NIF (1)l g d.

Moreover, %, € AV C([0, T); H*(T™)) and (8/8t)%; € A AN~'C([0, T); H*-1(T™)).
If we assume that

(1.29) %)l < A0 @) | IV @IF Ol d

with a monotone continuous function 4, (¢), then by analogy with deriving [(1.28),
we obtain

CG
Ar1(2) < (—]—V—" + CCN)Ak(t) +C

where k =1,...,4; = C. According to condition of the theorem one can choose
N large enough. Then for N sufficiently large the sequence {A4;} is bounded.
Hence,

(1.30) %k (8) || s < CoA¥(2) J; A F @)y de  forallze 0, T),

with some constant C,.

Moreover, due to our choice of N the sequence {#,}q is fundamental in the
space C([0, T]; HS(T™)) N C'([0, T]; H*~'(T")). Indeed, from the linear equations
for %1 and %, we obtain for difference %y, — Ux:
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(1.31) | Uis1(t) — Ui(D)|| g

t
< CJ | Ko(z,x, Dx)(Ux — Ur—1)|| g d
0
t
+ CJ ”Kim,pd(T, x,Dy,\,A, I, i)(%k - %k—l)”Hs dz
0
CC o
< (-TO-*— CCN)/lN(t)J\ A N(T)H(@lk — %k_l)(T)HH: dt< ---
0

CCy k v . NY
= <_—N +ch)1 O [ 7 ONF @l dr, k=12,
0

where ((CCy/N)+ CCy) < 1. The estimates for the derivatives D,(¥x+1 — %k)
follows from [1.24), [(1.25).

To prove uniqueness suppose that % solves

(1.32) %”tg — K(t,% D)2 + Ko(t, X, D) + King pa(t, %, D, A, &y I, ),

(1.33) (0, x) = 0.
Then, according to Nersesian’s lemma (see below Lemma 1.3)

cC « ‘o
134 Ol < (S con) 20 [ @l
for any k, provided that conditions of that lemma are satisfied. It remains to take

into account our choice N large enough and that 7 is small enough. The theorem
is proved. O

COMPLETION OF THE PROOF OF THEOREM 1.1. It remains only to prove

uniqueness in the Cauchy problem [I.1), [T.2). To this end assume that D'ue
C([0, Ty); HS*™~1(T™)), I =10,...,m—1, and that

D'u+ Y aja(t,X)cia(t, Dy, Dy)u =0,

Jt|a|<m, j<m
Du(0,x)=0, 1=0,....m—1.

It follows

Dru+ Y aa(t,x)Dlu=— Y a4(t,x)cia(t, Dy, Dy)u.

la =0, j<m jHo <m o] %0
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That means

m—1 t
3 104 e < csj
=0

0

dt

Hs

Z a; (7, x)¢j (7, Dy, Dy )u(7, X)
Jtlo| <m,ja}#£0

<c ¥ J' 2 () (22) m_j_lalna- (z, x)D{ D*u(z, x)|| 7. d
> s‘ 0 A(T) 7,0\ ¢y t~x ’ Hs
J+lal ol #0

t m—1 /{.(T) m—1
l
<af > 1D e (2 (3g) @

t m—1
< G0 | 3 1Dtule, %)l do
0 /=0

due to condition (0.3) and to [Lemma 1.1, provided that D!D%u e H*, | + |¢| < m,
and that y is large enough. Here s can be chosen negative as well. If we continue
this procedure then for |s| large enough, we get the right asymptotic behaviour at

t = 0 which brings uniqueness, due to Theorem 1.2l The theorem is proved.

REMARK 1.1. The constant C; of the estimate (1.4) depends on finitely many
seminorms of K, R and (3/d1)R, in HMS|, and HMS} , and of RK + K*R in
HM Sllyo, on T and on x and on n. Further, M depends on x and on n, but not on

the order m of the system.

REMARK 1.2. One can prove Theorem 1.1 with

¢ja(t, Di, Dy)u = A" () AT () In A(#)[" " D/ D2,

Jor coefficients a;, with m —j — |a| > 2 instead of given in the beginning of this

section. At that case N will depend on these coefficients, too.
For the sake of completeness we give here

LEMMA 1.3 (Nersesian) [14]. Let us given the differential inequality

(1.35) V() < K(@)y(t)+f(t) forallte(0,T),

T > 0, where the functions K = K(t) and f = f(t) belong to C(0,T]. Under the

assumptions
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(1.36) E K(1)dr = o0, JT K(t)dt < oo foreveryee (0,T),

&

t t '
(1.37) linaj f(s)exp (J K(7) d‘t) ds exists for every t € (0, T,
£— e s
every solution y e C([0, T]) N CY((0,T)) of which posses the property

(1.38) y(e) exp (JT K(7) dr)_ =o(l) ase— 0,

&

satisfies an inequality

(1.39) y(t) < Jt el KDt e(y 4o for all 1€ (0, T).
0

2. Reduction to nonlinear term with right asymptotic at zero

In this section we carry out for nonlinear equation the analogy of the
procedure of the first part of the proof of [Theorem 1.1. Let

2 m—1
uine(t, X) = go(x) + 191(x) + 52—!gz(x) +oet (7nt—_—1)—!‘gm_1 (x)

then a function v(¢,x) = u(?, x) — uim (2, x) solves

(2.1) D'v+ Z aj (2, X, {ck,(t, D1, Dx) (v + thine(t, X)) })Cj (2, Dy, Dy )v

J+la|<m, j<m
= G(t,x, {ck,p(t, Dy, Dy) (v + uine(2,x)) }).
Here the following notaion
(2.2) G(t, x, {ck,p(t, Dt, D) (v + tine(t, %)) }) := F (2, x, {ck,p(t, Ds, Dx) (v + thins (2, X)) })

- Z aj,tx(ta X, {ck,ﬁ(ta Dtan)(v+ uint(t, x))})cj,a(ta Dt,Dx)uint(t7 x)

JHla| <m,j<m

is used. Moreover,

(2.3) D'v(0,x)=0, I=0,...,m—1.
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Consider the solution u(®(¢,x) to the Cauchy problem

(2.4)
Dru® + > aa(t,x, {ckp(t, Di, Dx) (kg + thine(t, X)) })Cja (2, D1, D) atd®)

Jtlal<m,j<m
= G(t’ X, {ck,ﬁ(ta D, Dx)(sk,ﬂu(O) + um,(t, x))}),
(2.5) D'u®(0,x)=0, 1=0,...,m—1,

where ¢, =1 when |y| =0, while g, =0 when [|y|#0, | =k, j, y=a,8. For

every given s the solution u(® exists uniquely in (', C¥([0, To); H%(T")),

To > 0, provided that the constant y of is large enough.
Further, consider the solution u(!)(z,x) to the Cauchy problem

26) DU+ > aia(t,x, {ckp(t, Dy, Dx) (e pu” + u® (8, X) + (1, x))})
JHal<m, j<m

X ¢ja(t, Dy, Dy) (8 eV + (2, x))
= G(t,x, {ck,p(t, D1, D) (ex, st + u O (2, x) + tine(2, x))})
- G(ts X, {ck,ﬂ(tv Dt) Dx)(sk,ﬂu(())(tv X) + uim(t, X))})

+ Y aa(t,x, {exp(t, Dy, D) (k1% (1, X) + it (2, %)) })

JHlal<m, j<m

X ija(t, Dy, Dx)aj#u(())(t’ x)?

(2.7) D'uV(0,x)=0, 1=0,....m—1.

The solution u(!) exists uniquely in (), _, C*([0, Tn]; H**(T")), T\ > 0, provided
that y is large enough.
Then we continue step by step and at last step we consider the solution

u"(¢,x) to the Cauchy problem

(2.8)
n—1
D,’”u(") + Z Ay (t, X, {ck,ﬂ(t, D,,D,) (ek,,gu(") + Z u(k)(t, x) + um(2, x))})
Jtlal<m, j<m k=0

n—1
X Cj,a(t, Dy, Dx) (ej,au(") + Z ll(k)(t, X))

k=0
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k=0

n—2
-G (t, X, {Ck,ﬂ(t, D,,D,) (b‘k’ﬂu"—l + Z u(k)(t, x) + uin (2, x))})

k=0

n—2
+ > a (t, X, {Ck,ﬁ(t, Dy, Dy) <ek,ﬁu"-‘ + 3 u®(, %) + um(t, x))})
Jt|al<m, j<m

k=0

n—1
=G (t, X, {ck,,g(t, D,,D,) (ek,ﬁu(") + Z u(k)(t, X) + uine(t, x))})

n—2 .
X €ja(t, Dy, Dx) (gj’uu"—l + Z u® (1, x)),

k=0
(2.9) D'u™(0,x)=0, 1=0,...,m—1.

The solution u(™ exists uniquely in ();_, C*([0, T, W) HS7%(T™)), Tn > 0, provided
that y is large enough.
At last consider the solution w(z,x) to the Cauchy problem

(2.10)

D7'w + Z Q. (t, X, {ck,,g(t, D,, D,) (w + Z u(k)(t, x) + i (2, x))})

JHle|<m, j<m k=0

X cj,a(t, Dt, Dx)w

=G (ta X, {ck,ﬂ(tv Dta Dx) (W + i u(k)(tv x) + uint(ta x))})

k=0
n—1

-G (t, X, {Ck,ﬁ(t, D, D,) (ak,,gu(”)(t, x) + Z u®) (2, x) 4+ uin (2, x))})
k=0

n
- Z Qo (t, X, {Ck,ﬂ(t, Dy, Dy) (w + Z u® (2, x) 4 wim (2, x))})
JHlo<m, j<m k=0

n
X ¢ja(t, Dy, Dy) Y u® (2, x)
k=0

n—1
+ Z Qj o (t, x,{ck,ﬂ(t, D,, D,) (ak,ﬁu(")(t, x)+ Z u®(2, x) + uim (2, x))})

JHe| <m, j<m k=0

n—1
X ¢ju(t, Dy, Dy) (aj,au(")(t, x) + Z u® (s, x)) ,

k=0
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(2.11) D'w(0,x)=0, I=0,...,m—1.

Thus we have proved the following

LEMMA 2.1. Assume that the functions u®)(t,x), k=0,...,n are given by
(2.4) to (2.9). If w(t,x) solves (2.10), (2.11) then

(2.12) u(t,x) = w(t,x) + Zn: u® (1, %) + Ui (2, %)
k=0

solves [0.1), and vice versa.

The following lemma shows a benefit of the representation [2.12).

LEMMA 2.2. For every given N numbers n and y can be chosen such that if
gi(x) e H*"H(T"), 1 =0,...,m— 1, then the right-hand side of (2.10)

foi= G(t, X, {ck,ﬂ(t, D,,Dy) (En: u®) (2, x) + uin(2, x)) })
k=0
— G(t, X, {Ck1ﬂ(t, D,, Dy) (sk,pu(")(t, x) + nii u® (s, X) + uin(2, x)) })

k=0

- Z aj,a (t, X, {Ck,p(t, Dth) (zn: u(k)(t, X) + u;'m(t, X)> })
k=0

Jtla|<m, j<m

n
X Gja(t, Dy, Dy) D u®(1,x)
k=0

+ Z aj o (ta X, {Ck,ﬁ(t, Dtva)

jtla|<m, j<m

(81(‘ su™ (1, x) + i u® (2, x) + wim(t, x)) })

k=0

n—1
X Cjq(t, Dy, Dy) (aj,au(")(t, x) + Z u® (2, x))

k=0
at w=0 has the following behaviour

(2.13) fr=00l @) ast—0.
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Moreover if w with
Djw e C([0, T]; HM=/(T™) N L2 ([0, T); HM*™-!(T™)), [=0,...,m—1,

solves (2.10), (2.11) with above mentioned g;(x), then

m—1
(2.14) D IDFw(@)ll gmsr(gmy = O(AN (1)) as £ — 0.
k=0
ProOOF. In contrast to the beginning of the proof of Theorem 1.1, we have in

(2.4), (2.6), (2.8) instead of linear ordinary differential equations, nonlinear ones.
Therefore we rewrite, for example (2.6), as a Cauchy problem for a
quasilinear symmetric hyperbolic system of the first order
ou

(215) 'E‘ = g(t, X, %), %(O,X) = 0,

for U = (U, ..., Um) ="V, 0V, ... 8" 1)), This system can be handled
similarly to (5.1.1) of Section 5.1 [22]. The only difference is that in our case the
function g(¢,x,%) is not C* smooth in its argument x. Nevertheless, the last
circumstance does not bring any new difficulties. As a matter of fact to get
a solution % e C!([0, Th]; H(T")), s> 1+n/2, it is enough to assume that
8:95,9(t,x,%) belongs to C([0,T;] x R™; H*(T")) for all i<1 and all j (See
Prop. 5.1.D [22]). But we need some additional estimates. Therefore we write

g(t,x,U) = go(t,x) + G(t,x,U)U.

Then, by means of Freidrichs mollifier J;, ¢ € (0, 1], consider a solution %, to the
Cauchy problem

0U .
ot

= Jego(t,x) + J.G(t,x, T U)T U, U:(0,x) =0.

According to discussion in Section 5.1 [22] (with 4;(z,x,u) =0 in (5.1.1) [22]) the
solution %, exists for ¢ in the interval independent of ¢ € (0, 1], and has a limit as
¢ — 0 solving [2.15). Then, by means of Moser estimates and Sobolev imbedding
theorem, by means of Bihari’s [3] and Gronwall’s inequality (see pp. 110-113
[22]) we obtain that with some positive B the following inequality

t
|29, < Co L lgo(z, )|, d

holds for all 7€ [0, B), e e (0,1]. It follows an estimate
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t

(2.16) @), < C L lgo(z,x)ll,dz, € [0, B),

for the solution %.
Thus, to estimate Y f—g || D¥u® (1)l ym-1.s(r) We consider the following two

integrals:

(2.17) J; |G(2, x, {ck,p(t, Ds, Dx) (4O (2, X) + uime (2, x))})

- G(t) X, {Ck,ﬂ(t, Dh Dx)(ekiﬂu(())(t, x) + ui"t(t? x))})”s dT’

- Z aja(t, x, {ck,ﬁ(tth’DX)(u(o)(t,x) + uine(2, %)) })

Jt|a| <m, j<m

(2.18) J'

0

X ¢ja(t, Dy, Dy) (u® (2, x))

+ > ajalt,x, {ckp(t, Dr, D) (ek, g (2, %) + thini(2, %)) })

Jt+la|<m, j<m

X Cja(t, Dy, Dy)gj ot (2, x)|| dr.

s
One can write
(2.19) G(t,x, {ck,p(t, Dr, Dx) (O (2, x) + tims(2, x))})

— G(t,x, {cx p(t, D1, D) (ex, s 0 (2, x) + tine(2, %)) })

1
_ J S %P1, x, {cap(t, Dy, Dx) (04O (1, %)
0 kBIBl#0

+ ting(2, %)) }) dOcy p(t, Dy, Dy)u O (1, x).

Now one has only to take into account the existence of multipliers
Am—k (t)Ak+|ﬂ|‘”'(t) and repeat the arguments of the beginning of the proof of
Theorem 1.1:

t

|| 162, %, (e (e, Dey D) 4 (5,3) + iz, D))

0

- G(Ta X, {Ck,ﬁ(‘[, D‘L') DX)(gk,ﬂu(O) (T’ X) + uim(f, x))})”s dt
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t rl
< CSJ J D 1G*P (1, x, {ci p(t, Dy, D) (02, x)
070 k,p,18/ %0

+ uint(ta x))}) do Ck,/i(ta D, Dx)u(O) (t’ x)”s dt

t pl

< CSJ J > 1G%A (e, x, {ck,p(t, Dy, D) (64 (2, x)
070 k818 %0

+ uini(2, X)) }) d6 DY DEu® (z, x) || A"~ (1) AP () de

1
sc;ﬁ(z)j > 1G%A (1, x, {ck p(t, Dr, Dx) (04 (2, x)
0 k,p,|B1#0

+ (2, %)) }) dODF Du® (7, x) -

The integral (2.18) can be estimated in the same way. Moreover, the all
other functions u*) can be considered in the same manner. Thus, the asymptotic
behaviour (2.13) can be achieved step by step.

To prove one can write once more (2.10), in the form

?g = G(t,x, %) + Go(t, x, A(t) Dx W )A()Dx W', #(0,x) =0,

then according to estimate (2.16),
t
I @), < csj |Go(z, x, M) Dx#)A(x)Dx# (x, )|, dx, 1€ 0,B).
0
It remains to apply it step by step. The lemma is proved. O

REMARK 2.1. Above described reduction is responsible for the loss of
regularity, counted by y, in [Theorem 0.1, and connected with multiplicity of
characteristics.

ReMARK 2.2. For the following is important, that the crucial constant in the
differential inequality will be obtained below, is changing on small quantity in
every step of above described reduction.

3. Reduction to the “first-order” system

According to the results of the previous section to solve the problem [0.1),
is equivalent to solve the problem (2.10), [2.11) for a function w. Further,
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for the solution w of (2.10) we consider a vector-valued function
(B.1)  w="A,...,wm), U ="FEDY"ED W, k=1,...,m,

where the symbol of the operator (D) is (). For c g(t, D,, Dx)w of (2.10) we
have

171 m—I—|f| , s Ik
A2 DDA, if B £ 0, I =k +1;
(32) cup(t, Dy, D)w = A(A) Dx> 1Al

Ammepyt ! if 1B =0, I=k+1,
where ||+ < m. We will use a notation
(3.3) ck,5(t, D, Dx)w = Cip(t, D)W’

Thus we obtain

(34) DA™+ Y

JHlaj<m, j<m

Gja (ta X, {élﬂ(t’ Dx)%, + Ckvﬂ(t’ Dy, DX) <2n: u(k)(t’ x) + im (2, X)) })

k=0

x AT () DECD, Y ™" A(8) Dy YU !

= G(t, X, {é,,g(t, D)% + cxp(t, Dy, Dy) (zn: u® (1, x) + wim(t, x)) })
k=0

k=0

n—1
- G(t, x, {ck,ﬂ(z, Dy, D,) (sk,,gu<">(t, x) + D u® (8, %) + win(t, x)) })

JHa|<m,j<m

aj, (z, x, { Cip(t, Dx)W' + cip(t, Dy, D) (E u® (2, x) + uim (2, x)) })

k=0

n
X ¢ja(t, Dy, Dy) D u® (2, x)
k=0
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Ly

JjHla|<m, j<m

n—1
aj o (t, x, {Ck,ﬂ(t, D,, D,) (ek,ﬂu(")(t, x) + Z u® (2, x) + wim (2, x)) })

k=0

n
X €ju(t, Dy, Dy) (ak,,gu(")(t, x) + Z u®(t, x)) ,

k=0

(3.5) w(0,x) =0, 1=0,...,m—1.

In what follows we use (1.12) to and for the sake of brevity the
following writing

(Dx>l_mD£”2l1(t, x) = jm—i=18| <Dx>—|ﬂ|D£Im—1—|ﬂl,1—|ﬂ|aglm—|ﬂ|_
Thus
Cip(t, Dx)U' = Cig(t, Int, D) U,
where the operator-valued matrix is defined by

(3.6) , |
A 71\ =18l
Cp(t,Int, D) = { A (X) Dy ADLr PR, it 1Bl 0
ig\L, InL, Dy =

Ammpr=i=lgm - if |8 = 0.
LEMMA 3.1. Let || # 0 and assume that || %™ VPI()| 4 < CAN(1). Then

~ A - ! —m+ m—
(3.7) uc,p(t,w'(onmscNA—%A'" ’(r)joz’ 2y |18 (2) | o .

Proor. It is simple consequence of (1.13). O

On the other hand one can easily obtain the following

(3.8) G(t, x, {é,,g(t, D)% + cx p(t, Dy, Dy) (Z u®) (2, x) + uin (2, x)> })

k=0

n—1
-G <t, x, {ck,ﬁ(t, D,, D,) (t-:k,pu(")(t, x) + Z u® (2, x) + uine(2, x)) })

k=0
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k=0

G( {ck g(t, Dy, Dy) (i u® (2, x) + (1, x)) })
k=0

= G(t, X, {é]ﬂ(t, Dx)dlll + Ck,'g(t, D,, Dx) <2n: u(k)(t, x) + ui,,,(t, x)) })

+ G<t, x, { ckp(1, Di, Dy) (u‘"’(t, x) + niu(")(t, X) + tine(, x)) })
k=0
G(t, x, { c.p(t, Dy, Dy) (sk pu™ (2, x) + Z u® (2, x) + w1, x)) })
k=0

Z (J G(k 8) (t X, {é]ﬂ([, Dx)%l
1.8
+ Ck,ﬁ(t, Dy, Dx) (i u(k)(t, x) + u,—,,,(t, x)) }) d‘L’) é[ﬂ(t, Dx)%l

k=0

1
+ Z (Ck,ﬂ(t’ DtaDX)u(n)(ta x)) J sz,ﬂ) (t, X, {Tck,ﬂ(ta Dtan)u(n)(ta x)
0

|8l #0

k=0

+ ¢k p(t, Dy, Dy) (i u® (1, x) + um (1, x)) }) dr.

Analogously

(3.9) .
Qj o (t, X, {C'Iﬂ(t, Dx)%’ + cx,p(t, Dy, Dy) (Z u(k)(t, x) + uim(t, x))})

JHlel<m,j<m k=0

n
x cj,a(ta D, Dx) Z u(k)(t, x)
k=0
- Z Qja (ta X, {Ck,ﬂ(t, D, Dy) <8k,,9u(")(t, x)
JH|e| <m, j<m
n—1
+ Z u(k)(t’ X) + uine(2, x))})
k=0

n
X Cj'a(t, Dt’ Dx) (sk’ﬁu(n) (t, x) + Z u(k)(t, x))
k=0
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= Z aj,a (t, X, {é[ﬂ(t, DX)%I

JH|o| <m, j<m

+ ¢k, p(t, Dy, Dy) (i u®) (2, x) + upme(t, x))})

k=0

n
X Cjx(t, D¢, Dx) Z u(k)(t, x)
k=0

- Z Qjo (t, x, {ck,ﬂ(t, D, D) (i u® (1, x) + uin(2, x))})

Jt+la|<m, j<m k=0

n
X Cjq(t, Dy, Dy) Z u® (¢, x)
k=0

+ D) a4 (z, X, {Ck,ﬁ(t, D:, Dy) (u(")(t, x) + i u®) (2, %) + wime (2, x))})

JHle|<m, j<m k=0

n—1
X ¢ja(t, D1, Dx) > uP (1, x)
k=0

— Z ajy (t, X, {ck“g(t, D,,D,) (ek,ﬂu(”) (z,x)

JH|al <m,j<m

+ i u®) (2, %) + wim (2, x))})

k=0

n
X Cjo(t, Dy, Dx) Z u® (¢, x)
k=0

1
= Z C[ﬁ(t,Dx)%lJ Z aj a(k,p) (t,x, {‘L’C[ﬂ(t,Dx)%I

LB I1=k+1 0 jtlof <m, j<m

k=0

+ ck,ﬂ(tv D, Dx) (Xn: u(k)(t’ x) + uint(t7 x))}) dt

X cj,ot(t, Dt’ DX) Z u(k) (t’ x)
k=0
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1
+ Z ck,ﬂ(ta Dh DX)u(n)(tvx)J Z A a(k,p) (t’xa {Tck,ﬂ(ta Dt;DX)u(n)(t’x)

|B]#0 0 jtlal <m, j<m

n—1 n
+ cx p(t, Dy, Dy) (Z u® (2, x) + w2, x))}) dt¢ja(t, D1, Dx) Y u®)(t,x).

k=0 k=0

Finally we can rewrite (3.4) to (3.6) as a Cauchy problem for first order
integro-differential system for a vector-valued function # in the following way

(3.10) ‘%’f — K(t,x, {Cip(t, Int, D)WY, D) + Ko()U
+ F(t,x,{Cig(t, Int, D)UY}, Dx)U + Fy(1, x),
(3.11) 2(0,x) = 0.

Here K = K(t,%) is a family of pseudodifferential operators in OPS'(T")
depending on ¢ and %, Ko(t) is a diagonal matrix with elements (Ko(2), =
{(m = DA ())/A(y)}iL, while
(3.12)  F(t,x,{Cip(t, Int, D)}, D)V

=— > A(t)j+|°’|_'"1(t)aj,a(t,x,{éIﬂ(t,Dx)%l

J+|e|<m—1

n
+ ck,ﬂ(t, Dt, DX) (Z u(k)(t, x) + uint(t) X))}> <Dx>j_m+1D;'Vj+l

k=0

1
+ Z(C]p(t, D,)¥") L G p) (z, X, {c,ﬁ(t, D'
18

+ ck,p(t, Dy, Dy) (i u(")(t, x) + uine(2, x))}) dt

k=0

1
- D (Cip(t, Dx)VI)J >
LB

0 Jtla|<m, j<m

X a}’a(k’ﬂ) (t, X, {Té]ﬁ(t, Dx)%l
+ ¢, p(t, Dy, Dy) (Z u®) (2, x) + um (2, x))}) dz

k=0

n
X Cj,a(t1 DtvDX) Z u(k)(t1 X),
k=0
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(3.13)  F,(t,x) ch,,(z D, D,)u™(t, x)J G(kﬂ)( {rck,ﬁ(t,Dz,Dx)u(")(t,x)

+ ck,ﬂ(ta D, Dx) (nz—i u(k)(t7 x) + uint(t1 x))}) dt

k=0

— Y ek p(t, Dy, D)u™ (2, x)

|8l #0

1
x J Z ajva(kyﬂj (t’ * {Tck’ﬂ(t’ Dt’ Dx)u(n) (tv x)

0 jtla|<m,j<m

+ ck,p(t, Dy, Dy) (i u(k)(t, x) + uin(t, x))}) dt

k=0

n
X ¢ja(t, Dy, Dx) Z u® (¢, x).
k=0

4. Proof of

To prove Theorem 0.1 we use the following iterative method. For a given
U2, x) deﬁned on [0 T) x T" with %(0,x) =0 we define Q% := %" to be the
solution to the system

oy

(4.1) —; = K(6,x,{Cyp(t, 1, Dx)}, Dx)¥" + Ko())¥*
+ F(t,x,{Cip(t, I, D)W}, Dx)¥V + Fy(t,x),

(4.2) ¥(0,x) =

where

(4.3) F, e Nc(o, T); H(T™)).

For the sake of simplicity of notations we consider the case of equation
with terms cx g(¢, Dy, Dx)u, k + |B| = m — 1, only. Moreover we assume that a;, =
0 for j + |¢| < m — 2. Thus we consider the following most important special case
of equation (0.1):

(4.4) D"u + > a; (2, x, {ct p(t, D1, Dx)u})C; (2, Dy, Dx)u

m—1<j+|a| <m,j<m

= F(t, X, {Ck,ﬂ(t, Dt,DX)u})’
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where k + || = m — 1. At that rate system becomes

(4.5) aa_f = K(t {i(( )) cp(Dx )%"“} Dx) ¥ + Ko(0)V
> (1) k+1 >
+F(t X, { e )c 8(Dx)U } Dx)"//+F,,(t,x),
where
(4.6) cp(Dx) = {Dx) ¥ Df

is a zero-order pseudodifferential operator, while

(4.7)
F(t, x, {%I(%) cp(Dy)U ! } Dx) v

0] AL

+ cx,p(t, Dy, Dy) (i u® (1, %) + wim (2, x))}) <Dx>—|aID§1/j+1

k=0

x)%k-H

At . 1 , )
+k+|,;=:m_1(}“((t)) {Dy>~ lﬂlDﬂVk 1) JO ) (z,x,{ l(()) Cﬂ(Dx)%k 1

+ ck,p(t, Dy, Dy) (z": u(k)(t, x) + uin(2, x))}) dt

k=0

! 1
Z (i((tt)) cﬂ(Dx)"//kH) JO Z aj,',a(k,ﬂ) (t, X, { A(())Cﬂ(Dx)%kH

k+|Bl=m-1 Jtle| <m, j<m

n n
+ ¢k 5(t, Dy, Dy) (Z u® (2, x) + uim(t, x))}) dr ¢ja(t, D1, Dx) Y u®(1,x).
k=0 k=0

If we introduce a diagonal matrix of zero-order pseudodifferential operators
C,B (t7 Dx) by

!

(4.8) (Co(t, D)UYy = Smgerip i(—(t’)’cﬂwxw",

then for (4.1) we get more simple representation
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(4.9) a;t/ K(t,x,{Cs(t, Dx)U}, Dx)¥ + Ko()¥"
+ F(t,x,{Cs(t, Dx)U}, Dx)¥ + Fu(t,x),

where

(4.10)

F(t,x,{Cs(t, Dy)U}, Dy)¥V

N —i% > (”x’ {élﬂ(t, Dy

J+|aj=m—1

+ ck,p(t, Dy, Dy) (i u(k)(t, x) + Uins(2, x))}) <Dx>—|a|Di"Vj+1

k=0

A0 Bpsyer) [ @ 2@ »
+k+|ﬂ|2=m_1( A(2) i ) JO (k. B) (t,x,{ A() cg(Dx)U

+ ¢ p(t, Dy, Dy) (i u® (2, x) + win (2, x))}) dt

k=0

/ 1 '
_ Z (i((:))cﬂ(Dx)VkH) L Z dj’a(k’ﬁ)<t,x,{%r(;—))'cﬂ(l)x)%k+l

k+|B|=m—1 Jt|a| <m, j<m

+ ck,p(t, Dy, D) (Z u® (1, x) + uim(t, x))}) dz

k=0
n
X ¢jq(t, Dy, Dy) Z u®) (2, x).
k=0

The Cauchy problem (4.4), can be handled in the same way as it is done
in Sec. 5 Ch. IV [21]. The only difference is that instead of Gronwall’s inequality
one has to apply Nersesian’s lemma.

Suppose that

(4.11) w e ANC([0, T); H¥(T")) and (8/00) e XN~ ([o, T); HM1(T™)).

First of all, take M and N large enough so that there is a unique solution
v e ANC([0, T); H*(T™)) and (8/d1)¥ € AAN~'C([0, T]; H*(T")). Say this happens
if

(4.12) M>M N=>N.



80 Kunihiko Kajitani and Karen YAGDIJIAN

To obtain more precise estimates on 77, it is convenient to obtain equations

for various derivatives of ¥ . Indeed, set F,:=F and

Vou =D, Vig= :% Dy

Similarly define %o,, %1.. Applying the chain rule to yields

(4.13) a%«tfoa = K(t, x, {Cs(t, Dx)U}, Dx)¥0x + Ko(£)¥0u

+ F(t,x,{Cp(t, D)UY}, Dx)¥0a + Fou(t, X)

+ > CRs s {Ca(t, D)W}y, - {Cp(t, Dx) W,

y+é6+o=a,0<a
61+~"+6F=§

x K,,(t,x,{Cp(t,Dx)%}, Dx)¥ 00

+ Z nyér-du{cﬁ(t’ Dy )U} s, -+ - {Cp(t, Dx)o”}o&,,

y+o+o=a,0<a
51+“'+(§“=5

x F(t,x,{Cp(t, Dx)}, Dx),,¥ vs-

Here K,, = D' D“K(t,x,z,Dy), Fw = D}’CD;‘F(t, x,z,Dyx). Now replace ¥}, by
Pis(¥"™), where

@14) FM={y YT 0< e <M O0<|fl <M1} = (v, M)
and
(4.15) Pig(¥M) =Dy M0 N cpp(x, D)) ¥, j=0,1,

|Bi=M~j

cop(x,&) € S° being appropriately chosen. Thus Pj, € S~ M~/—lo)_ Similarly,
replace %j; by Pjs(%) and

(4.16)

FM = (FM FMY) := (Fou, Fig), lol=M, |Bl=M-1.

We rewrite the system (4.13) as

(4.17)

0
é—t“VoM = K(t,x,{Cs(t, Dx)U}, Dx) V3" + Ko(0) ¥

+ F(1,x,{Cp(t, Dx)U}, Dx) ¥ + F' (1, %) + Y + O,
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where due to (4.11) we have
(4.18) aM = @y, wt), e Vo, T, LX(T™),

aM e ) AN-1c((o, T); LA(T™)).

LEMMA 4.1. The mapping Q: U ¥ defined by (4.17) maps the set
. _ " 1 1
@19) {ire @Y x 22O THAT) gy 10l + e 1 < o
into itself for T < Ty with Ty sufficiently small and N sufficiently large.

Proor. Indeed, for m x K tuple system (4.17) one can construct a sym-
metrizer R(t,x,z,D,) for the block diagonal matrix operator K(t,x,z,Dx) and
substituting {Cg(z, Dx)%} for z, gives R(t,x, (A /4)C(Dx)Pou¥,Dx) € OPHMS),,
where C(D,) is a zero-order pseudodifferential operator corresponding to cg(Dx)

in (4.8). One can write
d
(420)  Z(RVH, ¥
= RV, KV + Ko + FY M + Fy' + ®g + D))

+ (REYVM + Koy M + Fy M + FM + o + o), vi¥)

OR
(& )

At
< Go 7((;7) B(|1%M || ) (RYM, v M) + B\ ) (RY M, ¥ )

+ 175 M 2 1F N 2
where B is some function of its argument which we need not specify. It follows
(4.21) M@ < CACoB(Wé”HLz)(t)eB(ll%Mlle)t

8 J | B 2) ()= B I2)s) M ()], di
0

for all t€[0,T]. We can choose N > CoB(||%{||;z) when T is small enough.
(See, also, Remark 2.2.) From system (4.17) keeping in mind the relation
(0/0t)y M1 = ¥;M~! we derive an estimate for (8/0) ¥ M1 2
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0 _
@) || Lae

< CHOB U 1) P s + oI Ol

A1)

T B DI Ol + IR Ol

+C —=-

t
+ CAOB (MM )M D)z + €D A(()) B2 )17 (1)l
< CH (D) ACE 1 12)=1 (1) B (1] )¢

x Jt A~ CoB (1% 12) ()= BUL 1,25 FM () ||, ds
0

for all t€(0,7]. Thus

(4.23)
A”l(t) 75 ()””U'(na}v—'u) A0 SO [ V@I ) s

To check convergence of ¥ = Q% we estimate the difference between
yM = QMM and vM = QMM From the equation we get

(424) 2 (9 — ) = K(t,x,{Cylt, D)UY, D) ¥
— K(t,x,{Cp(t, Dx) @}, D) ¥ M
+ Ko(t) (V! = VM) + F(1,x, {Cy(t, D) U}, D) ¥3¥
— F(t,x,{Cp(t, D)}, D) VM
+ (0N, — DY) + (D — D).
If we denote WY = v M — ¥ M then

d
(4.25) (-3;1//{,” = K(t,x,{Cs(t, Dx)U}, Dx)W ¥

+ (K (t,x, {Cp(t, Dx)U}, D) — K(t,x,{Cs(t, Dx)U}, Dx)) ¥ M

+ KO([)W(I)” + F(t7 X, {Cﬂ(t’ Dx)%}7 Dx)W(})u
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+ (F(t,x,{Cp(t, Dx)U}, D) — F(t,x,{Cp(1, Dx)U}, Dx)) V"

+ (DY — ) + (DL — DY)

= K(t,x,{Cs(t, Dx)U}, D)WY + Ko ()W}

+ F(t,x,{Cs(t, Dx)U}, D)WY + A,

where according to Lemma 5.5 [21I] one has

(4.26)

and
(4.27)
Then

(4.28)

1A 2 < Cllwy’ — U |2 (176" )l + Cix)

X(1)

510) 23" — |17 (D)l 2 + Cir)

+ Cr

t
17 Dl < 173 (D2 < Carand¥ () L AN SIFMH ()| 2 ds.

| |#M(1)|2 < Cud¥(2) J; AN () |AG) || 2 ds

< Cui (1) jo r”(s){c;(u%é“ () — T (9l

N CF%)HW () — M (s)NLz}ds

< A0 [ I ) ~ B ) s

+ CuCHA() [ I 6 6) - T O .

From the last inequality it is clear that Q(M)k%M will converge to a limit as
k — oo in AC([0, T); L*(T"™)), provided that T is picked small, while N is picked
so large, in addition to above requirements, that N > CpCy. The limit & M must
be of the form {Zo,, Z1p: |a| < M,|f| < M — 1} for some

Z e AC([0, T); HM(T™)) N A'/AC ([0, T); HM1(T™)),
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and Z must solve the problem. The rest of the proof is the quite repetition of the
proof of Theorem 5.6 [21], therefore we drop it. is proved. [
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