REPRESENTATION OF q-ANALOGUE OF RATIONAL BRAUER ALGEBRAS*

By

Masashi Kosuda

Introduction

Let q and a be indeterminates over a field K of characteristic 0, and let K(a,q) denote the field of rational functions. We define the algebra $H_{m,n}(a,q)$ over K(a,q) by generators and relations. (See the Definition 2.1.) If we replace the indeterminate a with q^{-r} in the definition, we have a q-analogue of rational Brauer algebra $H_{m,n}^{r}(q)$, which we have introduced in the previous paper with J. Murakami [8]. (In the paper [8], we called the algebra $H_{m,n}^{r}(q)$ the generalized Hecke algebra.) The algebra $H_{m,n}^{r}(q)$ is semisimple in case $r \ge m + n$, as we already observed in [8]. This observation is extended to the algebra $H_{m,n}(a,q)$. That is to say, $H_{m,n}(a,q)$ is also semisimple.

In this paper, we construct new representations of the algebras $H_{m,n}(a,q)$ and $H_{m,n}^{r}(q)$. These representations are irreducible and they are obtained from the left regular representations of $H_{m,n}(a,q)$ and $H_{m,n}^{r}(q)$ respectively.

Our previous paper was written originally to investigate the centralizer algebra of mixed tensor representations of quantum algebra $\mathscr{U}_q(gl_n(C))$, which was q-analogue version of the work of Benkart et al. [1]. (The existence of their preliminary version of the paper [1] was informed to the author by Professor Okada.) Their original situation was as follows. Let G denote the general linear group GL(r, C) of $r \times r$ invertible complex matrices and let V be the vector space on which G acts naturally. Let V^* be the dual space of V. The mixed tensor T of M copies of M and M copies of M is defined by $M = (\otimes^m V) \otimes (\otimes^n V^*)$. In this situation, they constructed the irreducible representations of the centralizer algebra $\mathrm{End}_G(T)$, by locating the maximal vectors in the mixed tensor M. Replacing M with $M_q(gl_n(C))$ and extending the underlying field M to M to M to M and extending the underlying field M to M to M to M and extending the underlying field M to M to M to M and extending the underlying field M to M to M to M and extending the underlying field M to M to M to M and M to M and extending the underlying field M to M to M to M the M to M to M the M to M the M to M to M the M

Received December 25, 1995.

Revised November 11, 1996.

^{*}This work is partially supported by JSPS Fellowships for young scientist.

have the q-analogue of their centralizer algebras which we called the generalized Hecke algebra $H^r_{m,n}(q)$. Instead of locating the maximal vectors in T, we used the Bratteli diagram of the inclusions, $C(q) \subset H^r_{1,0} \subset H^r_{2,0} \subset \cdots \subset H^r_{m,0} \subset H^r_{m,1} \subset \cdots \subset H^r_{m,n}$, to construct the irreducible representations of $H^r_{m,n}(q)$. However, the use of Bratteli diagram forced us to use q-rational functions as the matrix elements.

It turns out that if we define $H_{m,n}^r(q)$ over Q(q), the trace of the representing matrix of each generator is in $Z[q,q^{-1}]$. So it is natural to conjecture that if we take a suitable basis in each irreducible representation, the matrix elements are in $Z[q,q^{-1}]$.

Let us recall that as for the (classical) Hecke algebra $H_n(q)$ of type A, all the irreducible representations are afforded by cell representations [6]. For these irreducible representations the integrality holds. Namely, each generator of $H_n(q)$ maps to the matrix over $\mathbb{Z}[q,q^{-1}]$ on these representations.

The main purpose of this paper is to show that the conjecture for the integrality of irreducible representations of $H_{m,n}^r(q)$ holds true. For this purpose, we will define a new basis of $H_{m,n}(a,q)$. This paper is organized as follows. Section 1 presents the general results about the Hecke algebra of type A and W-graphs. In Section 2, we define the algebra $H_{m,n}(a,q)$ and define (left and right) k-contractions in $H_{m,n}(a,q)$. Then we show some properties of k-contractions. These k-contractions are originally defined in their paper [1] in the case q=1. They help us to construct all the irreducible representations of the algebra $H_{m,n}(a,q)$ by taking subquotients of the left regular representation. In Section 3 we give the new basis of $H_{m,n}(a,q)$. Taking suitable subquotients of the regular representation of $H_{m,n}(a,q)$ with respect to the new basis, we obtain the irreducible representations of $H_{m,n}(a,q)$. If we define $H_{m,n}^r(q)$ by replacing the indeterminate a with q^{-r} in the definition of $H_{m,n}(a,q)$ and construct the corresponding representations of $H_{m,n}^r(q)$ replacing a with q^{-r} in the procedure, then we obtain the desired representations of $H_{m,n}^r(q)$.

The author would like to thank J. Murakami and A. Gyoja for enlightening conversations. He also would like to thank S. Okada for communicating the results of [1, 3]. He also thanks T. Kohno for the kind encouragement.

1. Hecke algebras and W-graphs

First we review general results about Iwahori-Hecke algebra (of type A) and their irreducible representations without proofs. The following results are from Kazhdan-Lusztig [6] or Shi's book [9].

Let (W, S) be a Coxeter system and let A be the ring $Z[q, q^{-1}]$ of Laurent polynomials over Z in the indeterminate q. The Hecke algebra \mathscr{H} is by definition the associative A-algebra with a free A-basis $\{T_w\}_{w \in W}$ over the ring A, obeying the relations:

$$T_w T_{w'} = T_{ww'},$$
 if $\ell(ww') = \ell(w) + \ell(w'),$
 $(T_s - q)(T_s + q^{-1}) = 0$ if $s \in S$.

Here $\ell(w)$ denotes the length of w.

In this paper we consider only the case W is the symmetric group. So, $\mathcal{H} = H_n(q)$ can also be defined by generators:

$$T_1, T_2, \ldots, T_{n-1}$$

and

relations:

$$(T_i - q)(T_i + q^{-1}) = 0$$
 $(1 \le i \le n - 1),$
 $T_i T_j = T_j T_i$ $(1 \le i, j \le n - 1, |i - j| \ge 2),$
 $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$ $(1 \le i \le n - 2).$

As they showed [6], a complete set of irreducible representations for the Hecke algebra $H_n(q)$ can be afforded with some multiplicities by dividing W-graphs into left cells. We shall construct some W-graphs for $H_n(q)$ as in [6].

DEFINITION 1.1. A W-graph is, by definition, a set of vertices X, with a set Y of edges (each edge consists of two elements of X) together with two additional data: for each vertex $x \in X$, we are given a subset I_x of S and, for each ordered pair of vertices y, x such that $\{y, x\} \in Y$, we are given an integer $\mu(y, x) \neq 0$. These data are subject to the following requirements: Let E be the free A-module with basis X. Then for any $s \in S$,

$$\tau_s(x) = \begin{cases} -q^{-1}x & s \in I_x \\ qx + \sum \mu(z, x)z & s \notin I_x \end{cases}$$

defines an endomorphism of E and there is a unique representation $\phi \colon \mathscr{H} \to \operatorname{End}(E)$ such that $\phi(T_s) = \tau_s$ for each $s \in S$.

To construct W-graphs, we shall first introduce Kazhdan-Lusztig polynomials and define the relation \prec .

Let $a \to \bar{a}$ be the involution of the ring $A = \mathbb{Z}[q, q^{-1}]$ defined by $\bar{q} = q^{-1}$. This extends to an involution of $h \to \bar{h}$ of the ring \mathscr{H} , defined by $\sum a_w T_w = \sum \bar{a}_w T_{w^{-1}}^{-1}$. (Note that T_w is an invertible element of \mathscr{H} for any $w \in W$). Let \leq be the Bruhat order relation on W. The following basic theorem of Kazhdan-Lusztig [6] provides a basis of the algebra \mathscr{H} .

THEOREM 1.2. For any $w \in W$, there is a unique element $C_w \in \mathcal{H}$, such that

- $(1) \ \overline{C_w} = C_w,$
- (2) $C_w = \sum \varepsilon_y \varepsilon_w q_w q_y^{-1} \overline{P_{y,w}(q^2)} T_y$,

where $P_{y,w}(q) \in A$ is a polynomial in q of degree less than or equal to $(1/2)(\ell(w) - \ell(y) - 1)$ for y < w, and $P_{w,w} = 1$.

The polynomials $P_{y,w}$ in the above theorem are called Kazhdan-Lusztig polynomials. The proof of the theorem is in their original paper [6].

Next, we define the relation \prec .

DEFINITION 1.3. Given $y, w \in W$ we say that $y \prec w$ if the following conditions are satisfied: y < w, $\varepsilon_w = -\varepsilon_y$ and $P_{y,w}(q)$ is a polynomial in q of degree exactly $(1/2)(\ell(w) - \ell(y) - 1)$. In this case, the leading coefficient of $P_{y,w}(q)$ is denoted by $\mu(y, w)$. It is a non-zero integer. If $w \prec y$, we set $\mu(w, y) = \mu(y, w)$.

Proposition 1.4. Let $s \in S, w \in W$.

- (1) If sw < w, then $T_s C_w = -q^{-1} C_w$.
- (2) If w < sw, then $T_sC_w = qC_w + C_{sw} + \Sigma \mu(z, w)C_z$, where the sum is taken over all z < w for which sz < z.

Let Γ_L be the graph whose vertices are the elements of W and whose edges are the subsets of W of the form $\{y, w\}$ with y < w. For each $w \in W$, let $I_w = \mathcal{L}(w) = \{s \in S | sw < w\}$. Then Proposition 1.4 implies that Γ_L , together with the assignment $w \to I_w$ and with the function μ defined in 1.3 is a W-graph.

We will next decompose W-graphs into 'cells' which will give irreducible representations of \mathcal{H} in case $W = S_n$ (accordingly $\mathcal{H} = H_n(q)$). We shall define, following Kazhdan and Lusztig [6], cells of any Coxeter group (W, S).

For $x, y \in W$, we denote x - y if either x < y or y < x holds. We define a preorder relation $w \le_L w'$ on W if there exist elements $w = x_1, x_2, \ldots, x_t = w'$ in W such that for each i we have $x_{i-1} - x_i$ and $\mathcal{L}(x_{i-1}) \not\subset \mathcal{L}(x_i)$. We may then define an equivalence relation $w \sim_L w'$ to be $w \le_L w'$ and $w' \le_L w$. The equivalence classes with respect to the relation \sim_L are called *left cells*. With the

language of cells, we shall consider formulas in the above proposition. In case (2) of the proposition, we have w < sw, so that $w \prec sw$ with $\mathcal{L}(sw) \not\subset \mathcal{L}(w)$, implying $sw \leq_L w$. On the other hand, any element $z \prec w$ in the sum satisfies sz < z for the given s, so $\mathcal{L}(z) \not\subset \mathcal{L}(w)$ (because sw > w). Thus $z \leq_L w$. In either case of the proposition, it follows that left multiplication by T_s takes C_w into the A-span of itself and various C_x for which $x \leq_L w$.

Now fix a left cell $\lambda \subset W$, and define \mathscr{I}_{λ} to be the Λ -span of all $C_w(w \in \lambda)$ together with all C_x for which $x \leq_L w$ $(w \in \lambda)$. The preceding discussion shows that \mathscr{I}_{λ} is a left ideal in \mathscr{H} . Let \mathscr{I}'_{λ} be the span of those C_x for which $x \leq_L w$ for some $w \in \lambda$ but $x \notin \lambda$. Since \leq_L is transitive, the definition of left cells implies that \mathscr{I}'_{λ} is also a left ideal in \mathscr{H} , so the quotient $\mathscr{M}_{\lambda} := \mathscr{I}_{\lambda}/\mathscr{I}'_{\lambda}$ affords a representation of \mathscr{H} . In other words, for each left cell, regarded as a full subgraph of Γ_L with the same sets I_x and the same function μ is itself a W-graph. One can similarly define right cells by replacing $I_w = \mathscr{L}(w)$ and $\mathscr{L}(x_{i-1}) \neq \mathscr{L}(x_i)$ with $I_w = \mathscr{R}(w)$ and $\mathscr{R}(x_{i-1}) \neq \mathscr{R}(x_i)$ respectively, where $\mathscr{R}(w) = \{s \in S | ws < w\}$. One can also define two-sided cells of W by replacing $\mathscr{L}(x_{i-1}) \neq \mathscr{L}(x_i)$ with the condition that $\mathscr{L}(x_{i-1}) \neq \mathscr{L}(x_i)$ or $\mathscr{R}(x_{i-1}) \neq \mathscr{R}(x_i)$ and replacing $I_w = \mathscr{L}(w)$ with $I_w = \mathscr{L}(w) \sqcup \mathscr{R}(w)$. The notation $x \sim_R y$ (resp. $x \sim_\Gamma y$) means that x, y are in the same right (resp. two-sided) cell of W.

Let W be the symmetric group S_n . Then the cells of W can be classified by the Robinson-Schensted map.

Let P(n) be the set of partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$, where $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r > 0$ and $\sum_{i=1}^r \lambda_i = n$. Standard Young tableau of shape λ is by definition numbering of cells of λ in such a way that it is increasing from left to right in each row and from top to bottom in each column. The following is an example of a standard Young tableau of shape $\lambda = (3, 2, 2, 1)$.

1	3	4
2	5	
6	8	
7		

In this paper, we adopt the bijection between W and permutations in the following way. Let $i_1 \cdots i_n$ be a permutation of $1, \ldots, n$. Each generator $s_i \in W$ acts from the right as the transposition of letters i and i+1, which we denote $i_1 \cdots i_n \cdot s_i$. Then the bijection is given by $w \mapsto 12 \cdots n \cdot w$. For example (1, 2)(2, 3) corresponds to 312. The Robinson-Schensted map $\theta \colon w \to (P(w), Q(w))$ gives a

bijection from W to the pairs of standard Young tableaux on $\{1, 2, ..., n\}$ having the same shape (cf. [7]).

The following result is due to [2].

Theorem 1.5. For $y, w \in S_n$, we have

- $(1) y \sim_L w \Leftrightarrow P(y) = P(w),$
- $(2) y \sim_R w \Leftrightarrow Q(y) = Q(w),$
- (3) $y \sim_{\Gamma} w \Leftrightarrow P(y)$ and P(w) have the same shape.

Kazhdan and Lusztig [6] showed the following result on the representations of S_n afforded by the left cells of S_n .

THEOREM 1.6. Let X be a left cell of $W = S_n$, let Γ be the W-graph associated to X and let ϕ be the representation of $H_n(q)$ (over the quotient field of A) corresponding to Γ . Then ϕ is irreducible and the isomorphism classes of the W-graph Γ depends only on the isomorphism class of ϕ and not on X.

The above theorem shows that two distinct left cells of $W = S_n$ may produce the same irreducible representations (up to isomorphism). The proof of the theorem, however, shows that if y and y' are distinct elements of X^{-1} , then the \sim_L equivalence classes X_y and $X_{y'}$ which contain y and y' respectively produce the isomorphic left cells. Here the isomorphism between two left cells means the isomorphism between corresponding graphs which preserves μ and I_w . (See [6]). Combining the results of Theorem 1.5, we can see that the set of non-isomorphic irreducible representations of $H_n(q)$ are given by non-isomorphic left cells of S_n . Moreover each non-isomorphic left cell is indexed by the partition $\lambda \in P(n)$.

2. Algebra $H_{m,n}(a,q)$ and k-contractions in $H_{m,n}(a,q)$

In this section we define the K(a,q)-algebras $H_{m,n}(a,q)$. Then we define the k-contractions in $H_{m,n}(a,q)$. These k-contractions correspond to the q-analogue version of the ones which they defined in their paper [1].

DEFINITION 2.1. Let K be a field of characteristic 0. Let q and a be indeterminates over K. For integers $m, n \ge 0$, we define $H_{m,n}(a,q)$ to be the associative K(a,q)-algebra with the unit generated by

$$T_{m-1}, T_{m-2}, \ldots, T_2, T_1, E, T_1^*, T_2^*, \ldots, T_{n-2}^*, T_{n-1}^*$$

subject to the relations:

(B1)
$$T_i T_j = T_j T_i$$
 $(1 \le i, j \le m - 1, |i - j| \ge 2),$

(B2)
$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$$
 $(1 \le i \le m-2),$

(IH)
$$(T_i - q)(T_i + q^{-1}) = 0$$
 $(1 \le i \le m - 1),$

(B1*)
$$T_i^* T_i^* = T_i^* T_i^*$$
 $(1 \le i, j \le n-1, |i-j| \ge 2),$

(B2*)
$$T_i^* T_{i+1}^* T_i^* = T_{i+1}^* T_i^* T_{i+1}^*$$
 $(1 \le i \le n-2),$

$$(\mathrm{IH}^*) \quad (T_i^* - q)(T_i^* + q^{-1}) = 0 \qquad (1 \le i \le n - 1),$$

(HH)
$$T_i T_i^* = T_i^* T_i$$
 $(1 \le i \le m-1, 1 \le j \le n-1),$

$$(K1) ET_i = T_i E (2 \le i \le m-1),$$

$$(K1^*)$$
 $ET_i^* = T_i^*E$ $(2 \le i \le n-1),$

$$(K2) ET_1E = a^{-1}E,$$

$$(K2^*)$$
 $ET_1^* = a^{-1}E,$

(K3)
$$E^2 = -\frac{a-a^{-1}}{a-a^{-1}}E$$
,

(K4)
$$ET_1^{-1}T_1^*ET_1 = ET_1^{-1}T_1^*ET_1^*,$$

(K4')
$$T_1ET_1^{-1}T_1^*E = T_1^*ET_1^{-1}T_1^*E.$$

In the previous paper with J. Murakami [8], we defined the generalized Hecke algebra $H_{m,n}^r(q)$ which was K(q)-algebra obtained by being replaced one of the indeterminate a by q^{-r} in the above definition. Here we take a positive integer r. In the case of the K(q)-algebra $H_{m,n}^r(q)$, the relation (K3) is presented as follows: $E^2 = [r]E$, where $[r] = q^{r-1} + q^{r-3} + \cdots + q^{1-r}$.

The following theorem is one of the main results of [8]. (See loc. cit. Theorem 4.11, Corollary 4.13 and Proposition 2.2)

THEOREM 2.2. If $r \ge m + n$, the K(q)-algebra $H_{m,n}^r(q)$ is semisimple and whose dimension is (m+n)!.

The above theorem will be extended to the K(a,q)-algebra $H_{m,n}(a,q)$.

THEOREM 2.3. The K(a,q)-algebra $H_{m,n}(a,q)$ is semisimple and whose dimension is (m+n)!.

For the proof of the above theorem, we have only to follow Section 1-4 of [8] replacing q^{-r} with a.

REMARK 2.4. If we take $q_0 \in K \setminus \{0\}$, instead of taking the indeterminate q and put $a = q_0^r$ in Definition 2.1, then we can define the K-algebra $H_{m,n}^r(q_0)$. Furthermore if we take $a_0 \in K \setminus \{0\}$ instead of a and assume $q_0 - q_0^{-1} \neq 0$, the K-algebra $H_{m,n}(a_0,q_0)$ can be defined. If $[i]_{q_0} \neq 0$ for $i=1,2,\ldots,m+n+r$, then $H_{m,n}^r(q_0)$ is semisimple. Here $[i]_{q_0}$ is defined by $q_0^{i-1} + q_0^{i-3} + \cdots + q_0^{1-i}$. If $[i]_{q_0} \neq 0$ for $i=1,2,\ldots,\max(m,n)$ and $[a_0;j]_{q_0} \neq 0$ for $j=1,2,\ldots,m+n$, then $H_{m,n}(a_0,q_0)$ is also semisimple. Here $[a_0;j]_{q_0}$ is defined by $(a_0^{-1}q_0^j - a_0q_0^{-j})/(q_0 - q_0^{-1})$.

We introduce the k-contract sets $(\underline{m}, \underline{n})$, which is defined by

$$(\underline{m},\underline{n}) = \{(m_1,n_1),\ldots,(m_k,n_k)\}.$$

Here $\underline{m} = (m_1, \ldots, m_k)$ and $\underline{n} = (n_1, \ldots, n_k)$ are ordered subsets of $\{1, 2, \ldots, m\}$ and $\{1, 2, \ldots, n\}$ respectively. We further assume m_1, m_2, \cdots, m_k are in increasing order (i.e. $m_1 < m_2 < \cdots < m_k$).

There are two standard ways in indexing $(\underline{m},\underline{n})$. One is to index them by the two line array L, which is $2 \times k$ matrix whose first row is assigned by \underline{m} and the second row is by \underline{n} . The other is to index them by the triple (A,B,σ) with $A \subset \{1,2,\ldots,m\}, B \subset \{1,2,\ldots,n\}$ (|A|=|B|=k) and $\sigma \in S_k$, where S_k is the group of permutations of k letters $\{1,2\ldots,k\}$. We label the elements of A and B with a_1,a_2,\ldots,a_k and b_1,b_2,\ldots,b_k respectively in increasing order. The correspondence $(m_i,n_i) \leftrightarrow (a_i,b_{\sigma(i)})$ defines the bijection between L and (A,B,σ) .

Let $A = \{a_1 < a_2 \cdots < a_k\} \subset \{1, 2, \cdots, m\}$ and $B = \{b_1 < b_2 < \cdots b_k\} \subset \{1, 2, \cdots, n\}$. Define

$$T_A = (T_{a_1-1}T_{a_1-2}\cdots T_1)(T_{a_2-1}T_{a_2-2}\cdots T_2)\cdots (T_{a_k-1}T_{a_k-2}\cdots T_k)$$

and

$$\overline{T_B^*} = (T_{b_1-1}^{*-1}T_{b_1-2}^{*-1}\cdots T_1^{*-1})(T_{b_2-1}^{*-1}T_{b_2-2}^{*-1}\cdots T_2^{*-1})\cdots (T_{b_{\nu-1}}^{*-1}T_{b_{\nu-2}}^{*-1}\cdots T_k^{*-1}).$$

We understand $T_{a_l-1}T_{a_l-2}\cdots T_l=1$ if $l=a_l$. Note that if there exists an l such that $a_l=l$ and $a_{l+1}>l+1$, then $a_1=1,\ a_2=2,\cdots,\ a_l=l$. In this case we have

$$T_A = (T_{a_{l+1}-1}T_{a_{l+1}-2}\cdots T_{l+1})(T_{a_{l+2}-1}T_{a_{l+2}-2}\cdots T_{l+2})\cdots (T_{a_k-1}T_{a_k-2}\cdots T_k).$$

Similarly we define

$$T_A^{\text{op}} = (T_k T_{k+1} \cdots T_{a_{k-1}})(T_{k-1} T_k \cdots T_{a_{k-1}-1}) \cdots (T_1 T_2 \cdots T_{a_1-1}),$$

and

$$\overline{T_{B}^{*\mathrm{op}}} = (T_{k}^{*-1}T_{k+1}^{*-1}\cdots T_{b_{k}-1}^{*-1})(T_{k-1}^{*-1}T_{k}^{*-1}\cdots T_{b_{k-1}-1}^{*-1})\cdots (T_{1}^{*-1}T_{2}^{*-1}\cdots T_{b_{1}-1}^{*-1}).$$

The following lemma follows from the relation (B1), (B2), (IH) and (B1*), (B2*), (IH*) in Definition 2.1.

LEMMA 2.5. Let A be as above. Take $T_i \in H_m(q) \subset H_{m,n}(a,q)$. Let $A_{i,i+1} = (A \setminus \{i\}) \cup \{i+1\}$ (if $i \in A$) and let $A_{i+1,i} = (A \setminus \{i+1\}) \cup \{i\}$ (if $i+1 \in A$). Then we have the following formulas.

- (1) If $i = a_l \in A$ and $i + 1 = a_{l+1} \in A$ for some $l \le k 1$, then $T_i T_A = T_A T_l$.
- (2) If $i \in A$ and $i + 1 \notin A$, then $T_i T_A = T_{A_{i,i+1}}$.
- (3) If $i \notin A$ and $i + 1 \in A$, then $T_i T_A = (q q^{-1}) T_A + T_{A_{i+1,i}}$.
- (4) If $i \notin A$ and $i+1 \notin A$, then there exists an l > k such that $T_i T_A = T_A T_l$.

PROOF. (1) This follows from the following calculation.

$$\begin{split} T_{i}(T_{a_{l}-1}T_{a_{l}-2}T_{a_{l}-3}\cdots T_{l+1}T_{l})(T_{a_{l+1}-1}T_{a_{l+1}-2}T_{a_{l+1}-3}\cdots T_{l+1}) \\ &= (T_{i})(T_{i-1}T_{i-2}T_{i-3}\cdots T_{l+1}T_{l})\{(T_{i})(T_{i-1}T_{i-2}T_{i-3}\cdots T_{l+1})\} \\ &= (T_{i}T_{i-1}T_{i})(T_{i-2}T_{i-3}\cdots T_{l+1}T_{l})(T_{i-1}T_{i-2}T_{i-3}\cdots T_{l+1}) \\ &= (T_{i-1})\{(T_{i}T_{i-1})(T_{i-2}T_{i-3}\cdots T_{l+1}T_{l})\}\{(T_{i-1})(T_{i-2}T_{i-3}\cdots T_{l+1})\} \\ &= \vdots \\ &= (T_{i-1}T_{i-2})\{(T_{i}T_{i-1}T_{i-2})(T_{i-3}\cdots T_{l+1}T_{l})\}\{(T_{i-2})(T_{i-3}\cdots T_{l+1})\} \\ &= \vdots \\ &= (T_{i-1}T_{i-2})\{(T_{i}T_{i-1}T_{i-2}T_{i-3}\cdots T_{l+1})(T_{l})\}\{(T_{l+1})\} \\ &= (T_{i-1}T_{i-2}\cdots T_{l})(T_{i}T_{i-1}T_{i-2}T_{i-3}\cdots T_{l+1})T_{l}. \end{split}$$

- (2) (3) These are obvious.
- (4) Let p be an index such that $p \le a_p \le i 1 < i < i + 2 \le a_{p+1}$. Since $a_{p+1} 1 \ge i + 1$ and $p + 1 \le i$, we have

$$T_i(T_{a_{p+1}-1}T_{a_{p+1}-2}\cdots T_{p+1})=(T_{a_{p+1}-1}T_{a_{p+1}-2}\cdots T_{p+1})T_{i+1}.$$

Hence we have $T_i T_A = T_A T_{k-p+i}$.

Similarly, we have the following lemmas.

LEMMA 2.6. Let A, $A_{i,i+1}$ and $A_{i+1,i}$ be as in the previous lemma. Then we have the following formulas.

- (1) If $i = a_l \in A$ and $i + 1 = a_{l+1} \in A$, then $T_A^{op} T_i = T_l T_A^{op}$.
- (2) If $i \in A$ and $i + 1 \notin A$, then $T_A^{\text{op}} T_i = T_{A_{i,i+1}}^{\text{op}}$. (3) If $i \notin A$ and $i + 1 \in A$, then $T_A^{\text{op}} T_i = (q q^{-1}) T_A^{\text{op}} + T_{A_{i+1},i}^{\text{op}}$.
- (4) If $i \notin A$ and $i + 1 \notin A$, then there exists an l > k such that $T_A^{op} T_i = T_l T_A^{op}$.

Lemma 2.7. Let B be the one defined before Lemma 2.5. Take $T_i^* \in$ $H_{m,n}(a,q)$. Let $B_{i,i+1} = (B \setminus \{i\}) \cup \{i+1\}$ (if $i \in B$) and let $B_{i+1,i} = (B \setminus \{i+1\}) \cup \{i+1\}$ $\{i\}$ (if $i+1 \in B$). Then we have the following formulas.

- (1) If $i = b_l \in B$ and $i + 1 = b_{l+1} \in B$, then $T_i^* \overline{T_B^*} = \overline{T_B^*} T_l^*$.
- (2) If $i \in B$ and $i + 1 \notin B$, then $T_i^* \overline{T_B^*} = (q q^{-1}) \overline{T_B^*} + \overline{T_{B_{i,i+1}}^*}$.
- (3) If $i \notin B$ and $i+1 \in B$, then $T_i^* \overline{T_B^*} = \overline{T_{B_{i+1,i}}^*}$.
- (4) If $i \notin B$ and $i + 1 \notin B$, then there exists an l > k such that $T_i^* \overline{T_B^*} = \overline{T_B^*} T_l^*$.

LEMMA 2.8. Let B, $B_{i,i+1}$ and $B_{i+1,i}$ be as in the previous lemma. Then we have the following formulas.

- (1) If $i = b_l \in B$ and $i + 1 = b_{l+1} \in B$, then $\overline{T_B^{*op}} T_i^* = T_l^* \overline{T_B^{*op}}$. (2) If $i \in B$ and $i + 1 \notin B$, then $\overline{T_B^{*op}} T_i^* = (q q^{-1}) \overline{T_B^{*op}} + \overline{T_{B_{i,i+1}}^{*op}}$. (3) If $i \notin B$ and $i + 1 \in B$, then $\overline{T_B^{*op}} T_i^* = \overline{T_{B_{i+1,i}}^{*op}}$.
- (4) If $i \notin B$ and $i+1 \notin B$, then there exists an l > k such that $\overline{T_R^{*op}}T_i^* =$ $T_I^* \overline{T_R^{*op}}$.

The *i-trivial contraction* E_i (i = 0, 1, ..., k) is defined by:

$$E_0 = 1$$
,

$$E_1=E$$

$$E_i = E(T_1 T_2 \cdots T_{i-1})(T_1^{*-1} T_2^{*-1} \cdots T_{i-1}^{*-1}) E_{i-1} \quad (i = 2, 3, \dots, k).$$

These trivial contractions $\{E_i\}$ $(i=2,3,\ldots,k)$ are also defined by

$$E_i = E_{i-1}(T_{i-1}T_{i-2}\cdots T_1)(T_{i-1}^{*-1}T_{i-2}^{*-1}\cdots T_1^{*-1})E.$$

It is proved by induction on i. Note that this element is of the form

$$E(T_1T_1^{*-1})E(T_2T_1T_2^{*-1}T_1^{*-1})E\cdots E(T_{i-1}T_{i-2}\cdots T_1T_{i-1}^{*-1}T_{i-2}^{*-1}\cdots T_1^{*-1})E.$$

If we move T_2, T_2^{*-1} in the second parenthesis to the first, T_3, T_3^{*-1} in the third parenthesis to the first and iterate this procedure, we have that it coincides with $E(T_1T_2\cdots T_{i-1}T_1^{*-1}T_2^{*-1}\cdots T_{i-1}^{*-1})E_{i-1}$ by the induction hypothesis.

As for the trivial k-contraction, the following lemma generalizes the relation K4 and K4' in Definition 2.1.

LEMMA 2.9. Let $\sigma \in S_k$. Then T_{σ} is defined as in Section 1. Similarly $T_{\sigma^{-1}}^* \in \text{alg}\{T_1^*, T_2^*, \dots, T_{k-1}^*\}$ is defined. For these T_{σ} and $T_{\sigma^{-1}}^*$, we have

- (1) $T_{\sigma}E_k = T_{\sigma^{-1}}^*E_k$,
- (2) $E_k T_{\sigma} = E_k T_{\sigma^{-1}}^*$.

PROOF. (1) If k=1,2, it is easy to see. We assume $T_{\sigma}E_{k-1}=T_{\sigma^{-1}}^*E_{k-1}$ holds for any $\sigma \in S_{k-1}$. In particular we have $T_{i-1}E_{k-1}=T_{i-1}^*E_{k-1}$. Hence for any $i \geq 2$ we have

$$T_{i}E_{k} = T_{i}E(T_{1}T_{2}\cdots T_{k-1})(T_{1}^{*-1}T_{2}^{*-1}\cdots T_{k-1}^{*-1})E_{k-1}$$

$$= E(T_{1}T_{2}\cdots T_{k-1})T_{i-1}(T_{1}^{*-1}T_{2}^{*-1}\cdots T_{k-1}^{*-1})E_{k-1}$$

$$= E(T_{1}T_{2}\cdots T_{k-1})(T_{1}^{*-1}T_{2}^{*-1}\cdots T_{k-1}^{*-1})T_{i-1}E_{k-1}$$

$$= E(T_{1}T_{2}\cdots T_{k-1})(T_{1}^{*-1}T_{2}^{*-1}\cdots T_{k-1}^{*-1})T_{i-1}^{*}E_{k-1}$$

$$= E(T_{1}T_{2}\cdots T_{k-1})T_{i}^{*}(T_{1}^{*-1}T_{2}^{*-1}\cdots T_{k-1}^{*-1})E_{k-1}$$

$$= T_{i}^{*}E(T_{1}T_{2}\cdots T_{k-1})(T_{1}^{*-1}T_{2}^{*-1}\cdots T_{k-1}^{*-1})E_{k-1}$$

$$= T_{i}^{*}E_{k}.$$

If we write $\sigma = \sigma' s$ $(\ell(\sigma) > \ell(\sigma'), s \in S)$, then

$$T_{\sigma}E_{k} = T_{\sigma'}T_{s}E_{k} = T_{\sigma'}T_{s}^{*}E_{k} = T_{s}^{*}T_{\sigma'}E_{k} = T_{s}^{*}T_{\sigma'-1}^{*}E_{k} = T_{\sigma-1}^{*}E_{k}.$$

Hence (1) holds by induction on $\ell(\sigma)$. Similarly, we can show that (2) holds.

Let $L = (A, B, \sigma)$ be a k-contract set and let E_k be the k-trivial contraction. A left k-contraction E_L is defined by:

$$E_L = T_A \overline{T_B^*} T_\sigma E_k.$$

As for T_{σ} , we review the monomials in normal form in Hecke algebra, $H_k(q)$. (See for example [4].) Consider the following sets of monomials.

$$U_1 = \{1, T_1, T_2T_1, \dots, T_{k-1}T_{k-2} \cdots T_1\},$$

 $U_2 = \{1, T_2, T_3T_2, \dots, T_{k-1}T_{k-2} \cdots T_2\},$
 $\vdots \quad \vdots \quad \vdots$

$$U_i = \{1, T_i, T_{i+1}T_i, \dots, T_{k-1}T_{k-2} \cdots T_i\},$$

$$\vdots \quad \vdots \quad \vdots$$

$$U_{k-2} = \{1, T_{k-2}, T_{k-1}T_{k-2}\},$$

$$U_{k-1} = \{1, T_{k-1}\}.$$

We shall say that $V_1V_2\cdots V_{k-1}$ is a monomial in normal form in $H_k(q)$, if $V_i\in U_i$ for $i=1,2,\ldots,k-1$. We assume that T_σ is written in normal form. If $\sigma(1)=1$ then $V_1=1$. On the other hand, if $\sigma(1)\neq 1$ then $V_1\neq 1$. Similarly, we shall say that $V_1^*V_2^*\cdots V_{k-1}^*$ is a monomial in normal form in $H_k^*(q)=\operatorname{alg}\{1,T_1^*,T_2^*,\ldots,T_{k-1}^*\}$, if $V_i^*\in U_i^*$ for $i=1,2,\ldots,k-1$, where U_i^* is the one defined by taking $\{T_i^*\}$ for $\{T_i\}$ in the definition of U_i . We also assume that T_σ^* is written in normal form. Then we have the following lemma.

LEMMA 2.10. Let $L = (A, B, \sigma)$ be a k-contract set and let E_L be a left k-contraction defined by L. For a finite set $X = \{x_1 < x_2 < \cdots < x_k\}$ of positive integers, let $R_l(X)$ denote the set $\{1, x_1 + 1, x_2 + 1, \ldots, x_{l-1} + 1, x_{l+1}, x_{l+2}, \ldots, x_k\}$ and let $R_l^*(X)$ denote the set $\{1, 2, \ldots, l, x_{l+1}, x_{l+2}, \ldots, x_k\}$. Then we have the following formulas.

(1) If $1 \in A$ and $1 \in B$ and $\sigma(1) = 1$ then

$$EE_L = -\frac{a-a^{-1}}{q-q^{-1}} E_L.$$

(2) If $1 \in A$, $1 \in B$ and $\sigma(1) \neq 1$, then for the l such that $\sigma(l) = 1$.

$$EE_{L} = \begin{cases} a^{-1}T_{a_{l}-1}T_{a_{l}-2}\cdots T_{2}E_{(R_{l}(A),B,(l,l-1,...,1)\sigma)} & if \ a_{l} > 2, \\ a^{-1}E_{(R_{l}(A),B,(l,l-1,...,1)\sigma)} & if \ a_{l} = 2. \end{cases}$$

(3) If $1 \notin A$ and $1 \in B$, then for the l such that $\sigma(l) = 1$, we have

$$EE_L = \begin{cases} a^{-1} T_{a_l-1} T_{a_l-2} \cdots T_2 E_{(R_l(A),B,(l,l-1,...,1)\sigma)} & \text{if } a_l > 2, \\ a^{-1} E_{(R_l(A),B,(l,l-1,...,1)\sigma)} & \text{if } a_l = 2. \end{cases}$$

(4) If $1 \in A$ and $1 \notin B$, then putting $\sigma(1) = l$, we have

$$EE_{L} = \begin{cases} a(T_{b_{1}-1}^{*-1}T_{b_{1}-2}^{*-1}\cdots T_{2}^{*-1})(T_{b_{2}-1}^{*-1}T_{b_{2}-2}^{*-1}\cdots T_{3}^{*-1}) \\ \cdots (T_{b_{l}-1}^{*-1}T_{b_{l}-2}^{*-1}\cdots T_{l+1}^{*-1})E_{(A,R_{l}^{*}(B),\sigma(1,2,...,l))} & if \ b_{l} > 2, \\ aE_{(A,R_{l}^{*}(B),\sigma(1,2,...,l))} & if \ b_{l} = 2. \end{cases}$$

PROOF. (1) This is obvious.

(2) Since T_A does not involve T_1 and $\overline{T_B^*}$ does not involve T_1^{*-1} either, they commute with E. In addition, we note that $T_{\sigma} = (T_{l-1}T_{l-2}\cdots T_1)T_{(l,l-1,\ldots 1)\sigma}$ for the l such that $\sigma(l) = 1$ and $T_{(l,l-1,\ldots 1)\sigma}$ does not involve T_1 . So we have

$$EE_{L} = T_{A} \overline{T_{B}^{*}} E(T_{l-1} T_{l-2} \cdots T_{1}) T_{(l,l-1,\dots 1)\sigma} ET_{1} T_{1}^{*-1} E \cdots$$

$$= T_{A} \overline{T_{B}^{*}} (T_{l-1} T_{l-2} \cdots T_{2}) ET_{1} ET_{(l,l-1,\dots 1)\sigma} T_{1} T_{1}^{*-1} E \cdots$$

$$= a^{-1} T_{A} \overline{T_{B}^{*}} (T_{l-1} T_{l-2} \cdots T_{2}) T_{(l,l-1,\dots 1)\sigma} ET_{1} T_{1}^{*-1} E \cdots$$

$$= a^{-1} T_{A} (T_{l-1} T_{l-2} \cdots T_{2}) \overline{T_{B}^{*}} T_{(l,l-1,\dots 1)\sigma} E_{k}.$$

Here we have

$$T_{A}(T_{l-1}T_{l-2}\cdots T_{2})$$

$$= \{(T_{a_{p}-1}\cdots T_{p})\cdots (T_{a_{l}-1}\cdots T_{l})$$

$$\cdot (T_{a_{l+1}-1}\cdots T_{l+1})\cdots (T_{a_{k}-1}\cdots T_{k})\}(T_{l-1}T_{l-2}\cdots T_{2}) \quad (a_{p} > p > 1)$$

$$= (T_{a_{p}-1}\cdots T_{p})\cdots (T_{a_{l}-1}\cdots T_{l})(T_{l-1}T_{l-2}\cdots T_{2})$$

$$\cdot (T_{a_{l+1}-1}\cdots T_{l+1})\cdots (T_{a_{k}-1}\cdots T_{k}).$$

Since for $a_l - 1 > j \ge 2$

$$T_i(T_{a_{l-1}}\cdots T_lT_{l-1}T_{l-2}\cdots T_2)=(T_{a_{l-1}}\cdots T_lT_{l-1}T_{l-2}\cdots T_2)T_{i+1},$$

we obtain

$$T_A(T_{l-1}T_{l-2}\cdots T_2)=(T_{a_l-1}T_{a_l-2}\cdots T_2)T_{R_l(A)}.$$

Hence we obtain the formula.

(3) In this case T_A involves T_1 . So we have

$$\begin{split} EE_L &= \overline{T_B^*} E(T_{a_1-1} \cdots T_2)(T_1) \cdots (T_{a_k-1} \cdots T_{k+1})(T_k)(T_{l-1} T_{l-2} \cdots T_1) T_{(l,l-1,\ldots 1)\sigma} E_k \\ \\ &= \overline{T_B^*} (T_{a_1-1} \cdots T_2) \cdots (T_{a_k-1} \cdots T_{k+1}) E(T_1 \cdots T_k)(T_{l-1} T_{l-2} \cdots T_1) T_{(l,l-1,\ldots 1)\sigma} E_k \\ \\ &= \overline{T_B^*} (T_{a_1-1} \cdots T_2) \cdots (T_{a_k-1} \cdots T_{k+1}) E(T_l T_{l-1} \cdots T_2)(T_1 \cdots T_k) T_{(l,l-1,\ldots 1)\sigma} E_k \\ \\ &= a^{-1} \overline{T_B^*} (T_{a_1-1} \cdots T_2) \cdots (T_{a_k-1} \cdots T_{k+1})(T_l T_{l-1} \cdots T_2)(T_2 \cdots T_k) T_{(l,l-1,\ldots 1)\sigma} E_k. \end{split}$$

Here we have

$$(T_{a_{1}-1}\cdots T_{2})\cdots (T_{a_{k}-1}\cdots T_{k+1})(T_{l}T_{l-1}\cdots T_{2})(T_{2}\cdots T_{k})$$

$$= (T_{a_{1}-1}\cdots T_{2})\cdots (T_{a_{l-1}-1}\cdots T_{l})(T_{a_{l-1}}\cdots T_{l+1})(T_{l}T_{l-1}\cdots T_{2})$$

$$\cdot (T_{a_{l+1}-1}\cdots T_{l+2})\cdots (T_{a_{k}-1}\cdots T_{k+1})(T_{2}\cdots T_{k})$$

$$= (T_{a_{l}-1}\cdots T_{l+1}T_{l}T_{l-1}\cdots T_{2})(T_{a_{1}}\cdots T_{3})\cdots (T_{a_{l-1}}\cdots T_{l+1})$$

$$\cdot (T_{a_{l+1}-1}\cdots T_{l+2})\cdots (T_{a_{k}-1}\cdots T_{k+1})(T_{2}\cdots T_{k})$$

$$= (T_{a_{l}-1}\cdots T_{l+1}T_{l}T_{l-1}\cdots T_{2})(T_{a_{1}}\cdots T_{3}T_{2})\cdots (T_{a_{l-1}}\cdots T_{l+1}T_{l})$$

$$\cdot (T_{a_{l+1}-1}\cdots T_{l+2}T_{l+1})\cdots (T_{a_{k}-1}\cdots T_{k+1}T_{k})$$

$$= (T_{a_{l}-1}\cdots T_{l+1}T_{l}T_{l-1}\cdots T_{2})T_{R_{l}(A)}.$$

Hence we obtain the formula.

(4) We note that $T_{\sigma^{-1}}^* = (T_{l-1}^* T_{l-2}^* \cdots T_1^*) T_{(l,l-1,\dots,1)\sigma^{-1}}^*$ and $T_{(l,l-1,\dots,1)\sigma^{-1}}^*$ does not involve T_1^* . Hence we have

$$ET_{A}\overline{T_{B}^{*}}T_{\sigma}E_{k} = T_{A}E\overline{T_{B}^{*}}T_{\sigma^{-1}}^{*}E_{k}$$

$$= T_{A}E\overline{T_{B}^{*}}(T_{l-1}^{*}T_{l-2}^{*}\cdots T_{1}^{*})T_{(l,l-1,...,1)\sigma^{-1}}^{*}ET_{1}T_{1}^{*-1}E\cdots$$

$$= T_{A}E\overline{T_{B}^{*}}(T_{l-1}^{*}T_{l-2}^{*}\cdots T_{1}^{*})ET_{(l,l-1,...,1)\sigma^{-1}}^{*}T_{1}T_{1}^{*-1}E\cdots$$

Here we have

$$\begin{split} E\,\overline{T_{B}^{*}}(T_{l-1}^{*}T_{l-2}^{*}\cdots T_{1}^{*})E \\ &= E(T_{b_{1}-1}^{*-1}\cdots T_{2}^{*-1})(T_{1}^{*-1})(T_{b_{2}-1}^{*-1}\cdots T_{3}^{*-1})(T_{2}^{*-1})\cdots (T_{b_{l-1}}^{*-1}\cdots T_{l+1}^{*-1})(T_{l}^{*-1}) \\ &\cdot (T_{b_{l+1}-1}^{*-1}\cdots T_{l+1}^{*-1})\cdots (T_{b_{k}-1}^{*-1}\cdots T_{k}^{*-1})(T_{l-1}^{*}T_{l-2}^{*}\cdots T_{1}^{*})E \\ &= E(T_{b_{1}-1}^{*-1}\cdots T_{2}^{*-1})(T_{b_{2}-1}^{*-1}\cdots T_{3}^{*-1})\cdots (T_{b_{l-1}}^{*-1}\cdots T_{l+1}^{*-1}) \\ &\cdot (T_{1}^{*-1}T_{2}^{*-1}\cdots T_{l}^{*-1})(T_{l-1}^{*}T_{l-2}^{*}\cdots T_{1}^{*})(T_{b_{l+1}-1}^{*-1}\cdots T_{l+1}^{*-1})\cdots (T_{b_{k}-1}^{*-1}\cdots T_{k}^{*-1})E \\ &= E(T_{b_{1}-1}^{*-1}\cdots T_{2}^{*-1})(T_{b_{2}-1}^{*-1}\cdots T_{3}^{*-1})\cdots (T_{b_{l-1}}^{*-1}\cdots T_{l+1}^{*-1}) \\ &\cdot (T_{l}^{*}T_{l-1}^{*}\cdots T_{2}^{*})(T_{1}^{*-1}T_{2}^{*-1}\cdots T_{1}^{*-1})(T_{b_{l+1}-1}^{*-1}\cdots T_{l+1}^{*-1})\cdots (T_{b_{k}-1}^{*-1}\cdots T_{k}^{*-1})E \\ &= a(T_{b_{1}-1}^{*-1}\cdots T_{2}^{*-1})(T_{b_{2}-1}^{*-1}\cdots T_{3}^{*-1})\cdots (T_{b_{l-1}}^{*-1}\cdots T_{l+1}^{*-1}) \\ &\cdot (T_{l}^{*}T_{l-1}^{*}\cdots T_{2}^{*-1})(T_{b_{2}-1}^{*-1}\cdots T_{1}^{*-1})(T_{b_{l+1}-1}^{*-1}\cdots T_{l+1}^{*-1}) \\ &\cdot (T_{l}^{*}T_{l-1}^{*}\cdots T_{2}^{*})(T_{2}^{*-1}\cdots T_{l}^{*-1})(T_{b_{l+1}-1}^{*-1}\cdots T_{l+1}^{*-1}) \\ &\cdot (T_{l}^{*}T_{l-1}^{*}\cdots T_{2}^{*})(T_{l}^{*-1}^{*-1}\cdots T_{l}^{*-1})(T_{b_{l+1}-1}^{*-1}\cdots T_{l+1}^{*-1}) \\ &\cdot (T_{l}^{*}T_{l-1}^{*}\cdots T_{l}^{*-1})(T_{l-1}^{*-1}\cdots T_{l}^{*-1})(T_{l-1}^{*-1}\cdots T_{l+1}^{*-1}) \\ &\cdot (T_{l}^{*}T_{l-1}^{*}\cdots T_{l}^{*-1})(T_{l-1}^{*-1}\cdots T_{l}^{*-1})(T_{l-1}^{*-1}\cdots T_{l+1}^{l$$

$$= a(T_{b_1-1}^{*-1} \cdots T_2^{*-1})(T_{b_2-1}^{*-1} \cdots T_3^{*-1}) \cdots (T_{b_{l-1}}^{*-1} \cdots T_{l+1}^{*-1})$$

$$\cdot (T_{b_{l+1}-1}^{*-1} \cdots T_{l+1}^{*-1}) \cdots (T_{b_k-1}^{*-1} \cdots T_k^{*-1})E$$

$$= a(T_{b_1-1}^{*-1} \cdots T_2^{*-1})(T_{b_2-1}^{*-1} \cdots T_3^{*-1}) \cdots (T_{b_l-1}^{*-1} \cdots T_{l+1}^{*-1}) \overline{T_{R_l^*(B)}} E.$$

Hence we obtain the formula.

REMARK 2.11. If $1 \notin A$ and $1 \notin B$, then T_A involves T_1 and \overline{T}_B^* involves T_1^{*-1} . This case will be treated in Lemma 3.1.

REMARK 2.12. Let $L' = (A', B', \sigma')$ be a k-contract set and let E_k be the k-trivial contraction. If we define the right k-contraction by

$$E_{L'}^{\mathrm{op}} = E_k T_{\sigma'} T_A^{\mathrm{op}} \overline{T_B^{\mathrm{*op}}}$$

and write $T_{\sigma'}$ in suitable form, then we have the similar formulas for $E_{L'}^{\text{op}}$ corresponding to Lemma 2.10.

3. Irreducible representations of $H_{m,n}(a,q)$

As we mentioned before, the main purpose of this paper is to construct irreducible representations of $H^r_{m,n}(q)$ so that they keep the integrality. To make use of the results in Section 1, we take the field of rational functions Q(a,q) (resp. Q(q)) for the underlying field of $H_{m,n}(a,q)$ (resp. $H^r_{m,n}(q)$). First we define two sided ideals \mathcal{H}_k of $H_{m,n}(a,q)$. Then we define irreducible representations of $H_{m,n}(a,q)$ by taking quotients of \mathcal{H}_k . If we define $H^r_{m,n}(q)$ by replacing one of the parameter a with q^{-r} in the definition of $H_{m,n}(a,q)$ and define the corresponding quotients, we obtain the desired irreducible representations of $H^r_{m,n}(q)$. These representations are also irreducible in case $r \geq m + n$. Similar arguments are also valid for the Q-algebra $H_{m,n}(a_0,q_0)$ and $H^r_{m,n}(q_0)$, if $q_0, a_0 \in Q \setminus \{0\}$ satisfy the conditions in Remark 2.4.

In the following, we identify $alg\{T_{m-1}, T_{m-2}, \dots T_{k+1}\}$ with the Hecke algebra $H_{m-k}(q)$. The isomorphism is given by $T_i \mapsto T_{m-i}$. It follows from Section 1 that we can define the basis $\{C_x\}_{x \in W_1}$ of $alg\{T_{m-1}, T_{m-2}, \dots T_{k+1}\}$, where $W_1 = S_{m-k}$. Similarly, we identify $alg\{T_{n-1}^*, T_{n-2}^*, \dots T_{k+1}^*\}$ with the Hecke algebra $H_{n-k}(q)$ by $T_i \mapsto T_{n-i}^*$. The basis is given by $\{C_w^*\}_{w \in W_2}$, where $W_2 = S_{n-k}$. (We added asterisks to indicate that they are in $alg\{T_{n-1}^*, T_{n-2}^*, \dots T_k^*\}$.) Let $W_1 = S_{m-k}, W_2 = S_{n-k}$ be symmetric groups and let $L = (A, B, \sigma)$ and $L' = (A', B', \sigma')$ be a pair of k-contract sets. $(k \leq \min(m, n))$. Let \mathcal{H}_k be the

vector space over Q(a,q) spanned by

$$C_k = \{ C_{(L,L',x,y)} = T_A \overline{T_B^*} T_\sigma E_k T_{\sigma'^{-1}} C_x C_y^* \overline{T_{B'}^{*op}} T_{A'}^{op}$$

$$|x \in W_1, \quad y \in W_2, \quad L, L' : k\text{-contract set} \}.$$

We note that $\tilde{\mathscr{H}}_k$ is also spanned by

$$B_k = \{ T_{(L,L',x,y)} = T_A \overline{T}_B^* T_\sigma E_k T_{\sigma'^{-1}} T_x T_y^* \overline{T}_{B'}^{*op} T_{A'}^{op}$$

$$|x \in W_1, \quad y \in W_2, \quad L, L' : k\text{-contract set} \}.$$

Let R be the ring of polynomials $Z[q, q^{-1}, a, a^{-1}, (a - a^{-1})/(q - q^{-1})]$ over the rational integers Z. We denote $\mathcal{H}_{R,k}$ to be the R span of the elements of B_k . Take a k-contract set $L_0 = (A_0, B_0, \sigma_0)$. If we fix the index L' to be L_0 in the above definitions, then we have the subspace $\mathcal{H}_{g,k}(L_0)$ of \mathcal{H}_k spanned by

$$C_{g,k}(L_0) = \{C_{(L,L_0,x,y)} = T_A \overline{T_B^*} T_\sigma E_k T_{\sigma_0^{-1}} C_x C_y^* \overline{T_{B_0}^{*op}} T_{A_0}^{op}$$
$$|x \in W_1, \quad y \in W_2, \quad L : k\text{-contract set}\},$$

which is also spanned by

$$B_{g,k}(L_0) = \{ T_{(L,L_0,x,y)} = T_A \overline{T_B^*} T_\sigma E_k T_{\sigma_0^{-1}} T_x T_y^* \overline{T_{B_0}^{*op}} T_{A_0}^{op}$$

$$|x \in W_1, \quad w \in W_2, \quad L : k\text{-contract set} \}.$$

Note that T_x and T_y^* both commute with T_{σ} , E_k and $T_{\sigma'}$ in the definition of B_k . Hence, C_x and C_y^* both commute with T_{σ} , E_k and $T_{\sigma'}$.

We denote $\mathcal{H}_{R,g,k}(L_0)$ to be the R span of the elements of $B_{y,k}(L_0)$ as before. By Lemma 2.5 and Lemma 2.7, we find T_i and T_j^* act on $\mathcal{H}_{g,k}(L_0)$ and $\mathcal{H}_{R,g,k}(L_0)$ from the left. The following lemma shows that we can construct left $H_{m,n}(a,q)$ -modules.

LEMMA 3.1. Take $T_{(L,L_0,x,y)} \in B_{g,k}(L_0)$. Then $ET_{(L,L_0,x,y)}$ is in $\tilde{\mathscr{H}}_{g,k}(L_0)$ or in $\tilde{\mathscr{H}}_{k+1}$.

PROOF. If A or B involves 1, then $ET_{(L,L_0,x,y)} \in \mathscr{H}_{g,k}(L_0)$ by Lemma 2.10, Lemma 2.5 and Lemma 2.7. In these cases, T_A does not involve T_1 or \overline{T}_B^* does not involve T_1^{*-1} . We assume that $1 \notin A$ and $1 \notin B$. In this case T_A involves T_1

and \overline{T}_{B}^{*} involves T_{1}^{*-1} as we mentioned in Remark 2.11. Then we have

$$\begin{split} ET_{(L,L_{0},x,y)} &= ET_{A} \overline{T_{B}^{*}} T_{\sigma} E_{k} T_{\sigma_{0}^{-1}} T_{x} T_{y}^{*} \overline{T_{B_{0}}^{*op}} T_{A_{0}}^{op} \\ &= T_{A^{+}} \overline{T_{B^{+}}^{*}} E(T_{1} T_{2} \cdots T_{k}) (T_{1}^{*-1} T_{2}^{*-1} \cdots T_{k}^{*-1}) T_{\sigma} E_{k} T_{\sigma_{0}^{-1}} T_{x} T_{y}^{*} \overline{T_{B_{0}}^{*op}} T_{A_{0}}^{op} \\ &= T_{A^{+}} \overline{T_{B^{+}}^{*}} E(T_{1} T_{2} \cdots T_{k}) T_{\sigma} (T_{1}^{*-1} T_{2}^{*-1} \cdots T_{k}^{*-1}) E_{k} T_{\sigma_{0}^{-1}} T_{x} T_{y}^{*} \overline{T_{B_{0}}^{*op}} T_{A_{0}}^{op} \\ &= T_{A^{+}} \overline{T_{B^{+}}^{*}} ET_{\sigma^{+}} (T_{1} T_{2} \cdots T_{k}) (T_{1}^{*-1} T_{2}^{*-1} \cdots T_{k}^{*-1}) E_{k} T_{\sigma_{0}^{-1}} T_{x} T_{y}^{*} \overline{T_{B_{0}}^{*op}} T_{A_{0}}^{op} \\ &= T_{A^{+}} \overline{T_{B^{+}}^{*}} T_{\sigma^{+}} E(T_{1} T_{2} \cdots T_{k}) (T_{1}^{*-1} T_{2}^{*-1} \cdots T_{k}^{*-1}) E_{k} T_{\sigma_{0}^{-1}} T_{x} T_{y}^{*} \overline{T_{B_{0}}^{*op}} T_{A_{0}}^{op} \\ &= T_{A^{+}} \overline{T_{B^{+}}^{*}} T_{\sigma^{+}} E_{k+1} (T_{\sigma_{0}^{-1}} T_{x} T_{y}^{*} \overline{T_{B_{0}}^{*op}} T_{A_{0}}^{op}), \end{split}$$

where $\sigma^+ = (k+1,k,\cdots,1)\sigma(1,2,\cdots,k+1) \in S_{k+1}$, $A^+ = A \cup \{1\}$ and $B^+ = B \cup \{1\}$. Since the triple (A^+,B^+,σ^+) makes a (k+1)-contract set, and by Lemma 2.5, 2.6, 2.7, 2.8, $\tilde{\mathscr{H}}_k$ coincides with the $(H_m(q) \otimes H_n(q), H_m(q) \otimes H_n(q))$ -bimodule generated by E_k , the last term is in $\tilde{\mathscr{H}}_{k+1}$.

By Lemma 2.5 and Lemma 2.7 and the previous lemma we have the following proposition.

Proposition 3.2. For $k (0 \le k \le \min(m, n))$, let

$$\mathscr{H}_{g,k}(L_0) = \tilde{\mathscr{H}}_{g,k}(L_0) + \tilde{\mathscr{H}}_{k+1} + \tilde{\mathscr{H}}_{k+2} + \cdots + \tilde{\mathscr{H}}_{\min(m,n)}.$$

Then $\mathcal{H}_{q,k}(L_0)$ is a left ideal of $H_{m,n}(a,q)$.

If we fix a left k-contract set L to be L_0 instead of L' in the definition of B_k and C_k , then we have a subspace $\mathcal{H}_{d,k}(L_0)$ of \mathcal{H}_k . Hence, we have the following proposition.

PROPOSITION 3.3. For $k \ (0 \le k \le \min(m, n))$, let

$$\mathscr{H}_{d,k}(L_0) = \tilde{\mathscr{H}}_{d,k}(L_0) + \tilde{\mathscr{H}}_{k+1} + \tilde{\mathscr{H}}_{k+2} + \cdots + \tilde{\mathscr{H}}_{\min(m,n)}.$$

Then $\mathcal{H}_{d,k}$ is a right ideal of $H_{m,n}(a,q)$.

If we denote $H_{m,n}(R)$ to be the algebra over R defined by the generators and relations in Definition 2.1, then the R-linear combination $\mathscr{H}_{R,g,k}(L_0)$ (resp. $\mathscr{H}_{R,d,k}(L_0)$) of $\mathscr{\tilde{H}}_{R,g,k}(L_0)$ (resp. $\mathscr{\tilde{H}}_{R,d,k}(L_0)$), $\mathscr{\tilde{H}}_{R,k+1}, \mathscr{\tilde{H}}_{R,k+2}, \cdots, \mathscr{\tilde{H}}_{R,\min(m,n)}$ is a left (resp. right) ideal of $H_{m,n}(R)$.

Since $\tilde{\mathscr{H}}_k = \sum_L \tilde{\mathscr{H}}_{d,k}(L) = \sum_{L'} \tilde{\mathscr{H}}_{g,k}(L')$, we have further the following proposition.

Proposition 3.4. For $k \ (0 \le k \le \min(m, n))$, let

$$\mathscr{H}_k = \tilde{\mathscr{H}}_k + \tilde{\mathscr{H}}_{k+1} + \cdots + \tilde{\mathscr{H}}_{\min(m,n)}.$$

Then \mathcal{H}_k is a two sided ideal of $H_{m,n}(a,q)$.

COROLLARY 3.5.

$$\mathcal{H}_0 = H_{m,n}(a,q).$$

PROOF. This follows from $1 \in \mathcal{H}_0$ and the previous proposition.

Similarly, if we define $\mathscr{H}_{R,k}$ to be the R-linear combination of $\widetilde{\mathscr{H}}_{R,k}$, $\widetilde{\mathscr{H}}_{R,k+1},\ldots,\widetilde{\mathscr{H}}_{R,\min(m,n)}$, then we find $\mathscr{H}_{R,k}$ is a two sided ideal of $H_{m,n}(R)$ and $\mathscr{H}_{R,0}=H_{m,n}(R)$.

We can see $\bigsqcup_{k=0}^{\min(m,n)} B_k$ forms a basis of $H_{m,n}(a,q)$ as follows. Let B_k be the one just defined. Then

$$\sum_{k=0}^{\min(m,n)} |B_k| = \sum_{k=0}^{\min(m,n)} {m \choose k}^2 {n \choose k}^2 (k!)^2 (m-k)! (n-k)!,$$

which is equal to (m+n)!. (See Lemma 1.7 in [8].) Hence $\dim H_{m,n}(a,q) \leq (m+n)!$. On the other hand we already know that $\dim H_{m,n}(a,q) = (m+n)!$ (Theorem 2.3). Since the above corollary implies $\bigsqcup_{k=0}^{\min(m,n)} B_k$ generates $H_{m,n}(a,q)$ as vector space, we find $\bigsqcup_{k=0}^{\min(m,n)} B_k$ forms a basis of $H_{m,n}(a,q)$. Similarly we can see $\bigsqcup_{k=0}^{\min(m,n)} C_k$ forms a basis of $H_{m,n}(a,q)$.

Let $J_k = \mathscr{H}_k/\mathscr{H}_{k+1}$ $(k=0,1,2,\cdots,\min(m,n)-1)$ be quotient modules and $J_{\min(m,n)} = \mathscr{H}_{\min(m,n)}$. Note that the modules $\mathscr{H}_{R,k}/\mathscr{H}_{R,k+1}$ are R-free and the same holds for all modules constructed below. This fact will be used in the proof of Theorem 3.9. Since we already know $H_{m,n}(a,q)$ is semisimple, the canonical projection $\mathscr{H}_k \mapsto J_k$ splits. Similarly, we define $J_{g,k}(L_0) = \mathscr{H}_{g,k}(L_0)/\mathscr{H}_{k+1}$ (resp. $J_{d,k}(L_0) = \mathscr{H}_{d,k}(L_0)/\mathscr{H}_{k+1}$) $(k=0,1,2,\ldots,\min(m,n)-1)$ and $J_{g,\min(m,n)}(L_0) = \mathscr{H}_{g,\min(m,n)}(L_0)$ (resp. $J_{d,\min(m,n)}(L_0) = \mathscr{H}_{d,\min(m,n)}(L_0)$). Since it is easily checked that the left (resp. right) module structures of $J_{g,k}(L_0)$ (resp. $J_{d,k}(L_0)$) do not depend on the choice of L_0 , we write $J_{g,k} = J_{g,k}(L_0)$ (resp. $J_{d,k} = J_{d,k}(L_0)$).

Although the quotients $J_{g,k}$ $(k = 0, 1, 2, ..., \min(m, n))$ define the representations of $H_{m,n}(a,q)$, they are still very large modules. So we divide them into

smaller submodules or subquotients. Let $L = (A, B, \sigma)$ be a k-contract set and let

$$[L, x, y] = T_A \overline{T_B^*} T_\sigma E_k C_x C_v^* + \mathcal{H}_{k+1}$$

be a representative of $J_{g,k}$. We consider a subspace $J_{g,k}(I_1,I_2)$ of $J_{g,k}$ spanned by

$$\{[L, x, y] \in J_{g,k} | C_x \in I_1, C_v^* \in I_2\},\$$

where I_1 and I_2 are left ideals of $H_{m-k}(q)$ and $H_{n-k}(q)$ respectively. By Lemma 2.5, Lemma 2.7 and Lemma 2.10, we find $J_{g,k}(I_1,I_2)$ is a left $H_{m,n}(a,q)$ -module.

Let \mathscr{I}_{λ} and \mathscr{I}_{μ} be ideals of $H_{m-k}(q)$ and $H_{n-k}(q)$ indexed by left cells $\lambda \subset W_1$ and $\mu \subset W_2$. Let \mathscr{I}'_{λ} and \mathscr{I}'_{μ} be the maximal ideals. (Recall the definitions in Section 1.) We shall say the following theorem.

Theorem 3.6. Let $\mathscr{I}_{\lambda} \supset \mathscr{I}'_{\lambda}$ and $\mathscr{I}_{\mu} \supset \mathscr{I}'_{\mu}$ be as above. Let

$$J_{q,k}(\lambda,\mu) = J_{q,k}(\mathscr{I}_{\lambda},\mathscr{I}_{\mu})/[J_{q,k}(\mathscr{I}_{\lambda},\mathscr{I}'_{\mu}) + J_{q,k}(\mathscr{I}'_{\lambda},\mathscr{I}_{\mu})].$$

Then $J_{g,k}(\lambda,\mu)$ is an irreducible $H_{m,n}(a,q)$ -module.

Before proving the above theorem, we prove the following lemma.

LEMMA 3.7. If we take $0 \neq \bar{v} \in J_{g,k}(\lambda,\mu)$ then there exists a right k-contraction E_L^{op} such that $E_L^{\text{op}}\bar{v} \neq 0$.

PROOF. There exists a $v \in J_{g,k}(\mathscr{I}_{\lambda}, \mathscr{I}_{\mu})$ such that \bar{v} (natural surjection of v) $\in J_{g,k}(\lambda,\mu)$. Note that

$$v \in J_{q,k}(\mathscr{I}_{\lambda},\mathscr{I}_{\mu}) \subset J_{q,k} \subset J_k = \mathscr{H}_k/\mathscr{H}_{k+1}$$

and hence $\mathscr{H}_{k+1}\bar{v}=0$. If we have $E_L^{\mathrm{op}}\bar{v}=0$ for all right k-contractions, then $\mathscr{\tilde{H}}_k\bar{v}=0$. Hence $\mathscr{H}_k\bar{v}=0$. Since $H_{m,n}(a,q)$ is semisimple, \mathscr{H}_k and \mathscr{H}_{k+1} are direct sums of matrix algebras, and hence $\bar{v}\in\mathscr{H}_k/\mathscr{H}_{k+1}$ and $\mathscr{H}_k\bar{v}=0$ imply $\bar{v}=0$. (Note that there is the canonical projection in \mathscr{H}_k .) This contradicts $\bar{v}\neq 0$.

PROOF OF THE THEOREM. Suppose $0 \neq \bar{v} \in J_{g,k}(\lambda,\mu)$. We claim that $H_{m,n}(a,q)\bar{v} = J_{g,k}(\lambda,\mu)$. For a $v \in J_{g,k} \subset J_k$ such that $\bar{v} \in J_{g,k}(\lambda,\mu)$, we can write

$$v = \sum a_{L,x,y}[L,x,y],$$

where $a_{L,x,y} \in Q(a,q)$. By the above lemma, there exists a right k-contraction $E_{L_1}^{\text{op}}$

so that $E_{L_1}^{\text{op}} \bar{v} \neq 0$. Then we can write

$$0 \neq E_{L_1}^{\text{op}} v = \sum \tilde{a}_{L,x,y} [L,x,y].$$

Recall that $E_{L_1}^{\text{op}}H_{m,n}(a,q)$ is contained in the span of $\{E_L^{\text{op}}\}$, and $\{T_A\overline{T_B^*}T_\sigma T_x T_y^*E_L^{\text{op}}\}$ is a basis of \mathscr{H}_k . Hence $\tilde{a}_{L,x,y}=0$, unless $E_L=E_k$. Since $\mathscr{I}_k/\mathscr{I}_k'$ and $\mathscr{I}_\mu/\mathscr{I}_\mu'$ are irreducible, we have that $H_{m,n}(a,q)\bar{v}$ contains the span of $\{E_kC_xC_y^*\}$. By multiplying $T_A\overline{T_B^*}T_\sigma$ for various $L=(A,B,\sigma)$, we find $H_{m,n}(a,q)\bar{v}=J_{g,k}(\lambda,\mu)$.

Next, we prove that $J_{g,k}(\lambda,\mu)$ and $J_{g,k}(\lambda',\mu')$ are non-isomorphic for the distinct pairs (λ,μ) and (λ',μ') . Let $\Lambda_{m,n}^k$ be a set of pairs of partitions defined by

$$\Lambda_{m,n}^k = \{(\lambda,\mu)|\lambda \in P(m-k), \mu \in P(n-k)\}.$$

THEOREM 3.8. Suppose $(\lambda, \mu) \in \Lambda_{m,n}^k$ and $(\lambda', \mu') \in \Lambda_{m,n}^{k'}$ are pairs of partitions for $k, k' \in \{0, 1, 2, \dots, \min(m, n)\}$. Then $J_{g,k}(\lambda, \mu) \cong J_{g,k'}(\lambda', \mu')$ as $H_{m,n}(a, q)$ -modules if and only if $\lambda = \lambda', \mu = \mu'$ and k = k'.

PROOF. Assume that $J_{g,k}(\lambda,\mu) \cong J_{g,k'}(\lambda',\mu')$. Let $\phi: J_{g,k}(\lambda,\mu) \mapsto J_{g,k'}(\lambda',\mu')$ be an $H_{m,n}(a,q)$ -module isomorphism. Suppose that $k' \neq k$. Without loss of generality, we can assume that k < k'. Then by the definition of $J_{g,k}(\lambda,\mu)$, we have

$$0 = \phi(E_{L'}^{\mathrm{op}}J_{g,k}(\lambda,\mu)) = E_{L'}^{\mathrm{op}}\phi(J_{g,k}(\lambda,\mu)) = E_{L'}^{\mathrm{op}}J_{g,k'}(\lambda',\mu'),$$

for any k'-contract set L'. By Lemma 3.7, however, there is a k'-contract set L_1 such that $E_{L_1}^{\text{op}} J_{g,k'}(\lambda',\mu') \neq 0$. This gives a contradiction.

Thus, we can reduce to the case where $k'=k\geq 1$. Let $p_{\lambda},p_{\lambda'}$ (resp. $p_{\mu}^*,p_{\mu'}^*$) be the central idempotents in $H_{m-k}(q)$ (resp. $H_{n-k}^*(q)$) corresponding to the irreducible modules $\mathscr{I}_{\lambda}/\mathscr{I}_{\lambda'}'$ and $\mathscr{I}_{\lambda'}/\mathscr{I}_{\lambda'}'$ (resp. $\mathscr{I}_{\mu}^*/\mathscr{I}_{\mu'}^{*\prime}$ and $\mathscr{I}_{\mu'}/\mathscr{I}_{\mu'}^{*\prime}$). If $(\lambda,\mu)\neq(\lambda',\mu')$, then $p_{\lambda'}p_{\mu'}^*p_{\lambda}p_{\mu}^*=0$. We regard these central idempotents as elements of $H_{m,n}(a,q)$. We note that these elements still commute with the trivial k-contraction E_k . Since we have proved that $E_L^{\mathrm{op}}J_{g,k}(\lambda,\mu)$ is the span of $\{E_iC_xC_v^*\}$ in the proof of Theorem 3.6, we find

$$p_{\lambda}p_{\mu}^{*}E_{L}^{\mathrm{op}}J_{g,k}(\lambda,\mu)=E_{L}^{\mathrm{op}}J_{g,k}(\lambda,\mu)$$

and

$$p_{\lambda'}p_{\mu'}^*E_L^{\mathrm{op}}J_{q,k}(\lambda',\mu')=E_L^{\mathrm{op}}J_{q,k}(\lambda',\mu').$$

Hence we have

$$p_{\lambda'}p_{\mu'}^*E_L^{\mathrm{op}}J_{g,k}(\lambda,\mu)=p_{\lambda'}p_{\mu'}^*p_{\lambda}p_{\mu}^*E_L^{\mathrm{op}}J_{g,k}(\lambda,\mu)=0.$$

Hence

$$egin{aligned} 0 &= \phi(p_{\lambda'}p_{\mu'}^*E_L^{ ext{op}}J_{g,k}(\lambda,\mu)) \ &= p_{\lambda'}p_{\mu'}^*E_L^{ ext{op}}\phi(J_{g,k}(\lambda,\mu)) \ &= p_{\lambda'}p_{\mu'}^*E_L^{ ext{op}}J_{g,k}(\lambda',\mu') \ &= E_L^{ ext{op}}J_{g,k}(\lambda',\mu'). \end{aligned}$$

Again by Lemma 3.7 we have a contradiction. So we have $\lambda = \lambda'$ and $\mu = \mu'$.

Let f^{λ} and f^{μ} be the dimensions of the irreducible characters χ^{λ} and χ^{μ} of the symmetric group S_{m-k} and S_{n-k} respectively. Then the degree of the representation $J_{g,k}(\lambda,\mu)$ is

$$\binom{m}{k}\binom{n}{k}(k!)f^{\lambda}f^{\mu}.$$

From this, we obtain the following conclusion.

THEOREM 3.9. The set $\{J_{g,k}(\lambda,\mu)|(\lambda,\mu)\in\Lambda_{m,n}^k, k=0,1,2,\cdots,\min(m,n)\}$ is a complete set of representatives for the isomorphism classes of irreducible modules of $H_{m,n}(a,q)$. Moreover the generators of $H_{m,n}(a,q)$ in Definition 2.1 will be mapped to the matrices over $R=\mathbf{Z}[q,q^{-1},a,a^{-1},(a-a^{-1})/(q-q^{-1})]$ by these modules.

PROOF. The first statement follows from the fact that

$$\sum_{\lambda,\mu} \sum_{k=0}^{\min(m,n)} {m \choose k}^2 {n \choose k}^2 (k!)^2 (f^{\lambda})^2 (f^{\mu})^2 = (m+n)! = \dim H_{m,n}(a,q).$$

See (5.4) in [1] for details. By the comments below Proposition 3.3, $\mathcal{H}_{R,g,k}(L_0)$ is a left ideal of $H_{m,n}(R)$. If we define R-modules $J_{R,g,k}(\lambda,\mu)$ in the course of our construction of $J_{g,k}(\lambda,\mu)$, then they are $H_{m,n}(R)$ -modules. This proves the second statement.

We finally obtain the following theorem.

THEOREM 3.10. If we construct $J_{g,k}(\lambda,\mu)$ as $H^r_{m,n}(q)$ -modules replacing one of the indeterminate a with q^{-r} $(r \ge m+n)$ in the course of the construction of $H_{m,n}(a,q)$ -modules $J_{g,k}(\lambda,\mu)$, then the set $\{J_{g,k}(\lambda,\mu)\}$ is a complete set of representatives for the isomorphism classes of irreducible modules of $H^r_{m,n}(q)$. Moreover the generators of $H^r_{m,n}(q)$ in Definition 2.1 will be mapped to the matrices over $\mathbf{Z}[q,q^{-1}]$ by these modules.

PROOF. First we note that even if we replace a with q^{-r} in Lemma 2.5–2.10, those identities are still valid for the Q(q)-algebra $H_{m,n}^r(q)$. Similarly, Proposition 3.2, 3.3 and 3.4 hold for $H_{m,n}^r(q)$. Since we assume $r \ge m + n$, $H_{m,n}^r(q)$ is semisimple and its dimension is (m+n)!. So we can construct $\{J_{g,k}(\lambda,\mu)\}$ as $H_{m,n}^r(q)$ -modules. Lemma 3.7 also holds for $H_{m,n}^r(q)$ since $H_{m,n}^r(q)$ is semisimple. Accordingly, even if we replace $H_{m,n}(a,q)$ with $H_{m,n}^r(q)$ in Theorem 3.6, 3.8 and 3.9, those theorems are still valid for Q(q)-algebra $H_{m,n}^r(q)$ and the proof completes.

REMARK 3.11. As we mentioned in Remark 2.4, we can define the algebras $H_{m,n}^r(q_0)$ and $H_{m,n}(a_0,q_0)$ over Q, taking special values $q_0,a_0 \in Q\setminus\{0\}$. For these Q-algebras, we can also construct $H_{m,n}^r(q_0)$ -modules and $H_{m,n}(a_0,q_0)$ -modules in the same way, In case $H_{m,n}^r(q_0)$ (resp. $H_{m,n}(a_0,q_0)$) is semisimple (see Remark 2.4), these modules are complete set of representatives for the isomorphism classes of irreducible modules of $H_{m,n}^r(q_0)$ (resp. $H_{m,n}(a_0,q_0)$). If the algebra is not semisimple, these modules are not necessarily irreducible nor mutually non-isomorphic.

References

- G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee and J. Stroomer, Tensor product representations of general linear groups and their connections with Brauer algebras, J. Algebra. 166 (1994), 529-567.
- [2] D. Barbasch and D. Vogan, Primitive ideals and orbital integrals in complex classical groups, Math. Ann. 259 (1982), 153-199.
- [3] T. Halverson, Characters of the centralizer algebras of mixed tensor representations of GL(r, C) and the quantum group $\mathcal{U}_q(gl(r, C))$, preprint.
- [4] P. de la Harpe, M. Kervaire and C. Weber, On the Jones polynomial, l'Enseignement math. 32 (1986), 271-335.
- [5] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1992.
- [6] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
- [7] D. E. Knuth, The art of computer programming, Addison-Wesley, 1973.
- [8] M. Kosuda and J. Murakami, Centralizer algebras of the mixed tensor representations of quantum group $U_q(gl(n, C))$, Osaka J. Math. 30 (1993), 475-507.
- [9] J. Y. Shi, The Kazhdan-Lusztig Cells in Certain Affine Weyl Groups, Lect. Notes in Math. 1179, Springer-Verlag, Berlin, 1986.

Department of Mathematical Sciences College of Science University of the Ryukyus Nishihara, Okinawa, 903-0213 Japan