KRONECKER FUNCTION RINGS OF SEMISTAR-OPERATIONS

By

Akira Okabe and Ryûki Matsuda

1. Introduction

Let D be a commutative integral domain with quotient field K. Let $F(D)$ denote the set of non-zero fractional ideals of D in the sense of $[K]$, i.e., nonzero R-submodules of K and let $F^{\prime}(D)$ denote the subset of $F(D)$ consisting of all members A of $F(D)$ such that there exists some $0 \neq d \in D$ with $d A \subset D$. Let $f(D)$ be the set of finitely generated members of $F(D)$. Then $f(D) \subset$ $F^{\prime}(D) \subset F(D)$.

A mapping $A \rightarrow A^{*}$ of $F^{\prime}(D)$ into $F^{\prime}(D)$ is called a star-operation on D if the following conditions hold for all $a \in K-\{0\}$ and $A, B \in F^{\prime}(D)$:
(1) $(a)^{*}=(a),(a A)^{*}=a A^{*}$;
(2) $A \subset A^{*}$; if $A \subset B$, then $A^{*} \subset B^{*}$; and
(3) $\left(A^{*}\right)^{*}=A^{*}$.

A fractional ideal $A \in F^{\prime}(D)$ is called a $*$-ideal if $A=A^{*}$. We denote the set of all $*$-ideals of D by $F_{*}(D)$. A star-operation $*$ on D is said to be of finite character if $A^{*}=\bigcup\left\{J^{*} \mid J \in f(D)\right.$ with $\left.J \subset A\right\}$ for all $A \in F^{\prime}(D)$. It is well known that if $*$ is a star-operation on D, then the mapping $A \rightarrow A^{* f}$ of $F^{\prime}(D)$ into $F^{\prime}(D)$ given by $A^{* f}=\bigcup\left\{J^{*} \mid J \in f(D)\right.$ with $\left.J \subset A\right\}$ is a finite character staroperation on D. Clearly we have $A^{*}=A^{* f}$ for all $A \in f(D)$ and all staroperations $*$ on D.

The mapping on $F^{\prime}(D)$ defined by $A \rightarrow A_{v}=\left(A^{-1}\right)^{-1}$ is a star-operation on D and is called the v-operation on D, where $A^{-1}=\{x \in K \mid x A \subset D\}$. The t operation on D is given by $A \rightarrow A_{t}=\bigcup\left\{J_{v} \mid J \in f(D)\right.$ with $\left.J \subset A\right\}$, that is, $t=v_{f}$. The reader can refer to [G, Sections 32 and 34] for the basic properties of staroperations and the v-operation.

[^0]Let $A \rightarrow A^{*}$ be a star-operation on $D . A *$-ideal I is said to be $*$-finite if $I=A^{*}$ for some element A of $f(D)$. In $F_{*}(D)$, we define $A^{*} \times B^{*}=(A B)^{*}=$ $\left(A^{*} B^{*}\right)^{*}$ for all $A^{*}, B^{*} \in F_{*}(D)$. A star-operation $*$ on D is said to be arithmetisch brauchbar (abbreviated a.b.) if for all $A^{*}, B^{*}, C^{*} \in F_{*}(D)$ such that A^{*} is $*$-finite, $A^{*} \times B^{*} \subset A^{*} \times C^{*}$ implies that $B^{*} \subset C^{*}$, and is said to be endlich arithmetisch brauchbar (e.a.b.), if for all $*$-finite $A^{*}, B^{*}, C^{*} \in F_{*}(D), A^{*} \times B^{*} \subset$ $A^{*} \times C^{*}$ implies $B^{*} \subset C^{*}$.

Let X be an indeterminate over D. For each polynomial $f \in D[X]$, we denote the fractional ideal of D generated by the coefficients of f by $c(f)$. It is well known that if $A \rightarrow A^{*}$ is an e.a.b. star-operation on D, then $D_{*}=$ $\{0\} \cup\left\{f / g \mid f, g \in D[X]-\{0\}\right.$ and $\left.c(f)^{*} \subset c(g)^{*}\right\}$ is an integral domain with quotient field $K(X)$ such that $D_{*} \cap K=D$. Furthermore it is also known that D_{*} is a Bezout domain and for any finitely generated ideal A of D, we have $A D_{*} \cap K=A^{*}$ (cf. [G, Theorem (32.7)]). The integral domain D_{*} is called the Kronecker function ring of D with respect to the star-operation *.

In [OM] we introduced the notion of a semistar-operation on D. A mapping $A \rightarrow A^{*}$ on $F(D)$ is called a semistar-operation on D if the following conditions hold for all $a \in K-\{0\}$ and $A, B \in F(D)$:
(1) $(a A)^{*}=a A^{*}$;
(2) $A \subset A^{*}$; if $A \subset B$, then $A^{*} \subset B^{*}$; and
(3) $\left(A^{*}\right)^{*}=A^{*}$.

It is apparent from the definition that semistar-operations may have many properties analogous to those of star-operations.

In section 2, we show that many of results in [G, Section 32] can be extended to the case of semistar-operation and that the condition "integrally closed" on D become unnecessary in our case.

In section 3, we treat semistar-operations in the case of commutative rings with zero-divisors.

2. The integral domain case

Let $A \rightarrow A^{*}$ be a semistar-operation on D. A fractional ideal $A \in F(D)$ is called a $*$-ideal if $A=A^{*}$, and the set of $*$-ideals of D is denoted by $F_{*}(D)$. In $F_{*}(D)$, we define the product of A^{*} and B^{*} by $A^{*} \times B^{*}=(A B)^{*}=\left(A^{*} B^{*}\right)^{*} . A$ $*$-ideal I is called a $*$-finite ideal if $I=A^{*}$ for some element $A \in f(D) . A$ semistar-operation $*$ on D is said to be endlich arithmetisch brauchbar (e.a.b.) if for all $*$-finite $A^{*}, B^{*}, C^{*} \in F_{*}(D), A^{*} \times B^{*} \subset A^{*} \times C^{*}$ implies $B^{*} \subset C^{*}$ and is
said to be arithmetisch brauchbar (a.b.) if for all $A^{*}, B^{*}, C^{*} \in F_{*}(D)$ such that A^{*} is $*$-finite, $A^{*} \times B^{*} \subset A^{*} \times C^{*}$ implies that $B^{*} \subset C^{*}$. For each polynomial $f \in D[X]$, we denote the fractional ideal of D generated by the coefficients of f by $c(f)$. The fractional ideal $c(f)$ is called the content of f. We assume that $A \rightarrow A^{*}$ is an e.a.b. semistar-operation on D. Then we have the following results.

Lemma 1 (cf. [G, Lemma (32.6)]). For all $f, g \in D[X]-\{0\}, c(f g)^{*}=$ $(c(f) c(g))^{*}$.

Proof. This follows immediately from [G, Corollary (28.3)].

Proposition 2 (cf. [G, Theorem (32.7)]). Let $D_{*}=\{0\} \cup\{f / g \mid f, g \in$ $D[X]-\{0\}$ and $\left.c(f)^{*} \subseteq c(g)^{*}\right\}$. Then we have
(a) D_{*} is an integral domain with quotient field $K(X)$ such that $D_{*} \cap K=D^{*}$.
(b) D_{*} is a Bezout domain.
(c) if A is a finitely generated ideal of D, then $A D_{*} \cap K=A^{*}$.

Proof. (a) Clearly D_{*} is an integral domain with quotient field $K(X)$. Next, we shall show that $K \cap D_{*}=\bigcup\left\{a / b \in K \mid D \subset(b / a)^{*}\right\}$. If $a / b \in K \cap D_{*}$, then $(a)^{*} \subset(b)^{*}$, i.e., $(a) \subset(b)^{*}$, and so $D \subset 1 / a \times(b)^{*}=(b / a)^{*}$. Conversely, if $D \subset(b / a)^{*}$, then $(a / b) \subset D^{*}$. Moreover, $D \subset(b / a)^{*}$ if and only if $a / b \in D^{*}$. Hence our assertion follows. The proofs of (b) and (c) are the same as in those of (b) and (c) of [G, Theorem (32.7)].

Corollary 3. If * is an e.a.b. semistar-operation on D, then D^{*} is integrally closed.

Proof. Since D_{*} is a Bezout domain, D_{*} is integrally closed and then our assertion follows from Proposition 2(a).

Example 4. Let V be a valuation overring of D. Then $A \rightarrow A^{*}=A V$ is a semistar-operation on D and is denoted by $*_{(V)}$ in [OM]. In this case, $*_{(V)}$ is an e.a.b. semistar-operation on D and $D^{*}(V)=V$ is a valuation domain and is also integrally closed. Moreover, $D_{*_{(V)}}=\{0\} \cup\{f / g \mid f, g \in D[X]-\{0\}$ and $c(f) V \subset c(g) V\}$.

Remark 5. Let $S(D)$ be the set of all semistar-operations on D. For any two $*_{1}, *_{2}$ in $S(D)$, we define $*_{1} \leq *_{2}$ if $A^{*_{1}} \subset A^{*_{2}}$ for all $A \in F(D)$. Let $*_{1}$ and $*_{2}$ be two e.a.b. semistar-operations on D. If $*_{1} \leq *_{2}$, then $D_{*_{1}} \subset D_{*_{2}}$. In fact, if $f / g \in D_{*_{1}}$, then $c(f)^{*_{1}} \subset c(g)^{*_{1}}$, and then, by [OM, Lemma 16], we get $c(f)^{*_{2}}=$ $\left(c(f)^{*_{1}}\right)^{*_{2}} \subset\left(c(g)^{*_{1}}\right)^{*_{2}}=c(g)^{*_{2}}$, and hence $f / g \in D_{*_{2}}$.

For any two $*_{1}, *_{2} \in S(D), *_{1}$ and $*_{2}$ are said to be equivalent if $A^{*_{1}}=A^{*_{2}}$ for each $A \in f(D)$. If $*_{1}$ and $*_{2}$ are equivalent, then $*_{1}$ is e.a.b. iff $*_{2}$ is e.a.b.. Moreover, for any two e.a.b. semistar-operations $*_{1}, *_{2}$, it is easily seen that $*_{1}$ and $*_{2}$ are equivalent iff $D_{*_{1}}=D_{*_{2}}$.

Definition 6. Let $\left\{D_{\lambda \in \Lambda}\right\}$ be a family of overrings of D. Then $A \rightarrow A^{*}=$ $\bigcap_{\lambda} A D_{\lambda}$ is a semistar- operation on D (cf. [OM, Corollary 10]). This is called a semistar-operation of D induced by overrings $\left\{D_{\lambda}\right\}$ and is denoted by $*_{\left\{D_{\lambda}\right\}}$. If $\left\{V_{\lambda}\right\}$ is a family of valuation overrings of D, then a semistar-operation $A \rightarrow A^{*}=\bigcap_{\lambda} A V_{\lambda}$ is called a w-operation on D.

Proposition 7 (cf. [G, Theorem (32.5)]). Each w-operation of D is an a.b. semistar-operation on D.

Theorem 8 [cf. (G, Theorem (32.11)]). Let $\left\{D_{\lambda \in \Lambda}\right\}$ be a family of overrings of D. Then $D_{*\left\{D_{\lambda}\right\}}=\bigcap_{\lambda \in \Lambda} D_{*\left(D_{\lambda}\right)}$.

Proof. Let $A^{*}=\bigcap A D_{\lambda}$ for all $A \in F(D)$. Let f and g be nonzero elements of $D[X]$. If $f / g \in \bigcap_{\lambda \in \Lambda} D_{*_{\left(D_{\lambda}\right)}}$, then $c(f) D_{\lambda} \subseteq c(g) D_{\lambda}$ for all $\lambda \in \Lambda$. Then $c(f)^{*}=$ $\bigcap_{\lambda} c(f) D_{\lambda} \subseteq \bigcap_{\lambda} c(g) D_{\lambda}=c(g)^{*}$ and so $f / g \in D_{*}$ and therefore $\bigcap_{\lambda \in \Lambda} D_{*_{\left(D_{\lambda}\right)}} \subset D_{*}$. Conversely, if $f / g \in D_{*}$ then $c(f)^{*} \subseteq c(g)^{*}$ and so $c(f) D_{\lambda}=c(f)^{*} D_{\lambda} \subseteq$ $c(g)^{*} D_{\lambda}=c(g) D_{\lambda}$ for each $\lambda \in \Lambda$. Hence $f / g \in \bigcap_{\lambda \in \Lambda} D_{*_{\left(D_{\lambda}\right)}}$ and so $D_{*} \subseteq$ $\bigcap_{\lambda \in \Lambda} D_{*_{\left(D_{\lambda}\right)}}$. Thus $D_{*}=\bigcap_{\lambda \in \Lambda} D_{*_{\left(D_{\lambda}\right)}}$.

Let v be a valuation on K and let V be the valuation overring of D associated with v. For each $a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in K(X)$, we define $\bar{v}\left(a_{0}+a_{1} X+\cdots+a_{n} X^{n}\right)=\inf \left\{v\left(a_{i}\right) \mid a_{i} \neq 0\right\}$, then \bar{v} is a valuation on $K(X)$. The valuation \bar{v} is called the trivial extension of v to $K(X)$. Let W be the valuation ring associated with \bar{v}. Then, for any two elements f and g in $K[X]-$ $\{0\}, f / g \in W$ if and only if $c(f) V \subset c(g) V$.

Proposition 9 (cf. [G, Theorem (32.10)]). Let $A \rightarrow A^{*}$ be an e.a.b. semistar-operation on D and let W be a valuation overring of D_{*}, then W is the trivial extension of $V=W \cap K$ to $K(X)$.

Lemma 10. If V is a valuation overring of D, then $D_{*_{(V)}}$ is the trivial extension of V to $K(X)$.

Proof. Let f and g be non-zero elements of $D[X]-\{0\}$. Then $f / g \in D_{*_{(V)}}$ if and only if $c(f)^{*(V)} \subset c(g)^{*(V)}$, i.e., $c(f) V \subseteq c(g) V$. Hence $f / g \in D_{*_{(V)}}$ if and only if $f / g \in W$, the trivial extension of V to $K(X)$.

Corollary 11 (cf. [G, Theorem (32.11)]). Let $\left\{V_{\lambda}\right\}$ be a family of valuation overrings of D and let $A \rightarrow A^{*}=\bigcap_{\lambda} A V_{\lambda}$ be a semistar-operation on D induced by $\left\{V_{\lambda}\right\}$. Then $D_{*}=\bigcap_{\lambda} W_{\lambda}$, where W_{λ} is the trivial extension of V_{λ} to $K(X)$.

Proof. This follows from Theorem 8 and Lemma 10.
Proposition 12 (cf. [G, Theorem (32.12)]). Each e.a.b. semistar-operation * on D is equivalent to a w-operation on D.

Proof. Since D_{*} is integrally closed, we have $D_{*}=\bigcap_{\lambda} W_{\lambda}$, where $\left\{W_{\lambda}\right\}$ is the family of valuation overrings of D_{*}. For each λ, we set $V_{\lambda}=W_{\lambda} \cap K$. Then V_{λ} is a valuation overring of D and by Proposition 9, W_{λ} is the trivial extension of V_{λ} to $K(X)$. Hence, if we set $A \rightarrow A^{w}=\bigcap_{\lambda} A V_{\lambda}$, then, by Corollary 11, $D_{w}=\bigcap W_{\lambda}=D_{*}$, and hence by Remark $5 w$ and $*$ are equivalent.

Corollary 13 (cf. [G, Corollary (32.13)]). Each e.a.b. semistar-operation on D is equivalent to an a.b. semistar-operation on D.

If $\left\{V_{\lambda}\right\}$ is the family of all valuation overrings of D, then $A \rightarrow A_{b}=\bigcap_{\lambda} A V_{\lambda}$ is an a.b. semistar-operation on D and is called the b-operation on D.

Corollary 14 (cf. [G, Corollary (32.14)]). Each Kronecker function ring D_{*} of D contains D_{b}, the Kronecker function ring of D with respect to the b-operation.

Proof. If $\left\{V_{\lambda}\right\}$ is the family of all valuation overrings of D and W_{λ} is the trivial extension of V_{λ} to $K(X)$, then $D_{b}=\bigcap_{\lambda \in \Lambda} W_{\lambda}$ by Corollary 11. Next, for each e.a.b. semistar-operation $*$ on D, Proposition 12 shows that $D_{*}=\bigcap_{\lambda} W_{\lambda}$, where W_{λ} is the trivial extension of a valuation overring V_{λ} of D, and so $D_{*} \supset D_{b}$ as desired.

Proposition 15 (cf. [G, Theorem (32.15)]). Let D_{b} be the Kronecker function right of D with respect to the b-operation on D. Then
(1) If R is an overring of D and $*$ is a semistar-operation on R, then R_{*} contains D_{b}.
(2) If R is an overring of D_{b}, then R is a Kronecker function ring of $R \cap K$.

Proof. (1) It is evident that $D_{b} \subseteq R_{b}$. Then we have $D_{b} \subset R_{*}$, since $R_{b} \subset R_{*}$ by Corollary 14.
(2) Since D_{b} is a Bezout domain, R is also a Bezout domain by [C, Theorem 1.3], and so R is integrally closed. Then $R=\bigcap_{\lambda} W_{\lambda}$, where $\left\{W_{\lambda}\right\}$ is the family of valuation overrings of R. By Proposition 9, each W_{λ} is the trivial extension of $V_{\lambda}=W_{\lambda} \cap K$ to $K(X)$. Moreover, $R \cap K=\bigcap_{\lambda} V_{\lambda}$. Hence if we set $A^{*}=\bigcap_{\lambda} A V_{\lambda}$, then by Proposition 9, $(R \cap K)_{*}=\bigcap_{\lambda} W_{\lambda}=R$.

REMARK 16. If W is a valuation overring of D_{b}, then W is the trivial extension of a valuation overring $V=W \cap K$ of D by Proposition 9. Conversely, if V is a valuation overring of D, then $D_{*_{(V)}}$ is the trivial extension of V to $K(X)$ and $D_{*_{(V)}} \cap K=V$ by Lemma 10. Hence there is a one-to-one correspondence between valuation overrings of D and valuation overrings of D_{b}. If R is a Bezout domain, then the set of valuation overrings of R is in one-to-one correspondence with the set of proper prime ideals of R (cf. [C, Theorem 1.3 and Proposition 1.5]).

Proposition 17 (cf. [G, Proposition (32.16)]). Let D_{b} be the Kronecker function ring of D with respect to the b-operation. Then $\operatorname{dim} D_{b}=\operatorname{dim}_{v} D$, where $\operatorname{dim}_{v} D$ is the valuative dimension of D.

Lemma 18 (cf. [G, Lemma (32.17)]). Let $A \rightarrow A^{*}$ be a semistar-operation on D. If A is an invertible fractional ideal of D, then, for each $B \in F(D)$, $(A B)^{*}=A B^{*}$.

Proposition 19 (cf. [G, Proposition (32.18)]). D be a Prüfer domain. Then each semistar-operation on D is arithmetisch brauchbar. If $*_{1}$ and $*_{2}$ are semistaroperations on D such that $D^{*_{1}}=D^{*_{2}}$, then $*_{1}$ and $*_{2}$ are equivalent.

Proof. Let $A, B, C \in F(D)$ with $A \in f(D)$. Suppose $(A B)^{*} \subseteq(A C)^{*}$. It follows from Lemma 18 that $A B^{*}=(A B)^{*} \subset(A C)^{*}=A C^{*}$, since D is Prüfer and A is invertible. Then, $B^{*}=A^{-1} A B^{*} \subseteq A^{-1} A C^{*}=C^{*}$, which implies that $*$ is arithmetisch brauchbar. Let $*_{1}$ and $*_{2}$ be two semistar-operations on D such that $D^{*_{1}}=D^{*_{2}}$. Then, by Lemma 18, we have $A^{*_{1}}=(A D)^{*_{1}}=A D^{*_{1}}=A D^{*_{2}}=$ $(A D)^{*_{2}}=A^{*_{2}}$ for all $A \in f(D)$. Hence $*_{1}$ and $*_{2}$ are equivalent.

Proposition 20. Let $\left\{D_{\alpha} \mid \alpha \in A\right\}$ and $\left\{D_{\beta} \mid \beta \in B\right\}$ be two families of overrings of a Prüfer domain D such that $\bigcap\left\{D_{\alpha} \mid \alpha \in A\right\}=\bigcap\left\{D_{\beta} \mid \beta \in B\right\}$. Then $\left\{D_{\alpha}\right\}$ and $\left\{D_{\beta}\right\}$ induce equivalent semistar-operations on D.

Proof. Set $A^{*_{1}}=\bigcap A D_{\alpha}$ and $A^{*_{2}}=\bigcap A D_{\beta}$ for all $A \in F(D)$. Then clearly $D^{*_{1}}=\bigcap D_{\alpha}=\bigcap D_{\beta}=D^{*_{2}}$. Next, if $A \in f(D)$, then A is invertible and so, by Lemma 18, we have $A^{*_{1}}=(A D)^{*_{1}}=A D^{*_{1}}=A D^{*_{2}}=A^{*_{2}}$. Thus $*_{1}$ and $*_{2}$ are equivalent as wanted.

We shall now state our main results of this section.

Lemma 21. Let T be a Bezout overring of D. Then the semistar-operation ${ }_{(T)}$ on D is arithmetisch brauchbar.

Proof. Let A, B and C be in $F(D)$, with A finitely generated. Suppose $(A B)_{*_{(T)}} \subseteq(A C)_{*_{(T)}}$. Then $A T B T=(A B)_{*_{(T)}} \subseteq(A C)_{*_{(T)}}=A T C T$. Since $A T$ is principal, $(A T)(B T) \subseteq(A T)(C T)$ implies $B T \subseteq C T$. Hence $*_{(T)}$ is an a.b. semistar-operation on D.

Theorem 22. Let T be a Bezout overring of D. Then $D_{*_{(T)}}$ is a Bezout overring of $D[X]$ and $D_{*_{(T)}} \cap K=T$.

Proof. Since $*_{(T)}$ is e.a.b. by Lemma 21, $D_{*_{(T)}}$ is a Bezout domain and $D_{*_{(T)}} \cap K=D^{*(T)}=T$ by Proposition 2.

Proposition 23 (cf. [G, Proposition (32.19)]). Let D be a Prüfer domain, and let $\left\{D_{\alpha}\right\}$ be the set of overrings of D. The mapping $D_{\alpha} \rightarrow\left(D_{\alpha}\right)_{b}$ is a one-to-one mapping from the set $\left\{D_{\alpha}\right\}$ onto the set of overrings of D_{b}

Proof. Let R be an overring of D_{b}. Then $R=\bigcap W_{\lambda}$, where $\left\{W_{\lambda}\right\}$ is a family of valuation overrings of R. If we set $V_{\lambda}=W_{\lambda} \cap K$, then V_{λ} is a valuation overring of $R \cap K$ and $R \cap K=\bigcap V_{\lambda}$. Set $A^{*}=\bigcap A V_{\lambda}$ for all $A \in F(D)$. Then, by Proposition 20, * is equivalent to the b-operation on $R \cap K$. By Proposition 15(2), we have $R=(R \cap K)_{*}=(R \cap K)_{b}$. Thus the mapping $\pi: D_{\alpha} \rightarrow\left(D_{\alpha}\right)_{b}$ is surjective.

Next, let D_{α} and D_{β} be two overrings of D and assume that $\left(D_{\alpha}\right)_{b}=\left(D_{\beta}\right)_{b}$. Then, by Proposition 2(a), $D_{\alpha}=\left(D_{\alpha}\right)_{b}=\left(D_{\alpha}\right)_{b} \cap K=\left(D_{\beta}\right)_{b} \cap K=\left(D_{\beta}\right)_{b}=D_{\beta}$,
because, by [G, Theorem (23.4)], D_{α} and D_{β} are both integrally closed. Thus π is also injective and our proof is complete.

Proposition 24 (cf. [G, Exercise 12, p. 409]). Let V be a rank one valuation ring of the form $K(X)+M$, where M is the maximal ideal of V. If $J=K+M$, then J admits a unique S-representation and J has a unique Kronecker function ring, but J is not a Prüfer domain.

Proof. First, by [G2, Theorem A i), p. 561], J is not a Prüfer domain. Next, by [BG, Theorem 3.1], each overring of J is of the form either $D_{\lambda}+M$ or V, where $\left\{D_{\lambda}\right\}$ is the family of subrings of $K(X)$ containing K. Moreover, by [G2, Theorem A h)], $D_{\lambda}+M$ is a valuation ring of V if and only if D_{λ} is a valuation ring on $K(X)$. Now, by [G, Exercise 4, p. 249], the family of nontrivial valuation rings on $K(X)$ containing K is $\left\{K\left[X^{-1}\right]_{\left(X^{-1}\right)}\right\} \cup$ $\left\{K[X]_{(P(X))} \mid P(x)\right.$ is prime in $\left.K[X]\right\}$. In above, $K\left[X^{-1}\right]_{\left(X^{-1}\right)}$ is the valuation ring of the valuation v_{∞}, where $v_{\infty}(0)=\infty$ and $v_{\infty}(f(X))=-\operatorname{deg} f(X)$ for each $f(X) \neq 0$ in $K[X]$, and $K[X]_{(P(X))}$ is the valuation ring of the $P(X)$ adic valuation on $K(X)$. Then $\left\{K\left[X^{-1}\right]_{\left(X^{-1}\right)}+M\right\} \cup\left\{K[X]_{(P(X))}+M \mid P(X)\right.$ is prime in $K[X]\}$ gives a unique S-representation of $J=K+M$, and our assertion follows.

Proposition 25. Let $\left\{V_{\alpha} \mid \alpha \in A\right\}$ be a family of valuation overrings of D and let $\left\{W_{\beta} \mid \beta \in B\right\}$ be the family of all valuation rings W on L such that $W \cap K$ is in $\left\{V_{\alpha}\right\}$. Assume that L is an algebraic extension field of K and denote by J the integral closure of D_{*} in L, where $D_{*}=\cap\left\{V_{\alpha} \mid \alpha \in A\right\}$. Then
(1) $J=\bigcap\left\{W_{\beta} \mid \beta \in B\right\}$.
(2) Let $*^{\prime}$ and $*$ be semistar-operations on J and D induced by $\left\{W_{\beta}\right\}$ and $\left\{V_{\alpha}\right\}$ respectively. Then $J_{*^{\prime}}$ is the integral closure of D_{*} in $L(X)$.

Proof. (1) follows from [G, Exercise 14, p. 409].
(2) Let \bar{V}_{α} and \bar{W}_{β} be the trivial extension of V_{α} and W_{β} to $K(X)$ and $L(X)$ respectively. Then, by Corollary 11, $D_{*}=\bigcap\left\{\bar{V}_{\alpha} \mid \alpha \in A\right\}$ and $J_{*^{\prime}}=\bigcap\left\{\bar{W}_{\beta} \mid \beta \in B\right\}$. It is easily seen that if $\bar{W}_{\beta} \cap K=V_{\alpha}$, then $\bar{W}_{\beta} \cap K(X)=\bar{V}_{\alpha}$. Next, let W be a valuation ring on $L(X)$ such that $W \cap K(X) \in\left\{\bar{V}_{\alpha} \mid \alpha \in A\right\}$. Then by [G, Theorem (19.16)], W and $W \cap K(X)$ have the same rank, since $L(X) / K(X)$ is algebraic. Moreover, $W \cap L \in\left\{W_{\beta} \mid \beta \in B\right\}$, because $W \cap K \in\left\{V_{\alpha} \mid \alpha \in A\right\}$. Let \bar{W} be the trivial extension of $W \cap L$ to $L(X)$ and let M be the maximal ideal of $W \cap L$. Then, by [BJ, Theorem 3.6.20], $\bar{W}=(W \cap L)[X]_{M[X]}$. By [K, Theorems

39 and 68], we have height $(M)=\operatorname{height}(M[X])$, and so \bar{W} and $W \cap L$ have the same rank. On the other hand, W and $W \cap L$ also have the same rank. Then, since $W \supset \bar{W}$, we have $W=\bar{W}$. Hence our assertion also follows from [G, Exercise 14, p. 409].

Definition 26. Let $\left\{M_{\beta} \mid \beta \in B\right\}$ be the set of maximal ideals of D and set $S=D[X]-\cup\left\{M_{\beta}[X] \mid \beta \in B\right\}$, where X is an indeterminate over D. Then we denote by $D(X)$ the quotient ring $D[X]_{S}$. Then $\left\{M_{\beta} D(X) \mid \beta \in B\right\}$ is the set of maximal ideals of $D(X)$.

Proposition 27 (cf. [G. Theorem (33.3)]). If D^{\prime} is the integral closure of D, then $D(X)$ is contained in J, the Kronecker function ring of D^{\prime} with respect to the b-operation.

Proof. Let $\left\{V_{\alpha} \mid \alpha \in A\right\}$ be the set of valuation overrings of D. Then $D^{\prime}=\bigcap\left\{V_{\alpha} \mid \alpha \in A\right\}$. Here, by [G, Corollary (19.7)(2)], we may assume that each V_{α} is centered on a maximal ideal of D. By Corollary 11, $J=\left(D^{\prime}\right)_{b}=$ $\bigcap\left\{W_{\alpha} \mid \alpha \in A\right\}$, where W_{α} is the trivial extension of V_{α} to $K(X)$ and, by [BJ, Theorem 3.6.20], $W_{\alpha}=V_{\alpha}[X]_{P_{\alpha}[X]}=V_{\alpha}(X)$, where P_{α} is the maximal ideal of V_{α}. Now, let $\left\{M_{\beta} \mid \beta \in B\right\}$ be the set of maximal ideals of D. Then, by [G, Theorem (33.3)], $D(X)=\bigcap\left\{D[X]_{M_{\beta}[X]} \mid \beta \in B\right\}=\bigcap\left\{D_{M_{\beta}}(X) \mid \beta \in B\right\}$. If $P_{\alpha} \cap D=$ M_{β}, then $D_{M_{\beta}}(X) \subset V_{\alpha}(X)$, and so each $W_{\alpha}=V_{\alpha}(X)$ contains some $D_{M_{\beta}}(X)$. Hence $D(X) \subset J=\left(D^{\prime}\right)_{b}$ as wanted.

Let * be an e.a.b. semistar-operation on a domain D. We set $U^{*}=$ $\left\{g \in D^{*}[X] \mid c(g)^{*}=D^{*}\right\}$. Then U^{*} is a multiplicative system of $D^{*}[X]$.

Proposition 28 (cf. [G, Theorem (33.4)]). Let D be a domain with quotient field L, let X be an indeterminate over D, and let D_{b} be the Kronecker function ring of D with respect to the b-operation. The following conditions are equivalent:
(1) D^{b} is a Prüfer domain.
(2) $D^{b}[X]_{U^{b}}=D_{b}$.
(3) $D^{b}[X]_{U^{b}}$ is a Prüfer domain.
(4) D_{b} is a quotient ring of $D^{b}[X]_{U^{b}}$.

Proposition 29 (cf. [G, Theorem (34.11)]. Let D be a Prüfer v-multiplication ring with quotient field L. Then D is $a v$-domain, and if H is the group of divisor classes of D of finite type, the H is order isomorphic to the group of divisibility of D_{v}.

Proposition 30 (cf. [G, Exercise 6, p. 430]). Assume that D is a v-domain, that X is a set of indeterminates over D. Then the following conditions are equivalent:
(1) D is a Prüfer v-multiplication ring.
(2) D_{v} is a quotient ring of $D[X]$.

Proposition 31 (cf. [G, Proposition (36.7)]). Let D be a domain which is not a field. The following conditions are equivalent:
(1) D^{b} is almost Dedekind.
(2) $D^{b}[X]_{U^{b}}$ is almost Dedekind.
(3) D_{b} is almost Dedekind.

Proposition 32 (cf. [G, Proposition (38.7)]). In an integral domain D the following conditions are equivalent:
(a) D^{b} is a Dedekind domain.
(b) $D^{b}[X]_{U^{b}}$ is Dedekind.
(c) D_{b} is Dedekind.
(d) D_{b} is Noetherian.
(e) D_{b} is a PID.

Proposition 33 (cf. [G, Corollary (44.12)]). If D a Krull domain with quotient field K, then D_{v} is a PID.

Proposition 34 (cf. [G, Exercise 21, p. 558]). Assume that D admits a Kronecker function ring D_{*} which is a PID. Then D^{*} is a Krull domain.

3. The case of commutative rings with zero-divisors

Let R be a commutative ring with zero-divisors. A non-zero-divisor of R is called a regular element of R and an ideal I of R is said to be regular if it contains a regular element of R.

Definition 35. A commutative ring R is called a Marot ring if each regular ideal of R is generated by regular elements. Let $f(X)$ be a regular element of a polynomial ring $R[X]$. The ideal of R generated by the coefficients of $f(X)$ is called the content of $f(X)$ and is denoted by $c(f)$.

Definition 36. A commutative ring R is said to have the Property A if for any regular element $f(X)$ of $R[X]$, the content ideal $c(f)$ is a regular ideal of R.

Hereafter, a commutative ring R will denote a Marot ring with the property A and the total quotient ring of R will be denoted by K. Let $F(R)$ be the set of nonzero R-submodules of K and let $F^{\prime}(R)$ be the subset of $F(R)$ consisting of all members I of $F(R)$ such that there exists a regular element d of R with $d I \subseteq R$. Let $f(R)$ be the subset of finitely generated members of $F(R)$.

A mapping $A \rightarrow A^{*}$ of $F(R)$ into $F(R)$ is called a semistar-operation on R if the following conditions hold for all regular elements $a \in K$ and $I, J \in F(R)$:
(1) $(a I)^{*}=a I^{*}$;
(2) $I \subset I^{*}$; if $I \subset J$, then $I^{*} \subset J^{*}$; and
(3) $\left(I^{*}\right)^{*}=I^{*}$.
R is called a Bezout ring if every finitely generated regular ideal of R is a principal ideal.

Lemma 37. Let T be a Bezout overring of R, then $A \rightarrow A^{*}(T)=A T$ is an a.b. semistar-operation of R.

Proof. The proof is the same of that in Lemma 20.
Let $R_{*}=\{0\} \cup\left\{f / g \mid f, g \in R[X], g\right.$ is regular and $\left.c(f)^{*} \subseteq c(g)^{*}\right\}$. Then we have the following.

Theorem 38. Let T be a Bezout overring of R. Then $R_{*(T)}$ is a Bezout overring of $R[X]$ and $R_{*_{(T)}} \cap K=T$.

References

[BJ] S. Balcerzyk and T. Józefiak, Commutative Noetherian and Krull Rings, Ellis Horwood Limited and PWN-Polish Scientific Publishers, 1989.
[BG] E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form $D+M$, Michigan Math. J. 20 (1973), 79-95.
[C] P. M. Cohn, Bezout rings and their subrings, Proc. Camb. Philos. Soc., 64 (1968), 251264.
[G] R. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, 1972.
[G2] R. Gilmer, Multiplicative ideal theory, Queen's Series in Pure and Applied Mathematics, Queen's University, Kingston, Ontario, 1968.
[H] J. A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York and Basel, 1988.
[K] I. Kaplansky, Coummutative rings, revised ed., Univ. of Chicago Press, Chicago, 1974.
[OM] A. Okabe and R. Matsuda, Semistar-operations on integral domains, Toyama J. Math., 17 (1994), 1-21.

Department of Mathematics,
Oyama National College of Technology, Nakakuki, Oyama, Tochigi 323,
JAPAN
Department of Mathematical Sciences, Ibaraki University, Mito, Ibaraki 310, JAPAN

[^0]: Received October 24, 1995.
 Revised January 23, 1996.

