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\S 1. Introduction

We are interested in Duhamel’s principle:

(D) $ U(t, x)=U_{H}(t, x;s, \Phi)+\int_{s^{l}}U_{H}(t,x;\tau,F(\tau,x))d\tau$ .

Here $U(t, x)$ denotes a solution of the inhomogeneous Cauchy problem
$[CP]_{s}(0\leq s<T)$ for the system of linear differential equations:

$\left\{\begin{array}{l}L(t,x\cdot.\partial_{t},\partial_{X})U(t,x)=F(t,x),t\in[s,T],x\in R^{n},\\U(s,x)=\Phi(x)\end{array}\right.$

and $U_{H}(t,x;s, \Phi)$ stands for a solution of the homogeneous Cauchy problem
$[HCP]_{s}(0\leq s<T)$ for the system of linear differential equations:

$\left\{\begin{array}{l}L(t,x\cdot.\partial_{t},\partial_{x})U(t,x)=0,t\in[s,T],x\in R^{n},\\U(s,x)=\Phi(x),\end{array}\right.$

where $L(t, x;\partial_{\iota}, \partial_{x})=\partial_{t}I-A(t, x;\partial_{x}),$ $I$ is the identity matrix of order $n$ and
$A(t, x;\partial_{x})$ is a square matrix of order $n$ .

When $L$ is an ordinary differential operator, that is, $A(t, x;\partial_{x})$ depends only
on $t$, write $L=\partial_{\iota}I-A(t)$ , the formula (D) becomes the constant variation
formula of Lagrange

$ U(t)=\varphi(t)\varphi(s)^{-1}\Phi+\int_{s^{t}}\varphi(t)\varphi(\tau)^{-1}F(\tau)d\tau$ ,

where $\varphi(t)$ is the fundamental matrix to $[HCP]_{s}$ . In particular, if $A(t)$ is in-
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dependent of $t$ , say $A(t)\equiv A$ , then the formula above tums into

$ U(t)=\exp((t-s)A)\Phi+\int_{s^{t}}\exp((t-\tau)A)F(\tau)d\tau$ .

This fact remains available for a bounded linear operator $A$ in any Banach space
but, in general, does not for an unbounded linear operator $A$ .

While all coefficients of the differential operator $L$ depend only on $t$, I. G.
Petrowsky [8] and L. Schwartz [9] examined the Cauchy problems $[CP]_{s},$ $[HCP]_{s}$

in $\mathscr{B}$ and $\mathscr{S}^{\prime}$ , respectively, where $\mathscr{R}$ is the set of infinitely differentiable functions
on $R^{n}$ whose derivatives of every order are all bounded and $\mathscr{S}^{\prime}$ the dual space
of the Schwartz space of rapidly decreasing functions on $R^{n}$ . They showed that
the formula (D) holds if $[HCP]_{s}(0\leq s<T)$ is uniformly well-posed. Then,
especially, $[CP]_{s}$ is well-posed for any $s\in[0, T$). As concems this assertion, L.
Schwartz [9] presumed that $[HCP]_{s}(0\leq s<T)$ is generally not uniformly well-
posed even though it is well-posed, and K. Kitagawa [5] gave such a concrete
example.

In this paper we consider the relation between well-posedness of the
inhomogeneous Cauchy problem $(CP)_{s}(0\leq s<T)$ in a locally convex space $X$ :

$\left\{\begin{array}{l}(\partial_{l}-A(t))U(t)=F(t),t\in[s,T],\\U(s)=\Phi\in X\end{array}\right.$

and (uniform) well-posedness of the homogeneous Cauchy problem $(HCP)_{s}$

$(0\leq s<T)$ in $X$ :

$\left\{\begin{array}{l}(\partial_{l}-A(t))U(t)=0,t\in[s,T],\\U(s)=\Phi\in X.\end{array}\right.$

Also we mention how it is concemed with Duhamel’s principle.

DEFINITION 1. We call that a strict inductive limit $F$ , say $F=\lim F_{n}$ ,
admits a partition of unity if there exist continuous linear maps $f_{n}$ : $F\rightarrow\vec{F}_{n}$ for
$n=1,2,$ $\ldots$ which satisfy the two conditions:

(i) For each $l,$ $f_{n}oi_{l}=0$ except for a finite number of $n=1,2,$ $\ldots$ .
(ii) $\sum_{n=1}^{\infty}i_{n}\circ f_{n}$ is the identity map in $F$ , where $i_{n}$ : $F_{n}\rightarrow F$ is the inclusion

map.

ASSUMPTIONS. We suppose that $X$ is a $\mathscr{L}\mathscr{F}$-space, i.e., $X$ is the strict
inductive limit of a family $\{X_{n}\}_{n=1}^{\infty}$ of increasing Fr\’echet spaces such that $X_{n}$ is
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a closed proper vector subspace of $X_{n+1}$ and that $X$ admits a partition of unity
(e.g., $\mathscr{D}$ , the space of infinitely differentiable functions on $R^{n}$ with compact
supports, see Example 8.4.2 (b) in P. P. Carreras-J. Bonet [1]). Here $X=\bigcup_{n=1}^{\infty}X_{n}$

is equipped with the finest locally convex topology such that the inclusion map
$i_{n}$ : $X_{n}\rightarrow X$ is continuous for all $n=1,2,$ $\ldots$ . The facts below are well-known
(for instance, see pp. 288-292 in L. Narici-E. Beckenstein [7]):

(1) $G$ is an open subset of $X$ if and only if $G\cap X_{n}$ is open in $X_{n}$ for all
$n=1,2,$ $\ldots$ .

(2) $X_{n}$ is a close vector subspace of $X$ for $n=1,2,$ $\ldots$ .
(3) $X$ is a Hausdorff space.
(4) $X$ is non-metrizable.
(5) $X$ is complete as uniform topological space.

$\mathscr{L}(X)$ denotes the set of continuous linear operators from $X$ into itself and
let $C^{n}([s, T], X)(0\leq n\leq\infty)$ be the set of n-times continuously differentiable
functions defined on $[s, T]$ with values in $X$ .

For a fixed integer $m(\geq 1)$ , we impose the following conditions:
(a) $A\in C^{m}([0, T], \mathscr{L}(X))$ .
(b) $\{\partial_{t}^{n}A(t);t\in[0, T]\}(n=0,1, \ldots, m)$ is equi-continuous, $i.e.$ , for any

continuous seminorm $p$ on $X$ there exists a continuous seminorm $q$ on $X$ such
that

$\sup_{t\in[0,T]}p(\partial_{t}^{n}A(t)x)\leq q(x)$

holds for all $x\in X$ .

DEFINITION 2. (i) We say that $(CP)_{s}$ is m-wellposed if for any $ F\in$

$C^{m-1}([s, T], X)$ and $\Phi\in X$ there exists a unique solution $ U(t;s, F, \Phi)\in$

$C^{m}([s, T], X)$ of $(CP)_{s}$ with data $(F, \Phi)$ .
(ii) We say that $(HCP)_{s}$ is m-wellposed if for any $\Phi\in X$ there exists a

unique solution $U_{H}(t;s, \Phi)\in C^{m}([s, T], X)$ of $(HCP)_{s}$ with initial data $\Phi$ .
(iii) We say that $(HCP)_{s}(0\leq s<T)$ is uniformly m-wellposed if for each

$s\in[0, T)(HCP)_{s}$ is m-wellposed and if the subset { $ X\ni\Phi\leftarrow\rangle$ $U_{H}(t;s, \Phi)\in X$ ;
$(t, s)\in\Omega\}$ is equi-continuous in $\mathscr{L}(X)$ , i.e., for any continuous seminorm $p$ on $X$

there exists a continuous seminorm $q$ on $X$ such that

$\sup_{(t,s)\in\Omega}p(U_{H}(t;s, \Phi))\leq q(\Phi)$

holds for all $\Phi\in X$, where $\Omega=\{(t, s)\in R^{2};0\leq s\leq t\leq T, s<T\}$ .
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Then we have our main result.

THEOREM 1. The following statements are mutually equivalent.
(i) $(CP)_{s}$ is m-wellposed for any $s\in[0, T$).
(ii) $(HCP)_{s}(0\leq s<T)$ is uniformly m-wellposed.
(iii) $(HCP)_{s}$ is m-wellposed for any $s\in[0, T$) and Duhamel’s principle:

$ U(t;s, F, \Phi)=U_{H}(t;s, \Phi)+\int_{s^{t}}U_{H}(t;\tau,F(\tau))d\tau$

holds, i.e., $U_{H}(t;\tau,F(\tau))$ is continuous in $\tau\in[s, t]$ and

$ U_{H}(t;s, \Phi)+\int_{s^{t}}U_{H}(t;\tau, F(\tau))d\tau$

is a solution of $(CP)_{s}$ with data $(F, \Phi)$ .

In K. Kitagawa [5], he showed Theorem 1 for any Fr\’echet space. Evidently
(iii) implies (i), and (iii) easily follows from (ii). Thus it is substantial to prove
that (ii) is deduced from (i). In supposing (i), we make use of the closed graph
theorem of Dieudonn\’e-Schwartz in order to verify the equi-continuity of the
family $\{P(t, s);(t,s)\in\Omega\}$ of the linear maps $P(t,s)$ which send $\Phi$ to $U_{H}(t,s;\Phi)$ .
Then we have to check that $C^{m}([0, T], X)$ is a $\mathscr{L}\mathscr{F}$-space. So as to do it, we will
take advantage of the $\epsilon$-tensor product of Grothendieck.

The author wishes to thank Professor K. Kitagawa and Professor K.
Kajitani for their valuable advice and hearty encouragement. The author is also
grateful to the referee who pointed out some mistakes in the first version of this
paper.

\S 2. Preliminaries

We will prepare some notions to observe that $C^{m}([0, T], X)$ is a $\mathscr{L}\mathscr{F}$-space.
According to F. Treves [10], we first explain a tensor product of (infinite-
dimensional) vector spaces. Let $E,$ $F$ be two vector spaces and $\varphi$ a bilinear map
of $E\times F$ into a third vector space $G$ .

DEFINITION 3. We say that $E$ and $F$ are $\varphi$-linearly disjoint if the following
property holds: Suppose that $\{x_{1}, x_{2}, \ldots, x_{r}\}$ and $\{y1,y2\cdots,y_{\gamma}\}$ are finite
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subsets of $E$ and $F$ , respectively, satisfying the relation

$\sum_{j=1}^{r}\varphi(x_{j},y_{j})=0$ .

Then, if $x_{1},$ $x_{2},$
$\ldots,$

$x_{r}$ are linearly independent, then $y1=y2=\cdots=y_{r}=0$ , and if
$y1,y2,$ $\ldots,y$, are linearly independent, then $x_{1}=x_{2}=\cdots=x_{r}=0$ .

DEFINITION 4. A tensor product of $E$ and $F$ is a pair $(G, \varphi)$ consisting of a
vector space $G$ and of a bilinear map $\varphi$ of $E\times F$ into $G$ such that the following
conditions are satisfied:

(i) The image $\varphi(E\times F)$ of $E\times F$ spans the whole space $G$ .
(ii) $E$ and $F$ are $\varphi$-linearly disjoint.
The theorem below states the unique existence of a tensor product up to

algebraic isomorphism.

THEOREM 2 (Theorem 39.1 in F. Treves [10]). Let $E,$ $F$ be two vector spaces.
(i) There is a tensor product of $E$ and $F$.
(ii) If $(G, \varphi)$ and $(H, \psi)$ are two tensor products of $E$ and $F$, there exists $a$ one-

to-one linear map $u$ of $G$ onto $H$ with $ u\circ\varphi=\psi$ .

Let $B(E, F;G)$ stand for the space of continuous bilinear maps of $E\times F$

into $G$ . When $G$ is the scalar field ( $R$ or $C$), we briefly write $B(E, F)$ instead of
$B(E,F;G)$ .

Now we note that there is a canonical bilinear map $\phi$ of $E\times F$ into
$B(E_{\sigma}^{\prime},F_{\sigma}^{\prime})$ :

$(x,y)\mapsto\phi(x,y)$ : $(x^{\prime},y^{\prime})\mapsto\{x,$ $ x^{\prime}\rangle$ { $ y,y^{\prime}\rangle$ .

Moreover, it follows that $E$ and $F$ are $\phi$-linearly disjoint and that { $\phi(x,y)$ ;
$(x,y)\in E\times F\}$ spans $B(E_{\sigma}^{\prime}, F_{\sigma}^{\prime})$ (see pp. 431-432 in F. Treves [10]). Hence we
arrived at the next claim.

PROPOSITION 1 (Proposition 42.4 in F. Treves [10]). $B(E_{\sigma}^{\prime}, F_{\sigma}^{\prime})$ is a tensor

product of $E$ and $F$.

Hereafter $B(E_{\sigma}^{\prime}, F_{\sigma}^{\prime})$ is denoted by $E\otimes F$ .
By means of the proposition above, we may secondly introduce a topo-

logical tensor product, namely the e-tensor product of Grothendieck.
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DEFINITION 5. We call $\epsilon$-topology on $E\otimes F$ the topology brought over
from $B(E_{\sigma}^{\prime}, F_{\sigma}^{\prime})$ in regarding the latter as a vector subspace of $B_{\epsilon}(E_{\sigma}^{\prime}, F_{\sigma}^{\prime})$ , the
space of separately continuous bilinear forms on $E_{\sigma}^{\prime}\times F_{\sigma}^{\prime}$ provided with the
topology of uniform convergence on the product of an equi-continuous subset
of $E$ ‘ and an equi-continuous subset of $F$‘. Equipped with the e-topology, the
space $E\otimes F$ is written by $E\otimes_{\epsilon}F$ and it is said the $\epsilon$-tensor product of $E$ and $F$ .
We also denote by $ E\otimes_{\epsilon}F\sim$ the completion of $E\otimes_{\epsilon}F$ .

Next we will center on $C^{m}(Y, Z)$ , the space of m-times continuously dif-
ferentiable functions of $Y$ into $Z$ , where $Y$ is an open subset of $R^{n}$ and $Z$ a
locally convex space. The space $C^{m}(Y, Z)$ is endowed with the topology of
uniform convergence of the functions together with their derivatives of order
not greater than $m$ on every compact subset of $Y$ . Then we obtain the following
representation theorem.

THEOREM 3 (Theorem 44.1 in F. Treves [10]). If $Z$ is comple $te$ , then the
topological isomorphism

$C^{m}(Y, Z)\cong C^{m}(Y)\otimes\sim,$ $Z$

holds.

In addition, since we want to adopt this theorem for a strict inductive limit
$Z$, it is significant to ensure the interchangeability of $\epsilon$-tensor product and
(strict) inductive limit. This theme has been researched by R. Hollstein [3] at the
end of the $1970\prime s$ .

DEFINITION 6. A locally convex space $E$ is said to have the countable
neighbourhood property if for every sequence $\{U_{n}\}_{n=1}^{\infty}$ of zero-neighbourhoods
of $E$ there are positive constants $a_{n}$ such that the intersection $\bigcap_{n=1}^{\infty}a_{n}U_{n}$ is a
zero-neighbourhood in $E$ .

Any normable vector space obviously has the countable neighbourhood
property.

The next theorem assures the interchangeability of e-tensor product and
strict inductive limit under additional hypotheses.

THEOREM 4 (Proposition 4.5 in R. Hollstein [3]). Let $E$ be a locally convex
space and $F=\lim F_{n}$ a strict inductive limit of locally convex spaces $F_{n}$ . Then the
inductive limit $\vec{\lim_{\rightarrow}}(E\otimes_{\epsilon}F_{n})\sim$ is strict. Further, if $E$ has the countable neigh-
bourhood property and if $F$ admits a partition of unity, then we get the topological
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isomorphism

$ E\otimes_{\epsilon}\sim(\lim_{\rightarrow}F_{n})\cong\lim_{\rightarrow}(E\otimes_{\epsilon}F_{n})\sim$ .

Thus we have concluded the following fruit.

THEOREM 5. $C^{m}([0, T], X)$ is a $\mathscr{L}\mathscr{F}$-space.

PROOF. This immediately follows from Theorems 3 and 4. $\square $

Finally, so as to use in the next section, we quote Dini’s theorem and the
closed graph theorem of Dieudonn\’e and Schwartz.

THEOREM 6 (U. Dini). Let $E$ be a complete locally convex space. If a
continuous function $f:[a, b]\rightarrow E$ has the continuous right derivative $\partial_{t}^{+}f(t)$ in
$(a, b)$ , then $f(t)$ is continuously differenliable in $(a, b)$ .

PROOF. Fixing $c\in(a, b)$ , we pick

$g(t)=\int_{c}^{t}\partial_{s}^{+}f(s)ds+f(c)$

for $t\in(a, b)$ . Then it easily follows that $g(t)$ is continuously differentiable in $(a, b)$

and that $\partial_{t}g(t)=\partial_{t}^{+}f(t)$ for every $t\in(a, b)$ . Thus, if we set $h(t)=f(t)-g(t)$ for
$t\in(a, b)$ , then $h(t)$ is continuous on $(a, b)$ and $\partial_{t}^{+}h(t)=0$ for all $t\in(a, b)$ . Now
we will observe that

$p(h(t))\leq\epsilon(t-c)$

for any $\epsilon>0$ and $t\in(c, b)$ , where $p$ is a continuous seminorm on $E$ . If this
assertion was established, then as $\epsilon\downarrow 0p(h(t))=0$ for all $t\in(c, b)$ . Since $p$ is
arbitrary, we know that $h(t)=0$ , i.e., $f(t)=g(t)$ for every $t\in(c, b)$ . This
completes the proof.

At first, from $\partial_{t}^{+}h(c)=0$ there exists a positive constant $\delta_{1}$ such that

$p(h(t))\leq\epsilon(t-c)$

as long as $c<t<c+\delta_{1}<b$ . So, put

$b^{\prime}=\sup\{t\in[c, b);p(h(t))\leq\epsilon(t-c)\}$ .

Then we see that $b^{\prime}=b$ . Indeed, if $b^{\prime}<b$ , then because of the continuity of $h(t)$
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on (a,b)

$p(h(b^{\prime}))\leq\epsilon(b^{\prime}-c)$

holds. By virtue of $\partial_{t}^{+}h(b^{\prime})=0$ , there is some positive constant $\delta_{2}$ such that

$p(h(b^{\prime}+t))\leq p(h(b^{\prime}))+\epsilon t$

provided $0<t<\delta_{2}$ . It follows from this that

$p(h(b^{\prime}+t))<\epsilon(b^{\prime}-c)+\epsilon\delta_{2}=\epsilon(b^{\prime}+\delta_{2}-c)$

for $t\in(0,\delta_{2})$ . Again, recalling the continuity of $h(t)$ on $(a,b)$ , we notice that

$p(h(b^{\prime}+\delta_{2}))\leq\epsilon(b^{\prime}+\delta_{2}-c)$

as $t\uparrow\delta_{2}$ . This contradicts the definition of $b$ ‘. Therefore we have $b^{\prime}=b$ . $\square $

THEOREM 7 (J. Dieudonne-L. Schwartz [2]). Let $E,$ $F$ be two $\mathscr{L}\mathscr{F}$-spaces
and $P$ a closed linear map of $E$ into $F$ with domain E. Then the map $P$ is
continuous.

\S 3. Proof of Theorem 1.

First of all, we will begin to show that (ii) is derived from (i). Let
$U(t;s, \Phi)\in C^{m}([s, T], X)$ be the solution of $(HCP)_{s}$ with initial data $\Phi$ . We set
$A_{n}(s)\Phi=\partial_{t}^{n}U(t;s, \Phi)|_{t=s}=\Phi_{n}(s)$ for $n=0,1,$ $\ldots,m$ . Let us express $U(t;s, \Phi)$

in terms of the solution to $(CP)_{0}$ . For this aim, we define the function
$U^{0}(t;s, \Phi)\in C^{\infty}(R, X)$ by

$U^{0}(t;s, \Phi)=\sum_{n=0}^{m}G_{n}(\iota;s, \Phi)=\sum_{n=0}^{m}\frac{\Phi_{n}(s)}{n!}(t-s)^{n}$ .

Denoting

$V^{0}(t;s, \Phi)=U^{0}(t;s, \Phi)-U(t;s, \Phi)\in C^{m}([s, T], X)$ ,

$F^{0}(t;s, \Phi)=(\partial_{t}-A(t))U^{0}(t;s, \Phi)\in C^{m-1}([s, T], X)$ ,

we obtain

$\partial_{t}^{n}V^{0}(t;s, \Phi)|_{t=s}=0$ $(n=0,1, \ldots, m)$ ,

$\partial_{t}^{n}F^{0}(t;s, \Phi)|_{t=s}=0$ $(n=0,1, \ldots,m-1)$ .

So $V(t;s, \Phi)$ and $F(t;s, \Phi)$ to which are prolonged $V^{0}(t;s, \Phi)$ and $F^{0}(t;s, \Phi)$ ,
respectively, by putting $0$ in $t\in[0, s]$ , belong to $C^{m}([0, T], X)$ and $C^{m-1}([0, T], X)$ .
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Then $V(t;s, \Phi)$ is a solution of $(CP)_{0}$ with data $(F, 0)$ . Now, recalling that

$U(t;s, \Phi)=U^{0}(t;s, \Phi)-V^{0}(t;s, \Phi)$ ,

we will estimate each term in the right hand side. Note that the operator
$A_{n}(s)\in \mathscr{L}(X)$ is uniformly continuous in $s\in[0, T]$ . Since the map

$C^{m-1}([0, T], X)\ni F(t)-\rangle V(t;s, \Phi)=U(t;s,F, 0)\in C^{m}([0, T], X)$

is closed and linear by the assumptions on $A(t)$ , in view of Theorems 5 and 7, for
any continuous seminorm $p$ on $X$ there exist continuous seminorms $q,$ $r$ on $X$ and
some positive constant $C$ such that

$\sup_{t\in[s,T]}p(V^{0}(t;s, \Phi))\leq\sup_{\iota\in[0,T]}p(V(t;s, \Phi))$

$\leq C\sup_{\iota\in[0,T]}\sum_{n=0}^{m-1}q(\partial_{f}^{n}F(t;s, \Phi))$

$\leq C\sup\sum^{m-1}\sum^{m}(q(\partial_{\iota}^{n+1}G_{l}(t;s, \Phi))+q(\partial_{t}^{n}(A(t)G_{l}(t;s, \Phi))))$

$\iota\in[0,T]_{n=0}l=0$

$\leq r(\Phi)$

for all $\Phi\in X$ . Also $U^{0}(t;s, \Phi)$ has an estimate of the same type.
Next, supposing (ii), we will prove (iii). It is sufficient to observe that

Duhamel’s principle

$ U(t;s,F, \Phi)=U_{H}(t;s, \Phi)+\int_{s^{t}}U_{H}(t;\tau,F(\tau))d\tau$

holds. We may assume that $s=0$ and $\Phi=0$ without loss of generality. Choose
$F\in C^{m-1}([0, T], X)$ and let $U_{H}(t;s, F(s))\in C^{m}([s, T], X)$ be the solution of $(HCP)_{s}$

with initial data $F(s)$ . Then $U_{H}(t;s, F(s))$ is uniformly continuous with respect to
$(t, s)\in\Omega$ . In fact, if $s\leq s^{\prime}$ , then

$U_{H}(t;s,F(s))-U_{H}(t^{\prime};s^{\prime}, F(s^{\prime}))$

$=\int_{\iota^{\iota}},$ $\partial_{\tau}U_{H}(\tau;s,F(s))d\tau+U_{H}(t^{\prime};s, F(s))-U_{H}(t^{\prime};s^{\prime}, F(s^{\prime}))$

$=\int_{t}^{t},$ $A(\tau)U_{H}(\tau;s, F(s))d\tau+U_{H}(t^{\prime};s^{\prime}, U_{H}(s^{\prime};s, F(s))-F(s))$

$+U_{H}(t^{\prime};s^{\prime}, F(s)-F(s^{\prime}))$ .

Consequently, because of the assumptions on $A(t)$ and the uniform well-posedness
of $(HCP)_{s}(0\leq s<T)$ , for any continuous seminorm $p$ on $X$ there are some
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continuous seminorms $ql,$ $q2q3$ on $X$ such that

$p(U_{H}(t;s,F(s))-U_{H}(t^{\prime};s^{\prime}, F(s^{\prime})))$

$\leq|t-t^{\prime}|q_{1}(F(s))+q3(\int_{s^{\prime}}^{s}A(\tau)U_{H}(\tau;s,F(s))d\tau)+q3(F(s)-F(s^{\prime}))$

$\leq|t-t^{\prime}|q\mathfrak{l}(F(s))+|s-s^{\prime}|q2(F(s))+q3(F(s)-F(s^{\prime}))$

provided $(t,s),$ $(t^{\prime},s^{\prime})\in\Omega$ . Thus

$U(t)=\int_{0}^{t}U_{H}(t;s, F(s))ds\in C^{0}([0, T], X)$ $(0\leq t\leq T)$

is well-defined, and since $A(t)$ is a continuous linear operator, we see that

$A(\iota)U(t)=\int_{0}^{t}A(t)U_{H}(t;s,F(s))ds$ .

Moreover, let us verify that

$(*)$ $\{\partial_{t}^{+}U(t)=F(t)+\int_{0}^{t}\partial_{t}U_{H}(t;s,F(s))dsU(0)=0$

.

For $h>0;t,$ $t+h\in[0, T$), elementary calculations show

$\frac{U(t+h)-U(t)}{h}-(F(t)+\int_{0}^{t}\partial_{t}U_{H}(t,s, F(s))ds)$

$=\int_{0^{1}}(U_{H}(t+h;t+hs,F(t+hs))-U_{H}(t;t, F(t)))ds$

$+\int_{0}^{t}ds\int_{0^{1}}A(t+hs)(U_{H}(t+h\tau;s, F(s))-U_{H}(t;s, F(s)))d\tau$

$+\int_{0^{t}}ds\int_{0^{1}}(A(t+h\tau)-A(t))U_{H}(t;s, F(s))d\tau$ .

Thereby, for any continuous seminorm $p$ on $X$ there exists a continuous semi-
norm $q$ on $X$ such that

$p(\frac{U(t+h)-U(t)}{h}-(F(t)+\int_{0}^{t}\partial_{t}U_{H}(t,s,F(s))ds))$

$\leq\int_{0^{1}}p(U_{H}(t+h;t+hs,F(t+hs))-U_{H}(t;t,F(t)))ds$

$+\int_{0}^{t}ds\int_{0^{1}}q(U_{H}(t+h\tau;s, F(s))-U_{H}(t;s,F(s)))d\tau$

$+const.h\int_{0}^{t}q(U_{H}(t;s, F(s)))ds$ .
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Hence $(^{*})$ follows from the uniform continuity of $U_{H}(t;s, F(s))$ in $(t, s)\in\Omega$ . Now,
because the right hand side in $(^{*})$ is continuous, by taking account of Theorem 6,
we have

$\{\partial_{t}U(t)=F.(t)+\int_{0}^{t}\partial_{t}U_{H}(t;s, F(s))ds\in C^{0}([0, T], X)U(0)=0$

This exhibits that $U(t)\in C^{1}([0, T], X)$ is the solution of $(CP)_{0}$ with data $(F, 0)$ .
Further, repeating the argument above, we can catch that $U(t)\in C^{m}([0, T], X)$ .

Finally, leading (iii) to (i) is plain and so we omit it.

\S 4. Some Remarks and Related Topics

As can be seen from the preceding proof, (ii) in Theorem 1 generally
implies (i) in that for arbitrary complete locally convex space. It is natural to
suspect whether we can replace the fixed integer $m$ with $\infty$ or not. Unfortu-
nately, we cannot adapt our method to do it. Indeed, owing to 0bservation
8.3.6 (b) in P. P. Carreras-J. Bonet [1], we find that $C^{\infty}([0, T])$ does not have
the countable neighbourhood property. Therefore we cannot apply Theorem 4.
However, Theorem 3 remains valid for $ m=\infty$ .

We employed $\epsilon$-tensor product in order to prove that $C^{m}([0, T], X)$ is a
$\mathscr{L}\mathscr{F}$-space. In the case of $m\geq 1$ , it does not yet seem known if we have any
proof without using $\epsilon$-tensor product. On the other hand, for $m=0$ there is a
simple topological proof of

$C([0, T],$ $\lim_{\rightarrow}X_{n})\cong\lim_{\rightarrow}C([0, T], X_{n})$

by J. Mujica (see Theorem 3‘ in J. Mujica [6]). This fact is originated from the
problem of what property $C(E,F)$ inherits from a locally convex space $F$ if we
yield some conditions to a topological space $E$ . Its problem has systematically
been investigated by J. Schmets et al. (see R. Hollstein [4]). By the way, in aid of
(12.1.8) in L. Narici-E. Beckenstein [7], we can deduce that $C^{m}([0, T], X)$ is a
$\mathscr{L}\mathscr{F}$-space if it is barrelled.

Afterward, Theorem 7 is extended by A. Grothendieck, W. Slowikowski,
D. A. Raikov, M. De Wilde and so on (see M. Valdivia [11]). But, it is even
nowadays the most general result as a closed graph theorem such that both
the domain space and the range space lie in the same class of locally convex
spaces.
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