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MORSE THEORY AND NON-MINIMAL SOLUTIONS
TO THE YANG-MILLS EQUATIONS

By

Hong-Yu WANG

Abstract. By generalizing a method of Taubes, we use Morse
theory to find the higher critical points of Yang-Mills functional.

Topology and Analysis name mathematical subjects with robust interaction,

often along the basic theme: Study relationship between the critical points of

functional and the topology of function space. We consider in this article a
vector type non compact variational problem–the Yang-Mills equations, and
we raise the question of proving the existence of “true critical points” for this
functional, in a framework where the Palais-Smale condition does not hold.

This article should be considered as sequel to [27], where the most of the

notations and the terminology were introduced. The reader may find that the
exposition in [13], [22], [24], [26], and [27] are useful introductions to Morse

theory for the Yang-Mills equations. The main purpose of this paper is that it
clearly explains the background and motivation, and gives a method for finding

the non-minimal solutions to the Yang-Mills equations on a compact oriented
4-manifold.

In our main result, we suppose that there is a known isolated non-minimal
Yang-mills field (isolated means that the Hessian of Yang-Mills functional is
non-degenerate). We then use the min-max method to produce infinitely many

other non-minimal Yang-Mills fields.

THEOREM. Let $M$ be a compact oriented Riemannian 4-manifold. Let $A_{0}$ be

an isolated non-minimal Yang-Mills connection on $M$ with the structure group
$SU(2)$ such that $d|P_{\pm}F_{A_{0}}|=0$ along a simple closed geodesic and $|P_{\pm}F_{A_{0}}|>0$ on
this geodesic. Then there is a constant $K>0$ such that for any positive even
integer $k>K$, there exists an irreducible non-minimal Yang-Mills $SU(2)$ con-
nection with the same degree as $A_{0}$ .
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Theorem is proved by first using a gluing procedure to construct an
approximate solution space $N(k)$ that involve many parameters, in our con-
struction $N(k)$ is diffeomorphic to

$\prod_{i=1}^{2k}\{(0,1)\times F_{M}^{i}\times SU(2)\}/\Gamma\times\Sigma_{k}\times\Sigma_{k}$

where $F_{M}^{i}$ are the frame bundles $\bigwedge_{\pm}^{2}M$ of self-dual and anti-self-dual forms on
$M,$ $\Gamma_{A_{0}}$ is the isotropy group of connection $A_{0}$ , and $\Sigma_{k}$ is the symmetric group on
$k$ letters. One then shows that one can produce a new non-minimal solution as a
small perturbation of some approximate solution $A$ on $N_{k}$ .

It should be remarked that in the case of finding the self-dual solutions
Taubes [22] constructed many “higher degree” solutions over the generic 4-
manifolds. In a certain limit, these solutions have the curvature localized near
a finite set of points, with approximately one unit of “topological charge”
concentrated at each point. These Taubes’ solutions can be interpreted as a non-
linear superposition of single instanton solutions. The non-minimal solutions in
our construction admit a similar interpretation as a superposition of instantons
and anti-instantons glued to form a “necklace” along the closed geodesic.

The previous theorem can be applied to concrete 4-manifolds, for example,
$S^{1}\times S^{3}$ and $S^{2}\times S^{2}$ with the product metrics (see [27]).

This article is organized as follows. In Section 1, we recall Morse theory
and provide several examples. Section 2 describes the basic features of Yang-
Mills functional. In Section 3-4, by generalizing the Taubes’ approach in [22],
we introduce the techniques which are used to find the non-minimal solutions to
the Yang-Mills equations (cf. [27]). Section 5 gives some remarks, in particular,
we consider the existence of non-minimal solutions to the Yang-Mills equations
on the round 4-sphere $S^{4}$ .

Before tuming to a detailed description, acknowledgments are due: The
approach in this article was suggested by Clifford Taubes (Actually, this
approach was a joint work of Taubes and the author [27].) and inspired by
Wente’s [28] solution of the Hopf conjecture. Further acknowledgments to the
Mathematics Department of the Duke University and Mark Stem for their
generosity, kindness and hospitality, where much of this work was carried out.

1. Morse Theory

In geometric analysis and mathematical physics we face many elliptic
partial differential equations. One asks an important question: Can one rig-
orously establish the existence of solutions to these equations.
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A strategy is to translate the problem of finding the solutions to the partial
differential equations into a problem in the calculus of variations.

Morse theory proposes to relate the critical points of the functional to the
topology of the function space. If the functional is nice (in a technical sense)

then the function space being topologically complicated will imply that the
functional has many critical points (i.e. solutions to the variational equations).

It is perhaps useful to look at a finite dimensional example first [21].

EXAMPLE 1.1. Let $T^{2}$ be the torus $S^{1}\times S^{1}$ and let $f:T^{2}\rightarrow[0,1]$ be a $C^{2}$

function on $T^{2}$ .
Claim: Any such $f$ has at least three critical points.

The maxima and minima of $f$ are of course the critical points. If the
minimum is not attained at a unique point then there are already at least three
points. Hence we can assume that $f^{-1}(0)=\{p\}$ is just one point.

To find the third critical point in this case, one can use the uncontractible
loops on $T^{2}$ . Let $\wedge=$ {continuous loops on $T^{2}$ , starting and ending at $p$ and
not contractible on $T^{2}$ }. One can apply the min-max method to $\wedge$ , showing

that

$C=\min_{\lambda\in\wedge}\max_{s\in\lambda}f(\lambda(s))$

is a critical value that is attained at a critical point with index 1, so is neither a
maximum nor a minimum. For details, see [21].

The relevant lessons from this example are as follows: First, one requires a
non-trivial topology to have a good a priori reason to have extra, non-minimal
critical points. Second, one requires a compactness to deduce that the min-max
sequences actually converge.

Most functionals arising in the geometric analysis and mathematical physics
are defined on the infinite dimensional Banach spaces–which are non-compact.
There are the standard conditions on a functional on a Banach manifold which,

when satisfied, allow one to apply the min-max or Morse theory methods. The
most well known of these conditions is the Palais-Smale ”Condition $C’$ : A $C^{2_{-}}$

function $f:\mathscr{B}\rightarrow \mathscr{R}$ satisfies the Palais-Smale condition on $f^{-1}([a, b])$ if any
sequence $\{x_{n}\}$ such that $a\leq f(x_{n})\leq b$ and $\nabla f(x_{n})\rightarrow 0$ is precompact.

Unfortunately, the standard conditions do not apply to many interesting
functionals. In particular, the Yang-Mills functional does not satisfy the Palais-
Smale condition. But the failure of Palais-Smale condition is not the final word
for many variational problems. To develop a strategy when Condition $C$ fails, it
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is instructive to consider what can happen on some simple non-compact, finite
dimensional manifolds. Now let us consider the following example [3].

EXAMPLE 1.2.

This drawing displays a sequence $\{x_{n}\}$ (a “critical point at infinity”) such
that $\nabla f(x_{n})\rightarrow 0$ and $f(x_{n})\rightarrow c$ which does not have any convergent sub-
sequence. For small $\epsilon>0$ , the set $f^{c+\epsilon}=\Delta\{x|f(x)\leq c+\epsilon\}$ is not connected
while $f^{c-\epsilon}=\Delta\{x|f(x)\leq c-\epsilon\}$ is connected. Thus this “critical point at infinity”
induces a difference of topology in the level sets of $f$ .

If one wants to use a global argument to prove the existence of the tme
critical point $\overline{x}_{0}$ , then one should take into account this “critical point at
infinity”, which plays the role of a minimum.

The lesson to be leamed is that when faced with a variational problem for
which Condition $C$ fails, one should: (1) find the “relevant non-compact ends”
of Banach space (i.e. ”critical points at infinity”); (2) analyze the function on
the “relevant ends”.

The function in Example 1.2 is defined on a contractible space (namely $\mathscr{R}$ ).
For the variational problems on a general Banach manifold $\mathscr{X}$ one must
understand which topological features of $\mathscr{X}$ are represented by actual critical
points of $f$ and which are accounted for by the non-compact ends.

The “relevant ends” (both compact and non-compact) of $f$ can be defined
as follows:

Crit. $(N,\delta)=$ {$ x\in \mathscr{X}|N-\delta<f(x)<N+\delta$ , and $\Vert\nabla fx\Vert<\delta$ },

Crit. $(N,\delta)^{-}=\{x\in Crit.(N,\delta)|f(x)<N\}$ .

When $\delta>\delta^{\prime}>0$ are given, there is a natural inclusion pairs:

$i$ : (Crit. $(N,\delta^{\prime})$ , Crit. $(N,\delta^{\prime})^{-}$ ) $\rightarrow(Crit.(N,\delta)$ , Crit. $(N,\delta)^{-})$ .
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It is the effect of the map $i$ on the relevant homotopy groups of pairs which
determines whether Crit. $(N,\delta)$ contributes to the Morse theory of $f$ on $\mathscr{X}$ .

Intuitively, the “relevant ends” of $f$ consist of approximate solutions to the
Euler-Lagrange equations of $f$ . One can then hope that by a small perturbation,
one can find the exact solutions to the Euler-Lagrange equations.

Finally, let us briefly recall the Taubes’ approach to the self-dual con-
nections over the generic 4-manifolds [22].

EXAMPLE 1.3. Let $M$ be a compact, oriented, Riemannian 4-manifold. By

the gluing operation, one may graft the basic instantons over $S^{4}$ into the trivial
connection over $M$ at distinct points in $M$ to get an approximate solution space
for the self-dual equations on $M$ . Also one has a parameter space $N$ . For any
$y\in N$ , one has an approximate solution $A(y)$ . The Taubes’ approach to the self-
dual equations on $M$ is that by the small perturbation, one may solve the non-
linear elliptic equations to get an exact self-dual connection over $M$ . But the
linearization of the self-dual equations on $M$ at an approximate solution is not
strongly elliptic, there are the obstructions to solving the self-dual equations
which come from the small eigenspace of the Hessian of Yang-Mills functional
at this approximate solution that arises from the negative part of the inter-
section form on $M$ . In order to overcome this difficulty, Taubes considered the
expansion of Yang-Mills functional restricted on the approximate solution space
in parameters. Taubes proved that if the degree of the bundle constructed by the
gluing operation was large enough, the parameters account for all the small
eigenvectors. Hence one may solve the self-dual equations in the direction of the
complement of the small eigenspace, then move the positions of parameters to
find an exact self-dual connection over $M$ . For details, refer to [22].

The lesson of this example: To construct a Morse theory with a functional,
$f$ , on a non-compact Banach manifold, $\mathscr{X}$ , an appropriate strategy is to 1) find
the set Crit $(N,\delta)$ in the Banach manifold as defined above. 2) Restrict the
functional to these sets and study the effect of the map $i$ on the relative
topology of the pairs of space. 3) Determine the obstructions to finding the
“true critical points.”

2. Yang-Mills Functional

The Yang-Mills equations were introduced by theoretical physicists. In the
past decade these equations became important in mathematics. Simon Donaldson
obtained beautiful and spectacular results conceming the differential stmctures
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on the four-manifolds by using the moduli spaces of the self-dual solutions to the
Yang-Mills equations on the compact 4-manifolds ([9], [10]). Atiyah-Hitchin-
Singer [1] and Freed-Uhlenbeck [10] gave good simple introduction to the Yang-
Mills equations, one can find useful materials in these references.

Let $P$ be a principal $SU(2)$ -bundle over a compact, oriented 4-manifold, $M$,
with a Riemannian metric $g$ . Let $\mathscr{C}(P)$ be the connection space which is an
affine space. Fix $A_{0}\in \mathscr{C}(P),$ $\mathscr{C}(P)=A_{0}+\Omega^{1}(AdP)$ , here $AdP$ is the adjoint
bundle.

Consider the Yang-Mills functional (action functional) on $\mathscr{C}(P)$ :

(2.1) $YM(A)=\frac{1}{2}\int_{M}|F_{\Lambda}|^{2}$ .

Where, $F_{\Lambda}$ is the curvature of $A,$ $F_{A}\in\Omega^{2}(AdP)$ . The norm (2.1) is induced from
the Riemannian metric on $TM$ and the Killing form on the Lie algebra of $SU(2)$ .
The Yang-Mills functional has a topological lower bound

(2.2) $YM(A)=\frac{1}{2}\int_{m}|F_{A}|^{2}\geq 8\pi^{2}|C_{2}(P)|$ .

Where, $C_{2}(A)$ is the second Chem class of $P$ .
The variational equations of $YM$ is

(2.3) $\nabla YM_{A}$ $(,)=0$ ,

or

(2.4) $D_{A}^{*}F_{\Lambda}=0$ .

Here $D_{A}$ is the covariant exterior differential associated to $A,$ $D_{A}^{*}$ is the formal
adjoint operator of $D_{A}$ . Equation (2.4) is the second order, non-linear partial
differential equation.

A connection $A$ is an absolute minimal solution to (2.4) if and only if
$F_{\Lambda}=\pm*F_{\Lambda}$ where $*is$ the Hodge star operator and the sign is $+ifC_{2}(P)<0$

and –if $C_{2}(P)>0$ . The equations $F_{\Lambda}=\pm*F_{\Lambda}$ are called the self-dual or the
anti-self-dual equations. These equations are the first order P.D.E. like as the
Cauchy-Riemann equations on the two dimensional surfaces.

In terms of the algebraic method, one is easily to constmct the basic
self-dual or the basic anti-self-dual solutions over $S^{4}$ . These solutions are
called the instantons or the anti-instantons. Using the stereographic projection
$S^{4}\backslash \{southpole\}\rightarrow \mathscr{R}^{4}$ , identify $\mathscr{R}^{4}\simeq \mathscr{H}$ quatemions. One has the following
explicit formulas:
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On $\mathscr{R}^{4}$ , define

$\left\{\begin{array}{l}U_{1}=\{x\in \mathscr{R}^{4}||x|<1\},\\U_{2}=\mathscr{R}^{4}\backslash \{O\}.\end{array}\right.$

The basic instantons are expressed as follows:

(2.5) $W_{\lambda+}=(W_{\lambda+}^{1}, W_{\lambda_{+}}^{2})=(Im\frac{xd\overline{x}}{\lambda^{2}+|x|^{2}},Im\frac{\lambda^{2}\overline{x}dx}{|x|^{2}(\lambda^{2}+|x|^{2})})$

with the transition function

$\left\{\begin{array}{l}g_{12}^{+}\cdot.U_{l}\cap U_{2}\rightarrow SU(2),\\g_{12}^{+}(x)=^{X}\Pi x\end{array}\right.$

Where, $\lambda$ is the scaling parameter. The curvature of this connection is given by

(2.6) $F_{\lambda_{+}}=(F_{\lambda_{+}}^{1},F_{\lambda_{+}}^{2})=(\frac{\lambda^{2}dx\wedge d\overline{x}}{(\lambda^{2}+|x|^{2})^{2}}$ , $\frac{\lambda^{2}\overline{x}dx\wedge d\overline{x}x}{|x|(\lambda^{2}+|x|^{2})^{2}|x|}I$ .

Similarly, the basic anti-instantons are expressed as follows:

(2.7) $W_{\lambda_{-}}=(W_{\lambda_{-}}^{1}, W_{\lambda_{-}}^{2})=(Im\frac{\overline{x}dx}{\lambda^{2}+|x|^{2}},$ $Im\frac{\lambda^{2}xd\overline{x}}{|x|^{2}(\lambda^{2}+|x|^{2})})$

with the transition function

$\left\{\begin{array}{l}g_{\overline{1}2}\cdot.U_{l}\cap U_{2}\rightarrow SU(2),\\g_{\overline{1}2}(x)=\frac{X}{|x|}.\end{array}\right.$

The curvature of $W_{\lambda_{-}}$ is given by

(2.8) $F_{\lambda_{-}}=(F_{\lambda_{-}}^{1}, F_{\lambda_{-}}^{2})=(\frac{\lambda^{2}d\overline{x}\wedge dx}{(\lambda^{2}+|x|^{2})^{2}},\frac{\lambda^{2}xd\overline{x}\wedge dx\overline{x}}{|x|(\lambda^{2}+|x|^{2})^{2}|x|})$ .

An important problem in the analytic aspect of the Yang-Mills theory is to
find the general solutions to the Yang-Mills equations. One of the difficulties is
that the Yang-Mills equations are not strong elliptic P.D.E.. Because the Yang-
Mills equations are invariant under the action of the gauge transformation
group AulP (this is the inner automorphism group of $P$ which can be identified
with the group of the smooth cross-sections of a group bundle $P\times\Lambda dSU(2)$ , the



574 Hong-Yu WANG

Hessian of Yang-Mills functional has an infinite dimensional null space: If $A$ is
a solution of Yang-Mills equations then $\nabla^{2}YM_{A}(a, \cdot)=0$ for any $ a=D_{A}\phi$ where
$\phi\in\Omega^{0}(AdP)$ . Indeed $\Omega^{0}(AdP)$ can be viewed as the infinitesimal gauge group or
the gauge algebra. By the direct calculation, the Hessian of Yang-Mills
functional may be written as

(2.9) $\nabla^{2}YM_{A}(a, b)=\int_{M}(D_{A}a,$ $D_{A}b+(F_{A}, a\wedge b+b\wedge a)$ .

This pathology can be remedied by considering $YM(\cdot)$ as a functional on the
quotient space $\mathscr{R}(P)=\Delta \mathscr{C}(P)/AutP$ . Since $M$ is a compact 4-manifold, one can
define the $L_{k}^{2}$ -Sobolev stmcture $(k\geq 3)$ on $\mathscr{R}(P)$ which is viewed as a Hilbert
manifold as in [23]. When restricted to the tangent space of an orbit $[A]\in \mathscr{R}(P)$ ,
$\nabla^{2}YM_{\Lambda}(\cdot, \cdot)$ defines a bounded, elliptic bilinear form. We would like to point out
here that the quotient space $\mathscr{B}(P)$ is not quite Banach manifold since when $A$ is
an reducible connection then the tangent space to $[A]\in \mathscr{B}(P)$ is an infinite
dimensional cone. Recall the reducible connection, we say $[A]\in \mathscr{C}(P)$ is reducible
if the principal $SU(2)$ -bundle $P\cong\lambda_{1}\oplus\lambda_{2}$ and the covariant exterior differential
$D_{A}=d_{1}\oplus d_{2}$ are both decomposable. Here $\lambda_{2}=\lambda_{1}^{-1}$ , such splitting corresponding
to the singular points on $\mathscr{B}(P)$ . For details of the above, refer to [8], [10].

Actually, the main difficulty in solving the Yang-Mills equations lies in
the failure of Palais-Smale conditions for the Yang-Mills functional. K. K.
Uhlenbeck established the weak compactness theorem for the Yang-Mills
functional ([14], [23], [25]). The weak compactness of a good sequence (in

technical sense) is discussed in Proposition 2.1, below. This proposition is in
many respects analogous to the existence theorem for the harmonic maps from
$S^{2}$ that are derived by Sacks and Uhlenbeck [19].

PROPOSITION 2.1 (cf. [23]). Let $M$ be a compact, oriented, Riemannian 4-

manifold. Let $P\rightarrow M$ be a principal $SU(2)$ -bundle with the degree $n\geq 0$ . Let
$\{[A_{i}]\}\subset \mathscr{B}(P)$ be a good sequence for which $\lim_{i\rightarrow\infty}YM(A_{i})\rightarrow YM_{\infty}$ . There
exisls a subsequence of $\{[A_{i}]\}$ , also denoted $\{[A_{i}]\}$ , and a finite set of the pairs
$\{(P_{\alpha}, A_{\alpha})\}_{\alpha=0}^{m}$ , where $P_{0}\rightarrow M$ is a principal $SU(2)$ -bundle and $A_{0}$ is a smooth
connection on $P_{0}$ which is a solution to the Yang-Mills equations on M. While for
$\alpha>0$ , each $P_{\alpha}\rightarrow S^{4}$ is a principal $SU(2)$ -bundle and $A_{\alpha}$ is a smooth connection
on $P_{\alpha}$ which is a solution to the Yang-Mills equations on $S^{4}$ for the standard
metric on $T^{*}S^{4}$ . These data have the following properties:

(1) $\{[A_{j}]\}$ converges strongly in $L_{1,loc}^{2}$ of $M\backslash $ {$finite$ set} to $[A_{0}]$ ;
(2) For $\alpha>0,$ $A_{\alpha}$ is not flat;
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(3) $\sum_{\alpha=0}^{m}YM(A_{\alpha})=YM_{\infty}$ ;
(4) $\sum_{\alpha=0}^{m}k(P_{\alpha})=n$ .
Here the good sequence of connections, $\{A_{i}\}$ , in $\mathscr{B}(P)$ means that $\{YM(A_{i})\}$

is bounded and $\lim_{j\rightarrow\infty}\Vert\nabla YM_{A_{i}}(\cdot)\Vert_{*}\rightarrow 0$ .

Briefly this proposition says that any good sequence of connections which
goes to infinity has a subsequence which, outside some points $\{p_{j}\}_{j=1}^{m}\subset$

$M,$ $m\leq n$ , converges to a true solution of Yang-Mills equations (may be a
trivial connection) uniformly on the compact subsets and whose a portion of the
energy becomes concentrated in smaller and smaller neighborhoods of $\{p_{j}\}_{j=1}^{m}$ .
In fact, by choosing an appropriate sequence of the blow-up of the normal
coordinates at $\{p_{j}\}_{j=1}^{m}$ over these smaller and smaller neighborhoods the con-
nections can be seen to converge to the Yang-Mills connections over $S^{4}$ . At the
last moment (i.e. in the limit) the bundle $P$ becomes the connected sum of
$\{P_{\alpha}\}_{\alpha=0}^{m}$ , and the standard 4-spheres break off at $\{p_{j}\}_{j=1}^{m}$ , carrying with them the
partial energy and topology of the old connection. It is possible that there are
two or more 4-spheres bubbling off at one point $p_{j}$ .

In subsequent sections, we shall devote to finding the “end sets” of Yang-
Mills functional (i.e. approximate solution space), studying the effect of Yang-
Mills functional restricted to these sets and finding the non-minimal solutions of
Yang-Mills equations in terms of the perturbation method.

3. The Gluing Construction

Naive Morse theory will not work for the Yang-Mills functional on the
quotient space $\mathscr{B}(P)$ due to the Uhlenbeck’s weak compactness theorem.
According to the lessons leamed from the examples in Section 1, one should
find the “end sets” (”critical points at infinity”) in $\mathscr{B}(P)$ . The weak compactness
theorem provides the crucial tool for describing these ends. Taubes [24] showed
that the weak-compactness can be reversed by “gluing in” in instantons and
anti-instantons over $S^{4}$ . Indeed, by the gluing operation one is able to graft the
instantons and anti-instantons over $S^{4}$ onto a background connection over the
generic manifold, $M$ , at distinct points $M$, and to constmct the “end sets”.

Using these “end sets”, Taubes constructed the self-dual and anti-self
connections on the compact oriented 4-manifolds and explained how the Morse
theory for the Yang-Mills functional can be recovered by examining the
restriction of the functional to these sets. Actually, the “end set” is a countable
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set of finite dimensional, non-compact varieties. For details, refer to [22], [24].
There is some trouble in extending the Taubes’ approach to the problem of

finding the non-minimal solutions of Yang-Mills equations. To explain this,
consider the following simple example.

EXAMPLE 3.1. By using the gluing operation, graft an instanton with the
scaling parameter $\lambda_{1}$ , the gauge $g_{1}\in SU(2)$ and an anti-instanton with the
scaling parameter $\lambda_{2}$ , the gauge $g2\in SU(2)$ onto the trivial connection over $S^{4}$

at points $\{p\iota\}$ and $\{p_{2}\}$ , respectively. Hence one has a family of approximate
solutions which depend on the parameters $\{\lambda_{1}, g1,p_{1}, \lambda_{2}, g_{2},p2\}$ . Consider the
Taylor’s expansion of the action functional in the parameters [26]:

$YM(A(\lambda_{1}, g_{1},p_{1}, \lambda_{2g_{2},p2}))=16\pi^{2}-\frac{Q\lambda_{1}^{2}\lambda_{2}^{2}}{dist.(p1,p2)^{4}}\{\langle g_{1}F_{+}(N)g_{1}^{-1}, g_{2}F_{+}(N)g_{2}^{-1}\rangle$

$+\{g_{2}F_{-}(N)g_{2}^{-1}, g1F_{-}(N)g_{1}^{-1}\}\}$

$+higher$ order term,

where $Q$ is a universal constant and $F_{+}(N),$ $F_{-}(N)$ are the curvatures of the
standard instanton and anti-instanton at the north pole.

To explain Example 3.1, recall the Taubes’ implicit function theorem [21].
One may solve the non-linear elliptic equations according to the following
procedure: First, construct an approximate solution space of the equations.
Second, consider the Taylor expansion of the corresponding functional of the
equations in the parameters (that is, the functional is restricted on the
approximate solution space). Third, find the non-degenerate critical points of
the first order term of the functional restricted on the approximate solution
space. Finally, by the small perturbation get an exact solution to the equations
(Here, use the implicit function theorem to kill the higher order terms of the
functional.)

Now tum to Example 3.1. If one wants to find the critical points near those
almost Yang-Mills connections that were constmcted in Example 3.1, one
should find the critical points of the following the first order term of Yang-Mills
functional restricted on the approximate solution space.

$\frac{Q\lambda_{1}^{2}\lambda_{2}^{2}}{dist.(p1,p_{2})^{4}}\cdot\{\langle gF(N)g_{1}^{-1}, g_{2+}^{F}(N)g_{2}^{-1}\rangle+\langle glF_{-}(N)g^{-1}, gF_{-}(N)g_{2}^{-1}\rangle\}$ .
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By the direct calculation, it is not hard to see that we must let dist. $(p\iota,p2)\rightarrow\pi$ ,
and $\lambda_{1},$ $\lambda_{2}\rightarrow 0$ . Therefore finding the non-minimal solutions in the preceding
construction will be bubbling off two spheres at the north and south poles
respectively, this means that the instanton and anti-instanton will be blown up.
Hence, the Taubes’ implicit function theorem does not work here.

On the other hand, Parker [12] showed how, by changing the metric on $S^{4}$

amount, one can form a non-minimal Yang-Mills connection with degree zero
and with energy arbitrarily close to two instanton units. Parker’s solution
consists of a very small instanton and a very small anti-instanton, centered at
the antipodal points. If the metric were round, as before discussing, both the
instanton and anti-instanton would bubble off under the gradient flow.
However, with the slightly altered metric, the instanton and anti-instanton
become balance. Hence, Parker in effect tumed the “end point” into a critical
point.

According to the example discussed above, one can not directly use the
Taubes’ approach to find the non-minimal solutions. The situation is more
complicated. One requires that the approximate solutions have nice properties.
Hence, one must make small change to look for suitably a balance condition for
the approximate solutions. We now describe our construction in some generality
[27]. This constmction was inspired by Wente’s [28] solution of the Hopf
conjecture.

Let $P_{0}\rightarrow M$ be a background principal $SU(2)$ bundle over $M$ , let $A_{0}$ be a
smooth background connection on $P_{0}$ . Now, let $C$ be a simple closed geodesic
on $M$ (Without loss of generality, assume that the length of $C$ is equal to $ 2\pi$

exactly.). Fix a tubular neighborhood, $V_{0}$ , of $C$ . Let $\{s,y^{\alpha}\}_{\alpha=1}^{3}$ be a coordinate
system on $V_{0}$ with $s:V_{0}\rightarrow[0,2\pi]$ restricting to $C$ as the arclength. Require
$y^{\alpha}|_{C}=0$ and $\{\partial/\partial s, \partial/\partial y^{\alpha}\}_{\alpha=1}^{3}$ orthonormal on $C$ .

Choose $2k$ points $\{q1, \ldots, q2k\}$ in $V_{0}$ such that

(3.1) $\frac{5\pi}{4k}>s(q_{i+1})-s(q_{i})>\frac{3\pi}{4k}$ .

For sake of simplicity, set $d=\pi/k$ . Over each $q_{i}$ , pick up $f_{i}\in F_{M}|q_{i}$ (Here, $F_{M}$ is
the frame bundle of $TM.$ ). We have the Gaussian coordinate system $\phi_{f_{i}}$ : $ U(q_{i})\rightarrow$

$B_{\rho}\subset \mathscr{R}^{4}$ . Where $p$ is the injectivity radius of $M$ , and require $ d<\rho$ . Choose
$r\in(d,\rho)$ and for each $i$, choose $\lambda_{i}\in(0, r/2),$ $g_{i}\in SU(2)$ . Together, the data $C$

and $(\lambda_{i},f_{i}, g_{i})_{i=1}^{2k}$ gives our parameters for gluing.
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Set

$\left\{\begin{array}{l}V_{i}=\{x|0<dist.(x,q_{i})<r\},\\U_{i}=\{x|dist.(x,q_{i})<\lambda_{j}\}.\end{array}\right.$

Reintroduce the connection $A_{0}$ and fix a gauge along $V_{0}$ in which
$A_{0}|_{v_{0}}=\Gamma+a$ where

$\langle 1\rangle$ $\frac{\partial}{\partial_{s}}\rfloor a=\sigma$ obeys

(3.2) $\langle 2\rangle$ $\frac{\partial}{\partial_{s}}\rfloor\nabla_{\Gamma}\sigma=0$ ,

$\langle 3\rangle$ $a|_{C}=\sigma|_{C}ds$ and $y^{\alpha}\frac{\partial}{\partial y^{\alpha}}\rfloor a=0$ .

Here, the gauge is unique up to $\sigma\rightarrow g\sigma g^{-1}$ for $g\in SU(2)$ . It actually depends
only on the holonomy of the connection $A_{0}$ around $C$ . In fact $P_{0}|_{V_{0}}$ can be
trivialized over open domain $V_{0}$ , hence $A_{0}|_{V_{0}}$ can be written as $A_{0}|_{V_{0}}=\Gamma+a$

where $a$ satisfies the conditions (3.2) by choosing suitable gauge (i.e. solving the
ordinary differential equations along $C$).

We shall glue the instantons and anti-instantons onto $A_{0}$ along the geodesic
$C$ and for this, we require the bump function $\beta$ . This is a smooth function on $\mathscr{R}$ ,
$0\leq\beta\leq 1$ with $\beta(t)=1$ if $t<1$ and $\beta(t)=0$ as $t>2$ .

With this all understood, set

(3.3) $A=\left\{\begin{array}{l}A_{0}overM\backslash V_{0}\Gamma+\sum_{i=l}^{2k}\beta_{r}(x,q_{i})\phi_{f_{i}}^{*}g_{i}W_{i}^{2}g_{i}^{-l}+aoverV_{0}\backslash \bigcup_{i=l}^{2k}V_{i},\\\Gamma+h_{i}[\phi_{f_{i}}^{*}g_{i}W_{i}^{2}g_{i}^{-1}+(1-\beta_{\lambda_{i}}(x,q_{i})\\\phi_{f_{i}}^{*}g_{i}W_{i}^{l}g_{i}^{-l}overU_{i}^{r}(a+\Sigma j\neq i\beta(.x,q_{j})\phi_{f_{J}}^{*}g_{j}W_{j}^{2}g_{j^{-1}})]h_{i}^{-1}+h_{i}dh_{i}^{-l}overV_{i}\backslash U_{i},\end{array}\right.$

Here, $(W_{i}^{1}, W_{i}^{2})=(W_{\lambda_{i}+}^{1}, W_{\lambda_{i}+}^{2})$ as $i=odd$ and $(W_{i}^{1}, W_{i}^{2})=(W_{\lambda_{i}-}^{1}, W_{\lambda_{i}-}^{2})$ as
$i=even$ . The gauge transformation $h_{j}$ is given by requiring that $h_{i}(q_{i})=1$ and

(3.4) $\alpha_{l}=h_{i}(a+\sum_{j\neq i}\beta_{r}(x, q_{j})\phi_{f_{J}}^{*}g_{j}W_{j}^{2}g_{j^{-1}})h_{i}^{-1}+h_{j}dh_{i}^{-1}$
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obeys

(3.5) $\alpha_{i}(q_{i})=0$ and $\frac{\partial}{\partial|x-q_{i}|}\rfloor\alpha_{i}=0$ .

In fact, $h_{j}$ is the polar gauge transformation which is given by solving the
ordinary differential equations. Usually it is easy to do computation in polar
gauge (cf. [23], [24], [25] and [27]). So, we get a parameter space

(3.6) $N_{1}\subset(d,\rho)\times P_{0}|_{q0}\times\prod_{i=1}^{2k}((0,\frac{r}{2})\times F_{M}\times SU(2))$ ,

and a map

(3.7) $\left\{\begin{array}{l}\Psi\cdot.N_{1}\rightarrow \mathscr{B}(P),\\N_{1}\ni y-(P,A(y)),\end{array}\right.$

with $-C_{2}((A(y))=-C_{2}(A_{0})$ as $\lambda_{i}$ sufficiently small.
However, the map $\Psi$ is not an injective map as it is invariant under

the certain symmetry group which acts on $N_{1}$ . This invariance of the map $\Psi$ is
due to the special stmcture group $SO(4)$ of the frame bundle $F_{M}$ . It is well
known that structure group $ SO(4)\cong SU(2)\times t\pm$ } $SU(2)$ . Hence $AdP|_{q0}\cong P_{\pm}$

$\wedge^{2}T^{*}M|_{q0}$ . Thus the parameter space may be reduced. Define

(3.8) $N_{2}\subset(d,\rho)\times P_{0}|_{q0}\times SU(2)\prod_{i=1}^{2k}((0,\frac{r}{2})\times P_{\pm}\wedge^{2}T^{*}M\times SU(2)SU(2))$

$\simeq(d,\rho)\times\prod_{i=1}^{2k}((0,\frac{r}{2})\times P_{\pm}\wedge^{2}T^{*}M)/\Gamma_{A_{0}}$ .

Hence, $\pm 1$ depend on the parity of $j$ and $\Gamma_{A_{0}}$ is the centralizer of gauge group
$Aut(A_{0})$ . Hence, the map factors through $N_{2}$ .

Therefore we obtain the “end sets”. lf the background connection $A_{0}$ is a
solution to the Yang-Mills equations, then $\Psi(N_{2})\subset \mathscr{B}(P)$ is an approximate
solution space. In the remainder of this article, we always require that $A_{0}$ is a
solution of Yang-Mills equations.

We now study the interaction between the mixed instantons and the
background connection. Set $r=d^{3/5}$ , $\lambda_{i}=s_{i}d^{2}$ . For any $y\in N_{2}$ , expand
$YM(A(y))$ in the parameter $d$ .

PROPOSITION 3.1 (cf. [27]). If the Yang-Mills functional is restricted to the
parameter space, one has



580 Hong-Yu WANG

(3.9) $YM(A(y))=\frac{1}{2}\int_{m}|F_{A}(y)|^{2}$

$=YM(A_{0})+16\pi^{2}k$

$+\sum_{i=odd}-\frac{\omega(s^{3})}{2}s_{i}^{2}d^{4}\langle P_{-}F_{\Lambda_{0}}(q_{i}), \phi_{f_{i}}^{*}g_{i}F_{-}(N)g_{i}^{-1}\rangle$

$+\sum_{j=even}-\frac{\omega(s^{3})}{2}s_{j^{2}}d^{4}\langle P_{+}F_{\Lambda_{0}}(q_{j}), \phi_{f_{/}}^{*}.g_{j}F_{+}(N)g_{i}^{-1}\rangle$

$+\sum_{i=oddj=e_{2d^{-2/5}}}\sum_{]0\leq l\leq[1/^{ven_{mod 2k}}-1}-Q\frac{\omega(S^{3})}{2}s_{i}^{2}d_{j}d^{8}/dist.(q_{j}, q_{i})^{4}j=[i\pm(2l+1)]$

. $\langle\phi_{f_{j}}^{*}g_{i}F_{-}(N)g_{i}^{-1}, \phi_{f_{j}}^{*}g_{j}F_{-}(N)g_{j^{-1}}\rangle$

$+\sum_{j=even}$ $\sum_{--odd,i=[j\pm(2^{i}l+1)]mod 2k}-Q\frac{\omega(S^{3})}{2}s_{j}^{2}s_{l}^{2}d^{8}/dist.(q_{j}, q_{i})^{4}$

$0\leq l\leq[1/2d^{-2/5}]-1$

. \langle $\phi_{f_{j}}^{*}g_{j}F_{+}(N)g_{j^{-1}},$ $\phi_{f_{i}}^{*}g_{j}F_{+}(N)g_{i}^{-1}$ }

$+\sum_{i=1}^{2k}$ { $s_{i}^{2}d^{5(1/5)}(C_{1}+C_{2}|lnd|+higher$ order terms},

where $Q$ is a positive constant.

In terms of the Taylor’s expansion above, one can give a priori estimate for
the dual norm, $\Vert\nabla YM_{A(y)}(\cdot)\Vert_{A(y)}^{*}$ , of the first variation of Yang-Mills functional

(3.10) $\Vert\nabla YM_{A(y)}(\cdot)||_{A(y)}^{*},$ $\leq C_{3}\{\sum_{i=1}^{2k}s_{i^{2}}d^{5(1/5)}\}$ .

We now give remarks about the gluing operation and expanding the Yang-Mills
functional in the power series in parameters. There is a physics intuition behind
the expansion of Yang-Mills functional. In physics, the connection is supposed to
describe the force field due to certain the pseudo-particles. For a physicist, the
Yang-Mills functional measures the energy that is contained in the force field.
The connect-sum constmction (the gluing operation) can be interpreted in a
heuristic sense as the addition of the specific, extra pseudo-particles to a system of
pseudo-particles (each pseudo-particle contributes a unit charge to the instanton
number).
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If the new pseudo-particle can be added to make the net force attractive (or

repulsive), the normalized energy, the first order term of the expansion of Yang-

Mills functional, will decrease (increase). Hence, the first order term of the

functional is viewed as the interaction between the instantons and anti-
instantons. This kind of the interaction phenomena of the “mixed pseudo-
particles” has been used by Taubes [23] for the Yang-Mills equations on $S^{4}$ ,

it has allowed him to prove that the Yang-Mills moduli spaces of $SU(2)$ (or

$SU(3))$ connections are path-connected spaces. It has been also considered by

Bahri-Coron (cf. [3], [5]), they have used it to prove that the existence theorem

for the Yamabe equation on the certain domain in $\mathscr{X}$ .
Similarly, a simple calculation verifies the Yang-Mills-Higgs functional:

Monopoles attract anti-monopoles at large separation. By the min-max tech-

nique, Taubes [21] rigorously established the existence of non-minimal solutions
of Yang-Mills-Higgs functional.

For the Yang-Mills functional, the situation is more complicated. Let

us look at the forces of the mixed pseudo-particles in our construction. The
first order term of the functional smoothly depends on the parameters
$\{s_{i}, g_{i}, q_{i}\}_{1\leq i\leq 2k}(dim.N_{2}=16k)$ . The important fact is that for the first order

term of Yang-Mills functional in the preceding Taylor expansion, there exists a
saddle point on the parameter space $N_{2}$ .

The conclusion here is that the unstable solutions of the higher energy
should not be unexpected.

4. The Global Setting

The heading of this section asks an important question: Can one rigorously

establish the existence of non-minimal solutions to the Yang-Mills equations.
The proof for the cases $S^{2}\times S^{2}$ and $S^{1}\times S^{3}$ were developed by the author
[27]; $S^{4}$ and $S^{1}\times S^{3}$ were proved by L. &R. Sibner and K. Uhlenbeck [20],

T. Parker [12], and L. Sadun and J. Segert [16], [17].

The strategy is to use the perturbation method in which Taubes constructed
many self-dual or anti-self-dual connections over the generic 4-manifolds. By

this, one means the following: Suppose $A(y),y\in N_{2}$ is a approximate solution
and $a(y)\in\Omega^{1}(AdP)$ , then $A(y)+a(y)$ is a solution to the Yang-Mills equations
if and only if the energy, $YM$ , is stationary with respect to all the infinitesimal
variation of the fields. That is, if and only if

$\frac{d}{dt}YM(A(y)+a(y)+t\varphi)|_{t=0}=0$

for all $\varphi\in\Omega^{1}(AdP)$ .
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Hence, we must solve the equation below:

(4.1) $\nabla YM_{A(y)+a}(\cdot)=0$ , for $y\in N_{2}$ .

But the equation given above is not strong elliptic. By the Taylor expansion, the
small eigenspace of the Hessian, $\nabla^{2}YM_{\Lambda(y)}(\cdot, \cdot)$ , of $YM$ is the obstmction to
solving Equation (4.1). Let us analyze the obstmction to solving Equation (4.1)
(i.e the small eigenspace of $\nabla^{2}YM_{A(y)}(\cdot,$ $\cdot)$ ). According to the constmction of the
approximate solutions, $A(y)$ for $y\in N_{2}$ , it is reasonable to think that the small
eigenvalues of $\nabla^{2}YM_{A(y)}(\cdot, \cdot)$ come from the small eigenvalues of $\nabla^{2}YM_{A_{0}}$ (., $\cdot$ )
and $\nabla^{2}YM_{W_{\pm}}(\cdot, \cdot)$ . For details, refer to [4], [24] and [27].

Henceforth, always take the background connection, $A_{0}$ , to be an isolated
solution to the Yang-Mills equations, with $|P_{\pm}F_{A_{0}}|$ a non-zero constant and
$d|P_{\pm}F_{A_{0}}|=0$ along the geodesic $C$ . Since the background connection $A_{0}$ is an
isolated solution, the small eigenspace of $\nabla^{2}YM_{A(y)}(\cdot, \cdot)$ depends only on the
small eigenvalues of $\nabla^{2}YM_{W\pm}(\cdot, \cdot)$ . By direct calculation, it is not hard to obtain
that the small eigenspace of $\nabla^{2}YM_{A(y)}(\cdot, \cdot)$ is of dimension $16k$ . Hence, our
parameters account for all the small eigenvalues of $\nabla^{2}YM_{A(y)}(\cdot, \cdot)$

$(dimN_{2}=16k)$ (cf. [26]). The small eigenspace of $\nabla^{2}YM_{A(y)}(\cdot, \cdot)$ at each $y\in N_{2}$

defines a vector bundle $V\rightarrow N_{2}$ as a subspace of $\Psi^{*}T\mathscr{B}$ . Here, $\Psi$ : $N_{2}\rightarrow \mathscr{R}$ is
an inclusion. It is possible to divide Equation (4.1) into two parts

(4.2) $(I-\pi(A(y)+a, \xi))^{*}D_{A(y)+a}^{*}F_{A(y)+a}=0$ ,

and

(4.3) $\pi(A(y)+a, \xi)^{*}D_{\Lambda(y)+a}^{*}F_{\Lambda(y)+a}=0$ .

Here $\pi(A(y)+a, \xi)$ is a projection onto the small eigenspace of $\nabla^{2}YM_{\Lambda(y)+a}(\cdot, \cdot)$ .
Equation (4.2) is a strong elliptic equation. Let $\mathscr{U}_{\xi}(y)$ be the unique

solution of Equation (4.2). One defines

(4.4) $f_{\xi}(y)=\pi(A(y)+\mathscr{U}_{\xi}(y), \xi)^{*}D_{A(y)+l_{\xi}(y)}^{*}F_{A(y)+l_{\xi}(y)}$ .

In fact, $f_{\xi}(y)$ is a smooth section on the vector bundle $V\rightarrow N_{2}$ . The key step is
to find the zero points of $f_{\xi}(y)$ . Using the Kuranishi’s method (which is just the
implicit function theorem), write $f_{\xi}(y)=f_{\xi}^{1}(y)+f_{\xi}^{2}(y)$ . Suppose that $f_{\xi}^{1}(\overline{y})=0$

and $\nabla f_{\xi}^{1}(\overline{y})$ is non-degenerate. If $f_{\xi}^{2}(y)$ is the higher order term, by moving the
positions of $y=\{(s_{i}, g_{i}, q_{i})_{i=1}^{2k}\}$ we get $f_{\xi}(\tilde{y})=0$ via the implicit function theorem.
Here $\tilde{y}$ near by $\overline{y}$ (cf. [22], [27]). Hence one must find a suitable $f_{\xi}^{1}(y)$ and analyze
the properties of $f_{\xi}^{1}(y)$ .
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We now recall Proposition 3.1. By the Taylor expansion, the first order

term of the functional, $YM(A(y))$ , smoothly depends on the parameters
$\{(s_{i}, q_{j}, g_{j})_{i=1}^{2k}\}$ . Let $H$ denote the first order term of the Taylor’s expansion of

Yang-Mills functional,

(4.5) $ H=\sum_{i=odd}-\frac{\omega(s^{3})}{2}s_{i}^{2}d^{4}\langle P_{-}F_{A_{0}}(q_{i}), \phi_{f_{i}^{*}}g_{i}F_{-}(N)g_{i}^{-1}\rangle$

$+\sum_{j=even}-\frac{\omega(S^{3})}{2}s_{j^{2}}d^{4}P_{+}F_{A_{0}}(q_{j}),$
$\phi_{f_{j}}^{*}g_{j}F_{+}(N)g_{j^{-1}}\rangle$

$+\sum_{J=odd}\sum_{]-1}J_{0\leq l\leq[1/2d}=[i\pm(2l+1)]_{-2}j--even_{m_{/5}od2k}$

$-Q\frac{\omega(s^{3})}{2}s_{i}^{2}s_{j^{2}}d^{8}\cdot dist.(q_{i}, q_{j})^{-4}$

. { $\phi_{f_{i}}^{*}g_{i}F_{-}(N)g_{i}^{-1},$ $\phi_{f_{J}}^{*}g_{j}F_{-}(N)g_{j^{-1}}\rangle$

$+\sum_{j=even}$
$\sum_{i--odd_{m_{/}o_{5}d2k},i=[j\pm(2l+1)]_{- 2}}-Q\frac{\omega(s^{3})}{2}s_{j^{2}}s_{i}^{2}d^{8}\cdot dist.(q_{j}, q_{j})^{-4}0\leq 2l\leq[1/2d]-1$

. $\{\phi_{f_{J}}^{*}g_{j}F_{+}(N)g_{j^{-1}}, \phi_{f_{i}^{*}}g_{i}F_{+}(N)g_{i}^{-1}\}$ .

Where $F_{\pm}(N)$ are the curvatures at the north pole of the standard instanton or
the standard anti-instanton over the round 4-sphere.

Suppose that at $\{\overline{g}_{i}\}_{1\leq i\leq 2k}$ the expressions below take the critical values
(maximum)

$-\langle P_{-}F_{A_{0}}, \phi_{f_{i}}^{*}\overline{g}_{i}F_{-}(N)\overline{g_{i}}^{1}\rangle$ , $i=odd$ ;

$-\langle P_{+}F_{A_{0}},$ $\phi_{f_{j}}^{*}\overline{g}_{j}F_{+}(N)\overline{g_{j}}^{1}$ }, $j=even$ .

Fix $f_{i}=\overline{f_{i}},$ $1\leq i\leq 2k$ such that $\phi_{\overline{f_{i}}}$ correspond to the coordinate system $\{s,y^{\alpha}\}_{\alpha=1}^{3}$

on the neighborhood $V_{0}$ . According to the constmction of the approximate
solution $A(y)$ , one can choose $\overline{g}_{i}\equiv\overline{g}_{j}\equiv\overline{g}$ with $\overline{g}$ independent of the positions of
$\{q_{i}\}_{1\leq i\leq 2k}$ since $F_{A}$ is a harmonic 2-form valued in the Lie algebra of $SU(2)$ . Set

(4.6) $\left\{\begin{array}{l}Q_{odd}\equiv Q_{i=odd}=-\langle P_{-}F_{A_{0}}(\overline{q}_{i}),\phi_{f_{i}^{*}}\overline{g}_{i}F_{-}(N)\overline{g_{i}}^{1}\rangle,\\Q_{even}\equiv Q_{j=even}=-\langle P_{+}F_{A_{0}}(\overline{q}_{j}),\phi_{f_{j}}^{*}\overline{g}_{j}F_{+}(N)\overline{g_{j}}^{1}\}.\end{array}\right.$

Here $Q_{odd}$ and $Q_{even}$ are positive constants since by assumption $d\Vert F_{A_{0}}\Vert=0$ along

the geodesic $C$ and $|P\pm F_{A_{0}}|>0$ on that geodesic, choose $\{q_{i}\}_{1\leq i\leq 2k}$ in the
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geodesic $C$ and dist. $(\overline{q}_{j},\overline{q}_{i+1})=\frac{\pi}{k}=d$ . Set

$\overline{s}_{odd}^{2}\equiv\overline{s}_{i=odd}^{2}=Q_{j=even}\{Q\langle\overline{g}F_{+}(N)\overline{g}^{-1},\overline{g}F_{+}(N)\overline{g}-1\}\sum_{l=0}^{[1/2d^{-2/s}]-1}\frac{2}{(2l+1)^{4}}1^{-1}$

(4.7) $=Q_{even}\{192Q\sum_{l=0}^{[1/2d^{-2/s}]-1}\frac{1}{(2l+1)^{4}}\}^{-1}$ ,

(4.8) $\overline{s}_{e^{2}ven}\equiv\overline{s}_{j^{2}=even}=Q_{odd}\{192Q\sum_{l=0}^{[1/2d^{-2/5}]-1}\frac{1}{(2l+1)^{4}}I^{-1}$

Here $\overline{s}_{odd}$ and $\overline{s}_{even}$ are constants which satisfy the following estimates:
$0<C_{1}<\overline{s}_{odd},\overline{s}_{even}<C_{2}$ ,

where $C_{1}$ and $C_{2}$ are independent of $k$ .
Set $\overline{y}=\{(\overline{s}_{i},\overline{q}_{i},\overline{g}_{i})_{i=1}^{2k}\}\in N_{2}$ , here $\overline{s}_{i=odd}=\overline{s}_{odd}$ and $\overline{s}_{j=even}=\overline{s}_{even}$ . It is not

hard to see that when $k$ is large enough $H$ at $\overline{y}\in N_{2}$ takes the critical values.
The gradient of $H,$ $\nabla H$ , is close to the smooth section on $V\rightarrow N_{2}$ . Actually,
$\nabla H$ is first order term of the Taylor’s expansion of the smooth section on
$V\rightarrow N_{2}$ . Set $f_{\xi}^{1}(y)=\nabla H,$ $f_{\xi}^{2}(y)=f_{\xi}(y)-\nabla H$ . In terms of the expansion of
Yang-Mills functional restricted to the parameter space $N_{2}$ , it is not difficult to
check that $f_{\xi}^{2}$ is the higher order term. Suppose $H$ takes the critical value at
$\overline{y}\in\{(\overline{s}_{i},\overline{q}_{i},\overline{g}_{i})_{i=1}^{2k}$ , then $f_{\xi}^{1}(\overline{y})=0$ . By the direct calculation, $\nabla f_{\xi}^{1}|_{\overline{y}}$ has the
following expression:

(4.9) $\nabla f_{\xi}^{1}(\overline{y})=Q\omega(s^{3})\overline{s}_{o}^{2_{dd}}\overline{s}_{even}^{2}d^{4}\{-192C_{s}E_{2kx2k}$

$\oplus 128C_{T^{1}}(2\sum_{l=0}^{[1/2d^{-2/5}]-1}\frac{1}{(2l+1)^{4}}I_{2k\times 2k}-E_{2k\times 2k)}$

$\oplus\sum_{\alpha=2}^{3}128C_{T^{\alpha}}(-2\sum_{l=0}^{[1/2d^{-2/s}]-1}\frac{1}{(2l+1)^{4}}I_{2k\times 2k}-E_{2k\times 2k})$

$\oplus 960C_{x^{1}}(-2\sum_{l=0}^{[1/2d^{-2/5}]-1}\frac{1}{(2l+1)^{4}}I_{2k\times 2k}+E_{2k\times 2k})$

$\oplus 960C_{x^{l}}(2\sum_{l=0}^{[1/2d^{-2/5}]-1}\frac{1}{(2l+1)^{4}}I_{2k\times 2k}-E_{2kx2k)}\}$ .
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Here $C_{s},$ $C_{T^{\alpha}}$ and $C_{x^{l}}$ are positive constants, $I_{2k\times 2k}$ is identity, and $E_{2k\times 2k}$ is

(4.10) $E_{ij}=\left\{\begin{array}{l}\frac{1}{|(i-j)mod2k|^{4}} |(i-j)mod2k|\leq 2[\frac{1}{2}d^{-2}]-1ifi=odd,j=evenand_{/5}\\0 foranyothercase.\end{array}\right.$

By using the Fourier transformation, a priori estimates for the eigenvalues of
$E_{2k\times 2k}$ are given as follows (cf. [27]):

PROPOSITION 4.1. Let $E_{2k\times 2k}$ be the $2k\times 2k$ matrix which is defined by
(4.10). For $E_{2k\times 2k}$ , there exist the following properties:

1. The eigenvalues of $E_{2k\times 2k}$ can be written as $fo$llows:

(4.11) $\lambda_{j}=2\sum_{l=0}^{[1/2d^{-2/5}]-1}\frac{cos[(i-1)(2l+1)\frac{\pi}{k}]}{(2l+1)^{4}}$ , for $1\leq j\leq 2k$ ;

(4.12) $\lambda_{\max}=2\sum_{l=0}^{[1/2d^{-2/5}]-1}\frac{1}{(2l+1)^{4}}$ ;

and

(4.13) $|\lambda_{i}|\geq|cos(i-1)\frac{\pi}{k}|$ , for $1\leq j\leq 2k$ .

2. If $k=even$ , it is not hard to see that $\lambda_{k/2+1}=0$ and $\lambda_{3k/2+1}=0$ and the
corresponding null space is spanned by the following two eigenvectors:

(4.14) $\left\{\begin{array}{l}u=(1,0,-1,0,\ldots,1,0,-1,0),\\v=(0,1,0,-1,\ldots,0,1,0,-1).\end{array}\right.$

3. If $k=odd,$ $E_{2k\times 2k}$ is a non-degenerate matrix.

The proof is referred to [27].

According to Proposition 4.1, a priori estimates for the Hessian $f_{\xi}^{1}=\nabla H$

are given as follows:

PROPOSITION 4.2. Let $N_{2}(s, q, g)$ be a parameter space defined in Section 3.
Fix $\overline{y}=\{(\overline{s}_{i},\overline{q}_{i},\overline{g}_{i})_{i=0}^{2k}\}\in N_{2}$ such that at which $H$ (the first order term of the
Taylor’s expansion of Yang-Mills functional) takes a critical value. Then the
Hessian, $\nabla f_{\xi}^{1}(\overline{y})=\nabla^{2}H|_{\overline{y}}$ , at $\overline{y}$ is of the following properties:



586 Hong-Yu WANG

1. When $k=even,$ $\nabla f_{\xi}^{1}(\overline{y})$ has a two dimensional null space which arises from
the parameters $s_{i}$ , and other non-zero eigenvalues are of the order $\mathcal{O}(d)$ .

2. When $k=odd$ , the Hessian $\nabla f_{\xi}^{1}(\overline{y})$ contains five null eigenvectors which
arise from the parameters $(q_{j}, T_{i}^{1})$ , and the order of other non-zero eigenvalues is
$\mathcal{O}(d)$ too.

PROOF. This is a direct consequence of Proposition 4.1, the proof is
omitted.

We can use the gluing procedure developed in this section to establish a
global setting. According to this global setting, we constmct the approximate
solution space $N_{2}(w,p, q, k)$ that involves many parameters, in our constmction
$N_{2}$ is diffeomorphic to

$\prod_{i=1}^{2k}\{(0,1)\times F_{M}^{i}\times SU(2)\}/\Gamma\times\Sigma_{k}\times\Sigma_{k}$

where $F_{M}^{i}$ are the frame bundles of bundles $\bigwedge_{\pm}^{2}M$ of the self-dual and anti-self-
dual 2-forms on $M,$ $\Gamma_{\Lambda_{0}}$ is the isotropy group of the connection $A_{0}$ , and $\Sigma_{k}$ is the
symmetric group on $k$ letters. Then we can produce a new non-minimal solution
as a small perturbation of some approximate solution $A$ in $N_{2}$ .

THEOREM 4.3 (Theorem). Let $M$ be a compact oriented Riemannian 4-
manifold. Let $A_{0}$ be an isolated non-minimal Yang-Mills connection on $M$ with
the structure group $SU(2)$ such that $d|P_{\pm}F_{A_{0}}|=0$ along a simple closed geodesic
and $|P_{\pm}F_{A_{0}}|>0$ on this geodesic. Then there is a constant $K>0$ such that for
any positive even $k>K$ , there exists an irreducible non-minimal Yang-Mills
$SU(2)$ connection with the same degree as $A_{0}$ .

Remark here that the result above shows that, if we found an isolated non-
minimal solution to the Yang-Mills equations on $M$ , by using the gluing
procedure and perturbation method we can constmct an infinite number of
gauge inequivalent irreducible $SU(2)$ -connections over $M$ which are the non-
minimal solutions with the same degree as the background connection. None of
the solution found above are symmetric with respect to the Lie group actions
on the base manifold $M$ . In fact, our solutions have a uniform background
curvature, with concentrations near points, spaced evenly along a geodesic.
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Near half of these points, the solution looks self-dual, and near the other half, it
looks anti-self-dual.

One more remark that it is a technical condition that one requires that
$d|P_{\pm}F_{A_{0}}|=0$ and $|P\pm F_{A_{0}}|>0$ along a simple closed geodesic. Of course $S^{1}\times S^{3}$

and $S^{2}\times S^{2}$ are homogeneous spaces and the harmonic curvatures of back-
ground connections will satisfy that technical condition, so those examples in
[27] are $OK$ .

PROOF OF THEOREM 4.3. The strategy for proving the theorem above is
to generalize the approach in [21]. Schematically, the approach is the following
one. According to the preceding global setting, we have constmcted a smooth
section, $f_{\xi}$ , of $V\rightarrow N_{2}$ . Our method for finding the zero points of $f_{\xi}$ (i.e.

Equation (4.4)) will be to decompose $f_{\xi}$ into $f_{\xi}^{1}+f_{\xi}^{2}$ and to reduce the question
of finding the zero points of the given smooth section to the equations for the
non-degenerate critical points for $H$ .

Note that $f_{\xi}=f_{\xi}^{1}+f_{\xi}^{2}$ is a smooth section of $V\rightarrow N_{2}$ . Suppose that
$\overline{y}=\{(\overline{s}_{i},\overline{q}_{i},\overline{g}_{i})_{i=1}^{2k}\}$ is a critical point of $H$, then $f_{\xi}^{1}(\overline{y})=0$ . According to

Proposition 4.2, when $k=even$ the tangent map $\nabla f_{\xi}^{1}(\overline{y})$ of $f_{\xi}^{1}$ contains two null
eigenvectors

$\left\{\begin{array}{l}u=(1,0,-1,0,\ldots,1,0,-1,0),\\v=(0,1,0,-1,\ldots,0,1,0,-1).\end{array}\right.$

Let $V=\{t_{1}u+t_{2}v|(t_{1}, t_{2})\in \mathscr{R}^{2}\}$ be the null space of $\nabla f_{\xi}^{1}(\overline{y})$ spanned by $u$ and $v$ .
Denote by $T_{\overline{y}}^{\perp}N_{2}$ the orthogonal complement of $T$ in $T_{\overline{y}}N_{2}$ , it is non-degenerate
and so can use the implicit function theorem such that $f_{\xi}=f_{\xi}^{1}+f_{\xi}^{2}$ is zero in the
direction $T_{\overline{y}}^{\perp}$ . Let $T=\{t_{1}u+t_{2}v||r_{1}|+t_{2}|<\epsilon\}$ be the small neighborhood of
the origin at $V$ , here $\epsilon>0$ is small enough. For any $h(t)=\{t_{1}u+t_{2}v\}\in T$,

let $\overline{y}(t)=\{(\overline{s}_{i}(t),\overline{q}_{i},\overline{g}_{i})_{i=1}^{2k}\}$ such that $\{\overline{s}_{i}(t)\}_{1\leq i\leq 2k}=\{s_{j}\}_{1\leq i\leq 2k}+h(t)$ . Hence
$\overline{s}_{i}(0)=\overline{s}_{i}$ . In terms of the implicit function theorem, by the small perturbation
one may find $\tilde{y}^{\prime}(t)=\{(\tilde{s}_{i}^{\prime}(t),\tilde{q}_{i}^{\prime}(t),\tilde{g}_{i}^{\prime}(t))_{i=1}^{2k}\}\in N_{2}$ such that $f_{\xi}(\tilde{y}^{\prime}(t))=0$ which is
restricted to $T_{\overline{y}}^{\perp}N_{2}$ . Therefore the problem of finding the zero points of $f_{\xi}(x)$ is
reduced to the problem of finding the critical points of Yang-Mills functional
restricted to the parameter space $T$ .

If $|t|$ is small enough, then $|\overline{y}(t)-\tilde{y}^{\prime}(t)|$ is small too. Consider the Taylor’s
expansion of Yang-Mills functional restricted to $\tilde{y}^{\prime}(t)$ in the parameter $t$ ;
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$YM(\tilde{y}^{\prime}(t)=YM(A_{0})+16\pi k^{2}$

$+\sum-\frac{\omega(s^{3})}{2}d^{4}Q_{odd}\overline{s}_{i}^{2}(t)$

$i=odd$

$+\sum-\frac{\omega(s^{3})}{2}d^{4}Q_{even}\overline{s}_{\dot{j}}^{2}(t)$

even

$+\sum_{i=odd}$ $\sum_{j=even}$
$-48Q\omega(s^{3})d^{4}\frac{F_{i}^{-}(t)\overline{s}_{j}^{2}(t)}{|(i-j)mod 2k|^{4}}$

$j=[i\pm 2(l+1)]mod 2k$

$0\leq l\leq[1/2d^{-2/5}]-1$

$+\sum_{j=even}$ $\sum_{i=odd}$

$-48\omega(s^{3})d^{4}\frac{\overline{s}_{j}^{2}(\iota)\overline{s}_{i}^{2}(t)}{|(j-i)mod 2k|^{4}}$

$i=[j\pm 2(l+1)]mod 2k$

$0\leq l\leq[1/2d^{-2/5}]-1$

$+kC(t)d^{5\frac{1}{s}}\ln d$

$=YM(A_{0})+16\pi^{2}k$

$-\frac{\omega(s^{3})}{2}kd^{4}Q_{odd}(\overline{s}_{odd}^{2}+\iota_{1}^{2})$

$-\frac{\omega(s^{3})}{2}kd^{4}Q_{even}(\overline{s}_{even}^{2}+l_{2}^{2})$

$-96kQ\omega(s^{3})d^{4}\sum_{l=0}^{[1/2d^{-2/5}]-1}\frac{(\overline{s}_{odd}^{2}+t_{1}^{2})(\overline{s}_{even}^{2}+t_{2}^{2})}{(2l+1)^{4}}$

$-96kQ\omega(s^{3})d^{4}\sum_{l=0}^{[1/2d^{-2/5}]-1}\frac{(d_{even}+t_{2}^{2})(\overline{s}_{odd}^{2}+t_{1}^{2})}{(2l+1)^{4}}$

$+kC(t)d^{5_{5}^{1}}\ln d$ .

Since $\overline{s}_{odd}$ and $\overline{s}_{even}$ are chosen as follows

$\overline{s}_{odd}^{2}=Q_{even}\{192Q1^{1/2d^{-2/5}}\sum_{l=0}^{]-1}\frac{1}{(2l+1)^{4}}\}^{-1}$ ,

$\overline{s}_{even}^{2}=Q_{odd}\{192Q\sum_{l=0}^{[1/2d^{-2/5}]-1}\frac{1}{(2l+1)^{4}}\}^{-1}$
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Hence, one as

$YM(\tilde{y}^{\prime}(t))=YM(A_{0})+16\pi^{2}k$

$-96\omega(s^{3})kQd^{4}(\overline{s}_{odd}^{2}+t_{1}^{2})t_{2}^{2}\sum_{l=0}^{[1/2d^{-2/5}]-1}\frac{1}{(2l+1)^{4}}$

$-96\omega(s^{3})kQd^{4}(\overline{s}_{even}^{2}+t_{2}^{2})t_{2}^{1}\sum_{l=0}^{[1/2d^{-2/5}]-1}\frac{1}{(2l+1)^{4}}$

$+kC(t)d^{5\frac{1}{5}}\ln d$

$=YM(F_{A_{0}})+16\pi^{2}k$

$-96\omega(s^{3})Qd^{4}k\sum_{l=0}^{[1/2d^{-2/5}]-1}\frac{1}{(2l+1)^{4}}\{\overline{s}_{even}^{2}t_{1}^{2}+\overline{s}_{odd}^{2}t_{2}^{2}+2t_{1}^{2}t_{2}^{2}\}$

$+kC(t)d^{5\frac{1}{5}}\ln d$ .

In terms of the expansion given above, by using the implicit function theorem
one may find small $\overline{t}=(\overline{t}_{1}, \overline{t}_{2})\in T$ such that $\tilde{y}=\tilde{y}^{\prime}(t$] $=\{(\tilde{s}_{i}^{\prime}(\overline{t}),\tilde{q}_{i}^{\prime}(\overline{t}),\tilde{g}_{i}^{\prime}(\overline{t}))_{i=1}^{2k}\}\in N_{2}$

is a critical point of Yang-Mills functional, i.e. $f_{\xi}(\tilde{y})=0$ . Therefore, for suf-
ficiently large even integer $k$ , one may find a non-minimal solution, $A(\tilde{y})$ , to the
Yang-Mills equations on $M$ with the same degree as the background connection
$A_{0}$ . The proof is complete.

Remark that as a direct consequence of the above theorem, one can construct
an infinite number of non-minimal irreducible connections over $S^{2}\times S^{2}$ and
$S^{1}\times S^{3}$ , for details, refer to [27]. For the base manifold $S^{1}\times S^{3}$ , the existence
of non-minimal solutions to the Yang-Mills equations has already been
established by T. Parker [12] via different methods. His basic technique is to
consider with a symmetric group action that reduces the dimensionality of
Yang-Mills equations, and to use the min-max argument.

5. Some Remarks

We have established a method for finding the non-minimal solutions to the
Yang-Mills equations on the generic 4-manifolds. In our constmction, the key
step is to find an isolated non-minimal Yang-Mills connection as a background
connection. In fact, for a generic 4-manifold $M$ , it is possible that there are no
reducible self-dual or the anti-self-dual connections over $M$ . D. Freed and K.
Uhlenbeck pointed out in [10] that if the intersection matrix of a 4-manifold is
indefinite, then for an open dense set of metrics on the manifold, there are no
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line bundle solutions to the self-dual or anti-self-dual equations. Of course, there
are still solutions to the Yang-Mills equations in this case by the Hodge theory,
so the indefinite case provides an example where the topological lower bound of
Yang-Mills functional is not attained and there exist the non-minimal, reducible
$SU(2)$ Yang-Mills connections which are isolated or become a compact
manifold.

But, in general, the condition that $d|P_{\pm}F_{A}|=0$ along a closed geodesic can
not be satisfied. For the general cases, we have only partial answer. If one knew
that $|F_{A}|$ never vanished on $M$ , then one could conformally change the metric to
make $|F_{A}|$ constant, and find the Yang-Mills fields for this new metric; since the
Yang-Mills equations are conformally invariant these would be the Yang-Mills
fields for the original metric.

There is an obstruction to having $|F_{A}|$ never vanish on $M$ . A theorem of
Hirzebmch and Hopf (Math. Ann. 136 (1958), 156-172) shows that there is
no non-vanishing section of $\wedge^{2}T^{*}M$ unless $ 3\tau+2\chi$ and $ 3\tau-2\chi$ lie in
$\Omega=\{I(W, W)|W\in H^{2}(M), W=\tilde{W}_{2}+K, K\in 2H^{2}(M)\}$ where $\tau$ and $\chi$ are the
signature and Euler class of $M,\tilde{W}_{2}$ is an integral lift of the second Stiefel-
Whitney class, and $I(, )$ is the intersection form on the 4-manifold $M$ . If this
condition is not true then $F_{A}\in\Gamma(\wedge^{2}T^{*}M)$ must vanish somewhere.

It is a long-standing question whether there exist the Yang-Mills fields over
$S^{4}$ which are neither self-dual nor anti-self-dual. Until recently, the only known
the finite-energy solutions to the Yang-Mills equations on the round 4-sphere
were the self-dual and anti-self-dual solutions [1], [2]. Now, L. &R. Sibner and
K. Uhlenbeck [20]; T. Parker [12]; L. Sadun and J. Segert [16], [17] and G. Bor
[6] have found the non-minimal solutions over $S^{4}$ via the reduction of
dimensionality. In particular, Sadun and Segert [16], [17] considered the
quadrapole bundles which are a family of $SU(2)$ -equivariant quatemionic line
bundles over $S^{4}$ that originally arose in quantum mechanics. They used the
explicit O.D.E. computations to show the most of these bundles admit no self-
dual or anti-self-dual Yang-Mills fields (Similarly, one can get same results by
the equivariant Morse theory [13].). More precisely, they proved the following
results:

For any $C_{2}\neq\pm 1$ , there exists at least one non-minimal solution to the
Yang-Mills equations on the round 4-sphere $S^{4}$ .

It is worth remarking here that we do not know whether any exists for
$C_{2}=\pm 1$ .

We guess that our theorem can be applied to the constmction of Sadun and
Segert. If one choose Sadun and Segert’s equivariant connections as the
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background connections, then the better existences may hold. It is stated below:
For any $C_{2}\neq\pm 1$ , there exists in infinite number of non-minimal $SU(2)-$

Yang-Mills connections over the round 4-sphere $S^{4}$ .
We would like to point out that in order to use our constmction, one

requires the following technical lemma.

LEMMA 5.1. The moduli space of non-minimal $SU(2)$ -Yang-Mills connec-
tions over $S^{4}$ given by Sadun and Segert should become the isolated manifolds
which depend only on the conformal dtffeomorphic transformation group of $S^{4}$ .

There are a number of possible approaches for proving the lemma given
above. We have not yet been able to push any of these through to fmition. We
shall review one fairly convincing approach briefly.

The most convincing approach so far is the direct method of the calculus
of variations. What one has to do is studying the null spaces of the Hessian of
Yang-Mills functional at these background connections by the separation of
variables (cf. [26], [27]).

First, we briefly recall the main features of Sadun and Segert’s constmction
[17]. Sadun and Segert consider the connections that are equivariant with
respect to a symmetric group $SU(2)$ , that acts on $S^{4}\subset \mathscr{R}^{5}$ via the unique
irreducible representation. The principal orbits are three-dimensional, reducing
the Yang-Mills equations and the self-dual equations to the systems of ordinary
differential equations on an interval with certain singularities at the endpoints.
They first prove the existence theorem for the systems reduced from the Yang-
Mills equations. Then they are able to exclude the self-dual solutions out of list
of equivariant solutions.

Now let us retum to Lemma 5.1. According to Sadun and Segert’s con-
stmction, the principal orbits are three-dimensional, and there are two excep-
tional orbits of dimension two; meanwhile there exists a closed geodesic segment
of length $\pi/3$ that intersects each $SU(2)$ -orbit exactly once [17]. Hence, Sadun
and Segert’s non-minimal Yang-Mills connections may be viewed as the $SU(2)-$

equivariant solutions of Dirichlet boundary value problems for the Yang-Mills
connections over a compact 4-manifold with the smooth boundaries, the
equations in the interior are the full Yang-Mills equations [11]. We should study
the eigenvalues of Dirichlet problems on the compact 4-manifold with the
smooth boundaries. In particular, we are interested in the null spaces. Our basic
method is still to use the direct calculation by the separation of variables [26].

Usually, it is more complicated.
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On the other hand, we note that the Yang-Mills equations are invariant
under the action of the conformal diffeomorphic transformation group of the
base manifold. Thus the orbit of non-minimal Yang-Mills connection under the
action of the conformal diffeomorphic transformation group of the base
manifold is a family of non-minimal Yang-Mills connections. Since Sadun
and Segert’s connections are the $SU(2)$ -equivariant connections over $S^{4}$ . The
symmetric group $SU(2)$ is an isotropy subgroup of the conformal diffeomorphic
transformation group of $S^{4}$ . Hence Sadun and Segert’s connections are of at
least twelve-dimensional parameters [18].

Finally, we make some remarks before ending this article. In order to use
our constmction, the key ingredient is that the background connections are
isolated points or isolated finite dimensional smooth manifolds. In principle a
good understanding of the parameter spaces for the non-minimal solutions to
the Yang-Mills equations would enable one to use the Morse theory for finding
the higher critical points of Yang-Mills functional, or at least to get qualitative
information about them.

QUESTION. Are the moduli spaces of non-minimal solutions of Yang-Mills
equations isolated points or isolated finite dimensional manifolds which depend
only on the conformal diffeomophic transformation group of the base manifold?

The progress in understanding these spaces has been made recently be Freed
and Uhlenbeck [10], Wang [26], [27], and Sadun and Segert [18]. It seems very
likely that the answer to Question is affirmative, at least for cases $S^{2}\times S^{2}$ and
$S^{1}\times S^{3}[26],$ $[27]$ . Also, Sadun [15] used the numerical method to discover that,
after the gauge fixing, each component of the non-self-dual moduli spaces
constructed by Sadun and Segert appears to consist only of the conformal
copies of a single solution.
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