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Introduction

Let g and a be indeterminates over a field K of characteristic 0, and let
K(a,q) denote the field of rational functions. We define the algebra Hp,(a,q)
over K(a,q) by generators and relations. (See the Definition 2.1.) If we replace
the indeterminate a with ¢g~” in the definition, we have a g-analogue of rational
Brauer algebra H}, ,(q), which we have introduced in the previous paper with J.
Murakami [8]. (In the paper [§], we called the algebra H), ,(gq) the generalized
Hecke algebra.) The algebra Hj, ,(q) is semisimple in case r >m+n, as we
already observed in [8]. This observation is extended to the algebra Hyx(a,q).
That is to say, Hmn.(a,q) is also semisimple.

In this paper, we construct new representations of the algebras Hy,(a,q)
and Hy ,(q). These representations are irreducible and they are obtained from
the left regular representations of Hp.(a,q) and H,, ,(q) respectively.

Our previous paper was written originally to investigate the centralizer
algebra of mixed tensor representations of quantum algebra %,(gl,(C)), which
was g-analogue version of the work of Benkart et al. [1]. (The existence of their
preliminary version of the paper was informed to the author by Professor
Okada.) Their original situation was as follows. Let G denote the general linear
group GL(r, C) of r x r invertible complex matrices and let V' be the vector space
on which G acts naturally. Let V* be the dual space of V. The mixed tensor T
of m copies of ¥ and n copies of V* is defined by T = (®™V) ® (®"V*). In
this situation, they constructed the irreducible representations of the centralizer
algebra Endg(T), by locating the maximal vectors in the mixed tensor 7.
Replacing G with %,(gl,(C)) and extending the underlying field C to C(q), we

Received December 25, 1995.
Revised November 11, 1996.
*This work is partially supported by JSPS Fellowships for young scientist.



708 Masashi Kosubpa

have the g-analogue of their centralizer algebras which we called the generalized
Hecke algebra Hj ,(q). Instead of locating the maximal vectors in T, we used

the Bratteli diagram of the inclusions, C(q) =« H], < Hlyc -+ cHj,c
H,,< - <Hp,, to construct the irreducible representations of H},,(g).

However, the use of Bratteli diagram forced us to use g-rational functions as the
matrix elements.

It turns out that if we define Hj, () over Q(q), the trace of the representing
matrix of each generator is in Z[g,¢!]. So it is natural to conjecture that if we
take a suitable basis in each irreducible representation, the matrix elements are
in Z[g,q7"].

Let us recall that as for the (classical) Hecke algebra H,(q) of type A4, all
the irreducible representations are afforded by cell representations [6]). For these
irreducible representations the integrality holds. Namely, each generator of
H,(q) maps to the matrix over Z[g,q~'] on these representations.

The main purpose of this paper is to show that the conjecture for the
integrality of irreducible representations of H;, ,(q) holds true. For this purpose,
we will define a new basis of H,,(a,q). This paper is organized as follows.
Section 1 presents the general results about the Hecke algebra of type 4 and W-
graphs. In Section 2, we define the algebra H,,,(a,q) and define (left and right)
k-contractions in H,,,(a,q). Then we show some properties of k-contractions.
These k-contractions are originally defined in their paper [T] in the case g = 1.
They help us to construct all the irreducible representations of the algebra
H,, . (a,q) by taking subquotients of the left regular representation. In Section 3
we give the new basis of H,,.(a,q). Taking suitable subquotients of the regular
representation of H,, ,(a, q) with respect to the new basis, we obtain the irreducible
representations of H,,.(a,q). If we define H;, ,(q) by replacing the indeterminate
a with ¢7" in the definition of H,.(a,q) and construct the corresponding
representations of Hy ,(g) replacing a with ¢~” in the procedure, then we obtain
the desired representations of Hj, ,(q).

The author would like to thank J. Murakami and A. Gyoja for enlightening
conversations. He also would like to thank S. Okada for communicating the
results of [1, 3]. He also thanks T. Kohno for the kind encouragement.

1. Hecke algebras and W-graphs

First we review general results about Iwahori-Hecke algebra (of type 4) and
their irreducible representations without proofs. The following results are from
Kazhdan-Lusztig [6] or Shi’s book [9]
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Let (W,S) be a Coxeter system and let A4 be the ring Z]q, g~!] of Laurent
polynomials over Z in the indeterminate g. The Hecke algebra # is by definition
the associative A-algebra with a free A4-basis {7}, },,.y over the ring 4, obeying
the relations:

T, T,y = Tpw, if Z(ww') = £(w) +¢(w'),
(L-—q)(T+q ) =0 ifses.

Here /(w) denotes the length of w.

In this paper we consider only the case W is the symmetric group. So,
# = Hy(q) can also be defined by

generators:

TiaT'Zv"'vT;l—l

and
relations:

(Ti—q)(Ti+q ) =0 (1<i<n-—1),
I,T; = T;T; (I<ij<n—-10]i-j=2),
T;TinT, = T T;Tin 1<i<n-2).

As they showed [6], a complete set of irreducible representations for the
Hecke algebra H,(g) can be afforded with some multiplicities by dividing W-
graphs into left cells. We shall construct some W-graphs for Hy,(q) as in [6]

DEFINITION 1.1. A W-graph is, by definition, a set of vertices X, with a set
Y of edges (each edge consists of two elements of X) together with two
additional data: for each vertex x € X, we are given a subset I, of S and, for
each ordered pair of vertices y,x such that {y,x} € Y, we are given an integer
u(y,x) # 0. These data are subject to the following requirements: Let E be the
free A-module with basis X. Then for any se€ S,

—g 'x sel,

w(x) = { gx + > u(z,x)z s¢l,

defines an endomorphism of E and there is a unique representation ¢: # —
End(E) such that ¢(7;) = 75 for each se S.

To construct W-graphs, we shall first introduce Kazhdan-Lusztig poly-
nomials and define the relation <.
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Let a — a be the involution of the ring 4 = Z[q,q~!] defined by §=g~!.
This extends to an involution of 4 — A of the ring #, defined by m =
Z@Twi’,. (Note that T,, is an invertible element of # for any we W). Let <
be the Bruhat order relation on W. The following basic theorem of Kazhdan-
Lusztig [6] provides a basis of the algebra .

THEOREM 1.2.  For any we W, there is a unique element C, € #, such that
(1) C_w = Lw,
2) Co=3_ gyswqwq;le,W(qz)Tw
where P,,(q)€ A is a polynomial in q of degree less than or equal to
(1/2)(¢(w) —¢(y) — 1) for y <w, and P,,, = 1.

The polynomials P,, in the above theorem are called Kazhdan-Lusztig
polynomials. The proof of the theorem is in their original paper [6].
Next, we define the relation <.

DEerFINITION 1.3. Given y,we W we say that y <w if the following con-
ditions are satisfied: y < w, &, = —¢, and P, ,(q) is a polynomial in ¢ of degree
exactly (1/2)(¢(w) —£(y) — 1). In this case, the leading coefficient of B, ,(q) is
denoted by u(y,w). It is a non-zero integer. If w <y, we set u(w,y) = u(y, w).

PROPOSITION 1.4. Let se S,we W.

(1) If sw<w, then T,C, = —q~'C,.

(2) If w < sw, then T,C, = qC, + Cs, + Z u(z,w)C;,
where the sum is taken over all z <w for which sz < z.

Let I'y be the graph whose vertices are the elements of W and whose edges
are the subsets of W of the form {y,w} with y < w. For each we W, let I, =
Z(w) = {s € S|]sw < w}. Then [Proposition 1.4 implies that I';, together with the
assignment w — I,, and with the function u defined in 1.3 is a W-graph.

We will next decompose W-graphs into ‘cells’ which will give irreducible
representations of # in case W = S, (accordingly »# = H,(q)). We shall define,
following Kazhdan and Lusztig [6], cells of any Coxeter group (W,S).

For x,y e W, we denote x — y if either x <y or y < x holds. We define a
preorder relation w <; w’ on W if there exist elements w = x1, x,...,x, = w in
W such that for each i we have x;_; — x; and Z(x;_1) ¢ Z£(x;). We may then
define an equivalence relation w ~,w’ to be w <; w and w <;w. The equiv-
alence classes with respect to the relation ~; are called left cells. With the
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language of cells, we shall consider formulas in the above proposition. In case
(2) of the proposition, we have w < sw, so that w<sw with Z(sw) & L(w),
implying sw <y w. On the other hand, any element z <w in the sum satisfies
sz < z for the given s, so £(z) ¢ £ (w) (because sw > w). Thus z <y w. In either
case of the proposition, it follows that left multiplication by T; takes C, into the
A-span of itself and various C, for which x < w.

Now fix a left cell A = W, and define .#, to be the A-span of all C,(w € 4)
together with all C, for which x <;w (w e A). The preceding discussion shows
that .#, is a left ideal in . Let .#, be the span of those C, for which x <y w for
some we A but x ¢ A. Since < is transitive, the definition of left cells implies
that .#] is also a left ideal in #, so the quotient .#; := .%;/.#; affords a rep-
resentation of . In other words, for each left cell, regarded as a full subgraph
of I'; with the same sets I, and the same function u is itself a W-graph. One
can similarly define right cells by replacing I, = £(w) and Z(xi_1) & L(x:)
with I, = #(w) and 2(x;_1) ¢ #(x;) respectively, where #(w) = {s € S|ws < w}.
One can also define two-sided cells of W by replacing #(x;_1) ¢ £ (x;) with the
condition that £ (x;_;) & £(x;) or R(xi—1) ¢ R(x;) and replacing I, = L(w)
with I, = #(w) U #2(w). The notation x ~gy (resp. x ~ry) means that x, y are
in the same right (resp. two-sided) cell of W.

Let W be the symmetric group S,. Then the cells of W can be classified by
the Robinson-Schensted map.

Let P(n) be the set of partitions 4 = (41,42,--,4,), where 41 > A, = -+ =
A->0 and Yi_,;A; = n. Standard Young tableau of shape i is by definition
numbering of cells of 4 in such a way that it is increasing from left to right in
each row and from top to bottom in each column. The following is an example
of a standard Young tableau of shape A= (3,2,2,1).

11314
2|5
6|8

7

In this paper, we adopt the bijection between W and permutations in the
following way. Let i ---i, be a permutation of 1,...,n. Each generator s;€ W
acts from the right as the transposition of letters i and i+ 1, which we denote
i1 - - - in - 5;. Then the bijection is given by w12 --n - w. For example (1, 2)(2, 3)
corresponds to 312. The Robinson-Schensted map 6: w — (P(w), Q(w)) gives a
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bijection from W to the pairs of standard Young tableaux on {1,2,...,n} having
the same shape (cf. [7]).
The following result is due to [2].

THEOREM 1.5. For y,we S,, we have

(1) y ~w e P(y) = P(w),

(2) y ~rw & 0») = O(w),

(3) y ~rw <& P(y) and P(w) have the same shape.

Kazhdan and Lusztig [6] showed the following result on the representations
of S, afforded by the left cells of S,.

THEOREM 1.6. Let X be a left cell of W =S,, let T be the W-graph
associated to X and let ¢ be the representation of H,(q) (over the quotient field of
A) corresponding to T'. Then ¢ is irreducible and the isomorphism classes of the
W-graph T" depends only on the isomorphism class of ¢ and not on X.

The above theorem shows that two distinct left cells of W =S, may
produce the same irreducible representations (up to isomorphism). The proof of
the theorem, however, shows that if y and ) are distinct elements of X!, then
the ~; equivalence classes X, and X,, which contain y and )’ respectively
produce the isomorphic left cells. Here the isomorphism between two left cells
means the isomorphism between corresponding graphs which preserves y and .
(See [6]). Combining the results of [Theorem 1.5, we can see that the set of non-
isomorphic irreducible representations of H,(q) are given by non-isomorphic left
cells of S,. Moreover each non-isomorphic left cell is indexed by the partition
A€ P(n).

2. Algebra H,, ,(a,q) and k-contractions in H,, .(a,q)

In this section we define the K(a, q)-algebras H,,.(a,q). Then we define the
k-contractions in H,,(a,q). These k-contractions correspond to the g-analogue
version of the ones which they defined in their paper [1].

DerFINITION 2.1. Let K be a field of characteristic 0. Let ¢ and a be
indeterminates over K. For integers m,n >0, we define H,,,(a,q) to be the
associative K(a, g)-algebra with the unit generated by

Tm-ly Tm—2, ceey Ey ]i,E, ]1*7 T‘z*a' R ];;*—Za T;l*—l
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subject to the relations:

(Bl) T.T;=T;T;

(B2) TTinTi=TimTiTin
(H) (Ti—g)(Ti+q ') =0
(BIY) TyT} =TT}

(B2") T'TLT'=TLT'Th
(IH) (T} —q)(TF +47) =0
(HH) T.T} =TT,

(K1) ET;=TE

(K1*) ET; =T7E

(K2) ETE=a'E,
(K2*) ET¥ =a'E,

(K3) E?= _

_ E,
qg—q!

(K4) ET'TYET = ET; ' TPET,
(K4) TRET'T;E =T ET ' T E.

I<ij<m—1,]i-jl=2),
(1<i<m-2),
(1<i<sm-—1),
(1<ij<n—1,ji—jl=2),
(1<i<n-2),
(1<i<n-1),
(1

2<i<m-1),

IA

i<m-1,1<j<n-1),

IA

2<i<n-1),

In the previous paper with J. Murakami [8], we defined the generalized
Hecke algebra H, ,(g) which was K (q)-algebra obtained by being replaced one
of the indeterminate a by ¢" in the above definition. Here we take a positive
integer r. In the case of the K(q)-algebra H,, ,(q), the relation (K3) is presented
as follows: E2 = [f]E, where [f]=¢'+¢ 3 +---+4'".

The following theorem is one of the main results of [8]. (See loc. cit.
Theorem 4.11, Corollary 4.13 and Proposition 2.2)

THEOREM 2.2. If r > m+n, the K(q)-algebra H, ,(q) is semisimple and

whose dimension is (m+ n)\.

The above theorem will be extended to the K(a,gq)-algebra Hy ,(a,q).

THEOREM 2.3. The K(a,q)-algebra Hmp(a,q) is semisimple and whose

dimension is (m + n)!.
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For the proof of the above theorem, we have only to follow Section 1-4 of
replacing ¢=" with a.

REMARK 2.4. If we take go € K\{0}, instead of taking the indeterminate ¢
and put @ = g; in Definition 2.1, then we can define the K-algebra H,,(qo).
Furthermore if we take ag € K\{0} instead of a and assume go — gy # 0, the K-
algebra H,,,(ap,q0) can be defined. If [, #0 for i=1,2,...,m+n+r, then
H,,,(qo) is semisimple. Here [i],, is defined by ¢5' + g5~ +--- + g}~ If [1], #0
fori=1,2,... max(m,n) and [ao; jlg, # 0 forj=1,2,. c,m+n, then H,, »(ao, q0)
is also semisimple. Here [a; j],, is defined by (ag'q) — aogy’)/(q0 — 45").

We introduce the k-contract sets (m,n), which is defined by

(m,ﬂ) = {(ml,nl), caey (mk,nk)}.
Here m = (my,...,my) and n= (ny,...,n;) are ordered subsets of {1,2,...,m}
and {1,2,...,n} respectively. We further assume m;,m,, -, my are in increasing

order (i.e. my <my < --- < my).

There are two standard ways in indexing (m,n). One is to index them by the
two line array L, which is 2 x k matrix whose first row is assigned by m and the
second row is by n. The other is to index them by the triple (4,B,0) with
Ac{l,2,...,m},B<={1,2,...,n} (4| =|B| =k) and o€ S, where S; is the
group of permutations of k letters {1,2 ... ,k}. We label the elements of 4 and
B with ay,a,,...,ar and by,b,,...,b; respectively in increasing order. The
correspondence (m;,n;) <> (a;, by(;)) defines the bijection between L and (4, B, o).

Let A={a1<ay---<a}<c{1,2,---,m} and B={b <b< -obe} =
{1,2,---,n}. Define

Ty = (Tai Tz ) (T Top2 B) -+ (Ty 1 Tooa - Ti)

and

T=@G0hs TGRS B (LTS ).

We understand 7;,_17,,—>---T; =1 if ] = a;. Note that if there exists an / such
that ¢, =/ and a;y; >/+ 1, thena; =1, a; =2,---, a; = I. In this case we have

I, = (7;1“—1 ]:lm—z T T1+1)(7:11+2-‘1 7:11+2—2 T T1+2) T (7:11;—1]:11(—2 Tt T}C)
Similarly we define

TP = (il Ty ) (Tt T Ty 1) -+ (T T2+ - Toy 1),
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and
TP — (T~ 1T N )(T* T T ) --(T*_IT*‘I- )
B k k+1 br—1 k br_1— 1 2 b1 1

The following lemma follows from the relation (B1), (B2), (IH) and (B1*),
(B2*), (IH*) in Definition 2.1.

LEMMA 2.5. Let A be as above. Take T; € Hy,(q) = Hpup(a,q). Let Aijr1 =
A\{IHU{i+ 1} (if i€ A) and let Aiy1; = (A\{i+1})U{i} (if i+ 1€ A). Then
we have the following formulas.

(W Ifi=ajeA and i+ 1 =ayy € A for some | <k —1, then T,Tqy = TyT,.

2y IfieA and i+ 1¢ A, then T,Ty =Ty,

(3)Ifi¢ Aand i+1€A, then T,Ty=(q—q )Ta+ Ty,

(4) If i¢ A and i+ 1 ¢ A, then there exists an | > k such that T;Ty = TyT).

Proor. (1) This follows from the following calculation.
Ti(Ty-1 Ty—2To-3 - Trn T1) (T 1 oy —2 T -3 Ti1)
= (T)(Ti-1Ti-2Ti-3 - - - T TH{(T) (Ti-1 Ti-2Ti-3 - - - Ti41) }
= (TiT;1 T)(TiaTis - - Tin T1)(Tim1 Tic2 Timz - - - Tig)

= (T ){(TiTim1)(Ti—2Ti—3 - - - Teran T H(Tim1)(Tic2 Tims - - - Tia) }
= (1 T-){(TiTi-1 Ti—2)(Tizs - - Teran T) H{(Tica)(Tiz - - - Tig1) }

= (Ti1 T2 Tie){(TiTim1 Ti—2 Timz - - - T (T H(Ti41) }
= (Tie1Ti—2 - - T))(TiTi1 T2 Tiz - - - Tin 1)

= (1T T))(Tyy -1 Ty —2 -+ - Ti1) T

1r1—1

(2) (3) These are obvious.
(4) Let p be an index such that p<a,<i—1<i<i+2<a,. Since
apy1—1=i+1 and p+1 <i, we have

T{(Top1Tap -2 Tpi1) = (L1 Ty -2+ - Tpi1) Tigr.
Hence we have T;T; = TyTx_p..

Similarly, we have the following lemmas.
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LEMMA 2.6. Let A, A;;y1 and Aiy1; be as in the previous lemma. Then we
have the following formulas.
(1) Ifi=aed and i+1=a;, €A, then T,"T, = T)T,".
(2) IfiecA and i+ 1¢ A, then T,PT, = T‘:f’+l
(3) Ifi¢ A and i+ 1€ A, then T°pT (q—qg TP + + T, .
(4) If i¢ A and i+ 1 ¢ A, then there exists an | > k such that T;*T; = T,T,".

LEMMA 2.7. Let B be the one defined before [Lemma 2.5. Take T; e
Hpn(a,q). Let By = (B\{i})U{i+ 1} (if ie B) and let Biy,; = (B\{i +1})U
{i} (if i+ 1€ B). Then we have the following formulas.

() If i=bjeB and i+ 1 =5y €B, then T'T = T;T,

(2) If ieB and i+1¢ B, then T'T; = (q—q "Nz + T .

(3) If i¢ Band i+ 1€B, then T'T; =T
(

l+1 it

4) If i¢ B and i+ 1 ¢ B, then there exists an | > k such that T} T = T; T

LemMMmA 2.8. Let B, B;;j.1 and Bii1; be as in the previous lemma. Then we
have the following formulas.

(1) If i=bje B and i+ 1 = by, € B, then T;°PT} = T T;°P.

(2) If ie B and i+ 1¢ B, then T,°°T* = (q — q‘l)T*°p—+— T;f’zl

(3) If i¢ B and i+ 1€ B, then T;°°T* = 7};3"

(4) If i¢ B and i+ 1 ¢ B, then there exists an | >k such that T*°pT*
7; T*Op

The i-trivial contraction E; (i =0,1,...,k) is defined by:
Ey=1,
E =E,
E=E(NTG- Ta)(T' G TDE (i=2,3,--,k).
These trivial contractions {E;} (i =2,3,...,k) are also defined by
Ei=E(Tim1 Ty TNTS' TS - TTV)E.
It is proved by induction on i. Note that this element is of the form
ERT EGRTG '\ )E - E(Tia T RIS - T Y)E.

If we move T3,7;~! in the second parenthesis to the first, 73, 7! in the third
2 p 3

parenthesis to the first and iterate this procedure, we have that it coincides with

E(G--- T, T ' Ty ... Tr7))E;i_, by the induction hypothesis.
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As for the trivial k-contraction, the following lemma generalizes the relation

K4 and K4' in Definition 2.1.

LEMMA 29. Let c€Sy. Then T, is defined as in Section 1. Similarly
T:, ealg{T*,T;,...,T;* |} is defined. For these T, and T, we have

(1) ToEx = T Ex,

(2) Eth'r - EkTa*—l-

Proor. (1) If k=1,2, it is easy to see. We assume T E; | = T* E;
holds for any o € Sx_;. In particular we have T, 1E;_; = T | Ex_1. Hence for
any i > 2 we have

TEx = TE(LT - T (' 70 - TR ) Ery

=E(LG- T)) (T I T ) Er

=E(NTG - Teo)(TT ' 7 ) i1 Ere

=E(LDG- Ti-) (T G ) T B

=E(RG - T)TH(E G IR ) Bk

=TELG - T (T G T ) Bk

= T} Ex.
If we write 0 =d’s (£(g) > ¢(d’),s € S), then

T,Ex =Ty T.Ex = Ty T;Ex = T; TyEx = T: T} Ex = T Ey.

Hence (1) holds by induction on #(¢). Similarly, we can show that (2) holds.

Let L = (A4, B,0) be a k-contract set and let E; be the k-trivial contraction.
A left k-contraction Ep is defined by:

E; = T, T T, Ey.

As for T, we review the monomials in normal form in Hecke algebra, Hy(q).
(See for example [4].) Consider the following sets of monomials.

U={,[,Ln,...,Ti-1Tk—--- T},

U2 = {17]57]3]}’"'7Tk—17-1'€—2"'B})
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Ui:- {laT}aT‘l}l]wi,...,]}C_IT}(_Z...T".},

Uk—2 = {1, T2, Ti-1 Ti—2},
U—1 = {1, Tr—1 }.

We shall say that V|V, --- Vy_; is a monomial in normal form in Hy(q), if V; e U;

for i=1,2,...,k— 1. We assume that 7, is written in normal form. If o(1) =1
then V] = 1. On the other hand, if 6(1) # 1 then V; # 1. Similarly, we shall say that
ViVs---V¢_, is a monomial in normal form in H}(q) = alg{1, T}*, T, ..., T}_, },

if VeU fori=1,2,...,k—1, where U} is the one defined by taking {7;*} for
{T;} in the definition of U;. We also assume that T is written in normal form.
Then we have the following lemma.

LemMA 2.10. Let L = (A, B,0) be a k-contract set and let E; be a left k-
contraction defined by L. For a finite set X = {x; < xp < --- < X} of positive
integers, let R/(X) denote the set {1,x; + 1, x>+ 1,...,x-1 + 1, X141, X132, . . . , Xk}
and let R}(X) denote the set {1,2,...,1,x111,X142,...,%c}. Then we have the
following formulas.

(1) If 1e A and 1 € B and o(1) =1 then

(2) If 1€ A, 1€ B and o(1) # 1, then for the | such that o(l) = 1.

EE a'T, 1Tz BER)BI-1,.1)0) I @ >2,
L=9 _ .
a 'Er,(4),B,1i-1,..,1)0) if ay=2.

(3) If 1¢ 4 and 1 € B, then for the | such that a(l) =1, we have
a'T, 1T —2 - BER4)B1i-1,..1)0) f a1>2,
EEL =4 _, X
a= E(r,(4),8,,-1,..1)0) if ay=2.
(4) If 1€ A and 1 ¢ B, then putting a(1) =1, we have
GGy NG T T
EE = (T Ty T Eur 80020 i bi>2,
aE(4,R:(B),0(12,...1)) if by=2.
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Proor. (1) This is obvious.
(2) Since T; does not involve 7} and 77 does not involve T;*~! either, they
commute with E. In addition, we note that T, = (T;_1T;»--- T1)T(14-1,.1)s for

*—1

the / such that o(/) =1 and T;;_; 1), does not involve 7;. So we have
EEL = TIRE(Ti-1Ti—2 -+ T\)Tyy1, 1. ELT'E - -
= LI (Ti-1Ti2 - )ERET 1, 1 LTy E - -
=a ' TH(Ti1 T2+ B)T g1, 1o ER T 'E - --
=a ' Ty(Ti-1Ti—2- - B) T Tgu-1,..1)0Ex.
Here we have
L(T1-1Ti—2--- Th)
= {(];p—l"'Tp)"‘(Ta,——l"'Tl)
(Ta—1-Ti) - (L1 T)HT1-1Ti—2 - T2)  (ap > p > 1)
= (1 Tp) - (Tyor - TI)(Ti1 Trz -~ T)
(Ta=1- - Tiwr) -+ (L1 -+ - Tie).
Since for aj—1>j>2
Ti(Ty-1-- - TiT11 T2+ - - T) = (Toy—1 - - T1T11 Ty—2 - - - T2) T,
we obtain
Ty(TirTia - To) = (Tyor Tz T3) Tray-

Hence we obtain the formula.
(3) In this case T; involves 7;. So we have

EE; = TZE(To -1 -+ T)(T) - - (Te—1 -+~ Tiert)(Ti) (T1<1 12+ - - ) Tr-1,..1)0 B
=Tp(To-1- B) - (-1 Ty ) E(Ti - - Te)(T1-1 Ti—2 - T) T p1,..1)0 Bk
=TT D) (Tom1 - Ter)) E(T Tz -+ B)(T3 -+ Te) Tag-1,.. 10 B

=a ' T (Lo B) (Ty=1 - Tert)(TiTi-1 -+ T)(Ta -+ Te) T -1, .1)0 Bk
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Here we have
(-1 T2) - (Ty—1 - e )(Th Ty - - )12 - - - Ti)
=(Ty-1--- ) (T T) (D1 -+ Tt (11 Ty - -+ T)
(Tyy—1 - Tig2) - (L1 Tt (T -+ - T)
= (Toy—1- TiniTiTi—y - B) Ty - BB) - (Tap, -+ - Tig)
(Tai-1° Tiv2) - (L1 Tt )(T2 -+ - Tk)
=(Ty-1- - Ti1TiTiy - D) Ty - TG) - (To, - - Ti Th)
(Topor-1- - Trv2Tr1) - - (L1 -+ - T T)
= (T1- - Ti1 TiTi-y - - - T2) TRy -

Hence we obtain the formula.
(4) We note that T, = (T, T} - - T')T(y 1y, and T (1i=1,-1)p-1 dOES
not involve 7;*. Hence we have

ETyT; T,E, = THET; T} E;
= LETH (T Ty T T o,y ERTTTE -+
= LETH (T, Ty - TET o T E -
Here we have
ETE(I\ T+ T)E
—EG - LN TN GTD (G T NI
: (7;;:,1—1 TP (7;;:_—11 T T, - TE
=E(L NGy T (D T
(T T T TN (T b,+, e T (7;;::11 T YE
=E(G7 - BTG BT (Byn - T
(LT TG G T YT T - (T2 TTDE
=a(LTy - L)L T (To - T

(G GNG ™ T YTl T - (G Dy - TDE
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— (T Y T (T T

} (];]*—1 .. T;*+—11) .. (7;;:11 .. 7;:—1)1;

=1
=a(G - LN YD) (Tt T ) Ty sy E-

Hence we obtain the formula.

REMARK 2.11. If 1¢ 4 and 1¢ B, then Ty involves T; and T} involves
T~!. This case will be treated in Lemma 3.1.

REMARK 2.12. Let L' = (A4',B,¢’) be a k-contract set and let E; be the
k-trivial contraction. If we define the right k-contraction by

EP = Ex T, T,PT;"

and write T, in suitable form, then we have the similar formulas for E;7
corresponding to [Lemma 2.10.

3. [Irreducible representations of H,,,(a,q)

As we mentioned before, the main purpose of this paper is to construct
irreducible representations of H,, ,(g) so that they keep the integrality. To make
use of the results in Section 1, we take the field of rational functions Q(a,q)
(resp. Q(q)) for the underlying field of Hy,x(a,q) (resp. H;, ,(q)). First we define
two sided ideals #% of H, .(a,q). Then we define irreducible representations of
H,, (a,q) by taking quotients of s#;. If we define Hj ,(q) by replacing one of
the parameter a with ¢ in the definition of H,,,(a,q) and define the corre-
sponding quotients, we obtain the desired irreducible representations of H,, ,(q)-
These representations are also irreducible in case r > m + n. Similar arguments
are also valid for the Q-algebra Hp .(a0,90) and H}, ,(qo), if qo,a0 € Q\{0}
satisfy the conditions in Remark 2.4.

In the following, we identify alg{T,,—1, Tn-2,-..Tk+1} with the Hecke
algebra H,, ;(q). The isomorphism is given by T;+>T,_;. It follows from
Section 1 that we can define the basis {Cx},.p, of alg{Tn—1, Tm—2," - Tk+1},
where W = S,,_«. Similarly, we identify alg{T, |, T, ,,... T{,,} with the Hecke
algebra H, (q) by T;— T ;. The basis is given by {C}},.p,, Where W, =
Sn—k. (We added asterisks to indicate that they are in alg{T,; |, T, ,,...T;}.)

Let Wi = Sy—k, W2 = S,_x be symmetric groups and let L = (4, B,0) and
L'=(A',B,d") be a pair of k-contract sets. (k < min(m,n).) Let # be the
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vector space over (Q(a,q) spanned by
Ce ={Crrxy) = TaT LET 41 CxCy TP TiP
|xe Wi, yeW,, L,L:k-contract set}.

We note that J#; is also spanned by

Bk :{T(L,L',x,y) = Z,!EI;E]CTOJ—I TxT; T;,OPI:;?p
|xe Wi, yeW,, L,L:k-contract set}.

Let R be the ring of polynomials Z[g,q7!,a,a™',(a—a')/(q—q")] over the
rational integers Z. We denote J?R,k to be the R span of the elements of By. Take
a k-contract set Ly = (Ao, Bo,09). If we fix the index L' to be Ly in the above
definitions, then we have the subspace %,k(Lo) of # spanned by

Coie(Lo) ={Cleto) = TaT5 TET 1 CxCy T P TY
|xe W1, ye W,, L:k-contract set},

which is also spanned by
Byi(Lo) ={T(w o) = T T3 ToEx Ty Tx Ty T, " Ty
|xe W1, we W, L:k-contract set}.

Note that T, and T; both commute with T, E; and T, in the definition of Bj.
Hence, C, and C both commute with 7;, E; and T,.

We denote #%44(Lo) to be the R span of the elements of By x(Ly) as before.
By and Lemma 2.7, we find 7; and T} act on %,k(Lo) and J?R,g,k(Lo)
from the left. The following lemma shows that we can construct left H,, ,(a, q)-
modules.

LEMMA 3.1. Take Ty 1, xy) € Byx(Lo). Then ET (1 1, ) is in #,x(Lo) or in
Hrr.

ProOF. If 4 or B involves 1, then ET; 1, ., € #,x(Lo) by
and Lemma 2.7. In these cases, Ty does not involve 7; or T does
not involve 7;*~!. We assume that 1¢ 4 and 1¢ B. In this case Ty involves Tj
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and T involves 73! as we mentioned in Remark 2.11. Then we have
ET( 1oy = ELT TET o T T T Ty
= ]j#ﬁE(TITZ ... Tk)(Ti*—sz_l "'n—l)nEkTagl TxT;YT?BTZ,p
= T T E(LG - TG G )BT Te Ty Ty P T
= TpToETe (LT TG I T )BT, Ti T, TP TP
=TT THE(TT - L)L G B T T T Ty P TY
= o T, To Bt (Top T T T P T3,

where ot = (k+ 1,k,---,1)0(1,2,---,k+1) € Sgy1, AT =AU{1} and B* =
BU {1}. Since the triple (4", B*,6") makesa (k + 1)-contract set, and by[Lemma 2.5,
2.6, 2.7, 2.8, #: coincides with the (H,,(q) ® Hn(q), Hn(q) ® H,(q))-bimodule
generated by Ej, the last term is in 1.

By and Lemma 2.7 and the previous lemma we have the
following proposition.
ProprosITION 3.2. For k (0 < k < min(m,n)), let
#, 1 (Lo) = #,x(Lo) + Her1 + Hrar + -+ + Hrningmn) -
Then #,x(Lo) is a left ideal of Hyn(a,q).

If we fix a left k-contract set L to be Lo instead of L' in the definition of By
and Ci, then we have a subspace ,}Zg,k(Lo) of #,. Hence, we have the following
proposition.

ProposITION 3.3. For k (0 < k < min(m,n)), let

Hix(Lo) = #ax(Lo) + Hs1 + Hiiz + - -+ + HFninimp)-
Then #yx is a right ideal of Hpmnu(a,q).

If we denote H,,,(R) to be the algebra over R defined by the generators and
relations in Definition 2.1, then the R-linear combination #% .9, x(Lo) (resp.
Hrar(Lo)) of Hrgi(Lo) (resp. #rax(Lo)), Hri+1, Hri+2, s Hraminemn) 15 @
left (resp. right) ideal of H,,.(R).
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Since # =Y., #ux(L) =3, #x(L'), we have further the following
proposition.

PROPOSITION 3.4. For k (0 < k < min(m,n)), let
Hi = 9%( + '}?7(+1 +-- 4+ e}wfmin(m,n)-
Then i is a two sided ideal of Hpmn(a,q).

COROLLARY 3.5.

% - Hm,n(aa q)
Proor. This follows from 1€ # and the previous proposition.

Similarly, if we define J#r; to be the R-linear combination of fR,k,
Hrje+1, - » Frmin(mn), then we find Hry is a two sided ideal of H,,,(R) and
H'Ro = Hpmn(R).

We can see U;ani%(m’") By forms a basis of H,,(a,q) as follows. Let By be the

one just defined. Then

min(m,n) min(m,n) m 2 n 2
Do IBd= > (k) (k) (k)2 (m — k)\(n - k)1,
k=0 k=0

which is equal to (m+n)!. (See Lemma 1.7 in [8]) Hence dim H,,(a,q) <
(m+n)!. On the other hand we already know that dim H,,»(a,q) = (m + n)!
(Theorem 2.3). Since the above corollary implies | [""™") B, generates H,,,(a, q)

as vector space, we find U,’:i'a(m’") By forms a basis of H,, ,(a,q). Similarly we can

see Uzi':)(m’") Cx forms a basis of H,,.(a,q).

Let Jy = # /1 (k=0,1,2,--- min(m,n) — 1) be quotient modules and
Jmingmn) = #min(m)- Note that the modules #ry/H#rir+1 are R-free and the
same holds for all modules constructed below. This fact will be used in the proof
of [Theorem 3.9. Since we already know H,,,(a,q) is semisimple, the canonical
projection 3#; +— Ji splits. Similarly, we define J,x(Lo) = #,x(Lo)/ H+1 (resp.
Jd,k(L()) = xd,k(LO)/r}ﬁH-l) (k = 0, 1,2, NN ,min(m,n) - 1) and J, ,min(m,n)(LO) =
H g min(mn)(Lo) (1€sp. Juminimm) (Lo) = Haminmm (Lo)). Since it is easily checked
that the left (resp. right) module structures of J,x(Lo) (resp. Jix(Lo)) do not
depend on the choice of Ly, we write Jyx = Jyx(Lo) (resp. Jax = Jax(Lo)).

Although the quotients Jyx (k=0,1,2,...,min(m,n)) define the represen-
tations of H,,,(a,q), they are still very large modules. So we divide them into
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smaller submodules or subquotients. Let L = (4, B,5) be a k-contract set and
let

[L,x,y] = Ty T T,ExCxC; + Hi
be a representative of J, . We consider a subspace Jy (1, 2) of Jyx spanned by
{[L, x,y] € Jy|Cx € I, C; e L},

where I; and I, are left ideals of H,,_x(q) and H,_i(g) respectively. By Lemmal
2.5, Lemma 2.7 and we find J, (11, 1) is a left Hy a(a, q)-module.

Let .4, and %, be ideals of H, r(q) and H, «(q) indexed by left cells
Ac W; and uc W,. Let 4 and f,: be the maximal ideals. (Recall the defi-
nitions in Section 1.) We shall say the following theorem.

THEOREM 3.6. Let 5 > 9] and 9, > .}Z be as above. Let
Ty ) = Jok (B 50 ok (S 51) + Toi(F3s 5]

Then Jyx(A,p) is an irreducible H,, n(a, q)-module.
Before proving the above theorem, we prove the following lemma.

LeMMA 3.7. If we take 0 # e Jyx(d,u) then there exists a right k-
contraction E® such that E;*v # 0.

ProoF. There exists a v € Jyx(#, %) such that & (natural surjection of v)
€ Jyk(4,u). Note that
v € Jyk(Fp, Fu) < Jgk = Jk = Hi/ Hienr

and hence #4419 =0. If we have E;’9 =0 for all right k-contractions, then
#p = 0. Hence #4,0 = 0. Since Hy,,(a,q) is semisimple, 5#% and 5#%., are direct
sums of matrix algebras, and hence @ € 5#;/#%+1 and ;0 = 0 imply & = 0. (Note
that there is the canonical projection in #%.) This contradicts o # 0.

PROOF OF THE THEOREM. Suppose 0 # D€ Jyr(4,4). We claim that
Hopn(a,q)p = Jyx(A,1). For a veJyx = Ji such that o € Jyu(4, ), we can write

U= Z aL,x,y[wa,y],

where ar ., € Q(a,q). By the above lemma, there exists a right k-contraction Ep®
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so that E;"5 # 0. Then we can write

0#Efv=>aL,,[L x5y

Recall that Eszm,,(a q) is contained in the span of {E}"}, and {T T T, T. T} E;*}
is a basis of . Hence arxy =0, unless E; = E;. Since /%] and J/J’ are
irreducible, we have that H,,,(a,q)i contains the span of {E;C, C;}. By mul-
tiplying T, T3 T, for various L = (4, B,a), we find H,,,(a,q)d = Jo i (4, p).

Next, we prove that J,.(4,4) and J,x(4', /) are non-isomorphic for the
distinct pairs (4,u) and (4',4/). Let A’,‘n’n be a set of pairs of partitions defined by

Ao ={(hm)lA € P(m—k),u € P(n - k)}.

THEOREM 3.8. Suppose (A, u) € A’fn,,, and (A, 1)) e A’f,;’n are pairs of partitions
for k, kK'e{0,1,2,--- min(m,n)}. Then Jyi(A,u) = Jyu(X,i) as Hpn(a,q)-
modules if and only if A= u=y and k=K.

PROOF. Assume that J; (4, 4) = Jyu (X, 4). Let ¢: Jyx(d,p) > T (X, 1) be
an H,.(a,q)-module isomorphism. Suppose that k&’ # k. Without loss of gen-
erality, we can assume that k < k’. Then by the definition of J, 4 (4, ), we have

0 = B(ESPTy (A, 1)) = EL (Uil ) = ERIopo(X, i),

for any k’-contract set L'. By however, there is a k’-contract set L;
such that E7PJ, . (A, 4/) # 0. This gives a contradiction.

Thus, we can reduce to the case where X’ =k > 1. Let p;,p; (resp. P Py)
be the central idempotents in H,,_i(q) (resp. H: ,(q)) corresponding to the
irreducible modules 4,/ and $,/5) (resp. I,/ F and £ /5. If
(A, ) # (A, 1), then PyPypip, =0. We regard these central idempotents as
elements of H,,,(a,q). We note that these elements still commute with the trivial
k-contraction Ej;. Since we have proved that EPJ,4(A,u) is the span of
{EiC<C}} in the proof of [Theorem 3.6, we find

PDLERTgi(A, 1) = EPPJgi(A, p)
and
PP El Jn(A 1) = EP Ty (A, ).

Hence we have

PrPuEr Jox(A 1) = pyDpiDl EfP Joi(A, 1) = 0.
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Hence
0= ¢(pypy Er Jok (A1)

= paDyEr $(Jok(4, 1))
= pyPy Er Ty (A 1)
= Ezpjg,k(lla ©).
Again by we have a contradiction. So we have A= 4" and p= 4.

Let f* and f* be the dimensions of the irreducible characters 1* and y* of
the symmetric group S,_x and S, respectively. Then the degree of the

('Z) (Z)(k!)f*fﬂ.

From this, we obtain the following conclusion.

representation Jj i (4, ) is

THEOREM 3.9. The set {Jy (4, p)|(, 1) € Ak, k=0,1,2,--- min(m,n)} is a
complete set of representatives for the isomorphism classes of irreducible modules
of Hpn(a,q). Moreover the generators of Hpn(a, q) in Definition 2.1 will be
mapped to the matrices over R=Z|q,q ',a,a™',(a—a')/(q—q")] by these

modules.

Proor. The first statement follows from the fact that

> m%n) ('Z ) (Z>2(k!)2(f‘)2(f“)2 = (m+m)! = dim Hpn(a, ).

A k=0

See (5.4) in [T] for details. By the comments below [Proposition 3.3, e}?’R,g,k(Lo) isa
left ideal of H,.(R). If we define R-modules Jrgi(4,4) in the course of our
construction of J, (4, 4), then they are H,,,(R)-modules. This proves the second
statement.

We finally obtain the following theorem.

THEOREM 3.10. If we construct Jyi(A,p) as H,, ,(q)-modules replacing one
of the indeterminate a with ¢~" (r > m+n) in the course of the construction of
H,, n(a,q)-modules J,i(A, 1), then the set {J,x(A,n)} is a complete set of rep-
resentatives for the isomorphism classes of irreducible modules of Hj, ().
Moreover the generators of H,,,(q) in Definition 2.1 will be mapped to the
matrices over Z[q,q”'] by these modules.
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Proor. First we note that even if we replace a with ¢~ in Lemma 2.5-
2.10, those identities are still valid for the Q(q)-algebra Hy, ,(q). Similarly,
IProposition 3.2, 3.3 and 3.4 hold for H, .(q). Since we assume r>m+n,
H; .(q) is semisimple and its dimension is (m+n)!. So we can construct
{Jox(4, )} as H}, ,(g)-modules. also holds for H;, ,(q) since H}, ,(q)
is semisimple. Accordingly, even if we replace Hnn.(a,q) with H; .(q) in
[Theorem 3.6, 3.8 and 3.9, those theorems are still valid for Q(q)-algebra H7, ,(q)
and the proof completes.

REMARK 3.11.  As we mentioned in Remark 2.4, we can define the algebras
H,’”,n(qo) and Hy,,(ao, q0) over Q, taking special values go,a € O\{0}. For these
Q-algebras, we can also construct Hy, ,(g0)-modules and H,, ,(ao, qo)-modules in
the same way, In case Hj, ,(qo) (resp. Hpmn(ao,q0)) is semisimple (see Remark
2.4), these modules are complete set of representatives for the isomorphism
classes of irreducible modules of H}, ,(qo0) (resp. Huna(ao,qo)). If the algebra
is not semisimple, these modules are not necessarily irreducible nor mutually
non-isomorphic.
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