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1. Introduction

Let $D$ be a commutative integral domain with quotient field $K$ . Let $F(D)$

denote the set of non-zero fractional ideals of $D$ in the sense of $[K]$ , i.e., non-
zero R-submodules of $K$ and let $F^{\prime}(D)$ denote the subset of $F(D)$ consisting of
all members $A$ of $F(D)$ such that there exists some $0\neq d\in D$ with $dA\subset D$ .
Let $f(D)$ be the set of finitely generated members of $F(D)$ . Then $ f(D)\subset$

$F^{\prime}(D)\subset F(D)$ .
A mapping $A\rightarrow A^{*}$ of $F^{\prime}(D)$ into $F^{\prime}(D)$ is called a star-operation on $D$ if

the following conditions hold for all $a\in K-\{0\}$ and $A,B\in F^{\prime}(D)$ :

(1) $(a)^{*}=(a),$ $(aA)^{*}=aA^{*}$ ;
(2) $A\subset A^{*}$ ; if $A\subset B$, then $A^{*}\subset B^{*}$ ; and
(3) $(A^{*})^{*}=A^{*}$ .

A fractional ideal $A\in F^{\prime}(D)$ is called $a*$-ideal if $A=A^{*}$ . We denote the set
of all $*$-ideals of $D$ by $F_{*}(D)$ . A star-operation $*onD$ is said to be offinite
character if $ A^{*}=\cup$ {$J^{*}|J\in f(D)$ with $J\subset A$ } for all $A\in F^{\prime}(D)$ . It is well known
that if $*is$ a star-operation on $D$ , then the mapping $A\rightarrow A^{*}f$ of $F^{\prime}(D)$ into
$F^{\prime}(D)$ given by $ A^{*}f=\cup$ {$J^{*}|J\in f(D)$ with $J\subset A$ } is a finite character star-
operation on $D$ . Clearly we have $A^{*}=A^{*}f$ for all $A\in f(D)$ and all star-
operations $*onD$ .

The mapping on $F^{\prime}(D)$ defined by $A\rightarrow A_{v}=(A^{-1})^{-1}$ is a star-operation on
$D$ and is called the v-operation on $D$ , where $A^{-1}=\{x\in K|xA\subset D\}$ . The t-
operation on $D$ is given by $ A\rightarrow A_{l}=\cup$ {$J_{v}|J\in f(D)$ with $J\subset A$ }, that is, $t=v_{f}$ .
The reader can refer to [$G$ , Sections 32 and 34] for the basic properties of star-
operations and the v-operation.
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Let $A\rightarrow A^{*}$ be a star-operation on D. $A*$-ideal $I$ is said to be $*-finite$ if
$I=A^{*}$ for some element $A$ of $f(D)$ . In $F_{*}(D)$ , we define $A^{*}\times B^{*}=(AB)^{*}=$

$(A^{*}B^{*})^{*}$ for all $A^{*},$ $B^{*}\in F_{*}(D)$ . A star-operation $*onD$ is said to be arith-
metisch brauchbar (abbreviated a.b.) if for all $A^{*},$ $B^{*},$ $C^{*}\in F_{*}(D)$ such that $A^{*}$

is $*-finite,$ $A^{*}\times B^{*}\subset A^{*}\times C^{*}$ implies that $B^{*}\subset C^{*}$ , and is said to be endlich
arithmetisch brauchbar (e.a. $b.$ ), if for all $*-finiteA^{*},$ $B^{*},$ $C^{*}\in F_{*}(D),$ $ A^{*}\times B^{*}\subset$

$A^{*}\times C^{*}$ implies $B^{*}\subset C^{*}$ .
Let $X$ be an indeterminate over $D$ . For each polynomial $f\in D[X]$ , we

denote the fractional ideal of $D$ generated by the coefficients of $f$ by $c(f)$ . It
is well known that if $A\rightarrow A^{*}$ is an e.a. $b$ . star-operation on $D$ , then $D_{*}=$

$\{0\}\cup$ {$f/g|f,$ $g\in D[X]-\{0\}$ and $c(f)^{*}\subset c(g)^{*}$ } is an integral domain with
quotient field $K(X)$ such that $D_{*}\cap K=D$ . Furthermore it is also known that $D_{*}$

is a Bezout domain and for any finitely generated ideal $A$ of $D$ , we have
$AD_{*}\cap K=A^{*}$ (cf. $[G$ , Theorem (32.7)]). The integral domain $D_{*}$ is called the
Kronecker function ring of $D$ with respect to the star-operation $*$ .

In [OM] we introduced the notion of a semistar-operation on $D$ . A mapping
$A\rightarrow A^{*}$ on $F(D)$ is called a semistar-operation on $D$ if the following conditions
hold for all $a\in K-\{0\}$ and $A,$ $B\in F(D)$ :

(1) $(aA)^{*}=aA^{*}$ ;
(2) $A\subset A^{*}$ ; if $\Lambda\subset B$, then $A^{*}\subset B^{*}$ ; and
(3) $(A^{*})^{*}=A^{*}$ .

It is apparent from the definition that semistar-operations may have many
properties analogous to those of star-operations.

In section 2, we show that many of results in [$G$ , Section 32] can be
extended to the case of semistar-operation and that the condition “integrally
closed” on $D$ become unnecessary in our case.

In section 3, we treat semistar-operations in the case of commutative rings
with zero-divisors.

2. The integral domain case

Let $A\rightarrow A^{*}$ be a semistar-operation on $D$ . A fractional ideal $A\in F(D)$ is
called a $*$-ideal if $A=A^{*}$ , and the set $of*$-ideals of $D$ is denoted by $F_{*}(D)$ . In
$F_{*}(D)$ , we define the product of $A^{*}$ and $B^{*}$ by $A^{*}\times B^{*}=(AB)^{*}=(A^{*}B^{*})^{*}$ . $A$

$*$-ideal $I$ is called a $*-finite$ ideal if $I=A^{*}$ for some element $A\in f(D)$ . $A$

semistar-operation $*onD$ is said to be endlich arithmetisch brauchbar (e.a. $b.$ )

if for all $*-finiteA^{*},$ $B^{*},$ $C^{*}\in F_{*}(D),$ $A^{*}\times B^{*}\subset A^{*}\times C^{*}$ implies $B^{*}\subset C^{*}$ and is
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said to be arithmetisch brauchbar (a.b.) if for all $A^{*},$ $B^{*},$ $C^{*}\in F_{*}(D)$ such that
$A^{*}$ is $*-finite,$ $A^{*}\times B^{*}\subset A^{*}\times C^{*}$ implies that $B^{*}\subset C^{*}$ . For each polynomial
$f\in D[X]$ , we denote the fractional ideal of $D$ generated by the coefficients of $f$

by $c(f)$ . The fractional ideal $c(f)$ is called the content of $f$ . We assume that
$A\rightarrow A^{*}$ is an e.a. $b$ . semistar-operation on $D$ . Then we have the following
results.

LEMMA 1 (cf. $[G$ , Lemma (32.6)]). For all $f,$ $g\in D[X]-\{0\},$ $c(fg)^{*}=$

$(c(f)c(g))^{*}$

PROOF. This follows immediately from [$G$ , Corollary (28.3)].

PROPOSITION 2 (cf. $[G$ , Theorem (32.7)]). Let $D_{*}=$ $\{0\}\cup\{f/g|f,$ $ g\in$

$D[X]-\{0\}$ and $c(f)^{*}\subseteq c(g)^{*}$ }. Then we have

(a) $D_{*}$ is an integral domain with quotient field $K(X)$ such that $D_{*}\cap K=D^{*}$ .
(b) $D_{*}$ is a Bezout domain.
(c) if $A$ is a finite $ly$ generated ideal of $D$ , then $AD_{*}\cap K=A^{*}$ .

PROOF. (a) Clearly $D_{*}$ is an integral domain with quotient field $K(X)$ .
Next, we shall show that $K\cap D_{*}=\cup\{a/b\in K|D\subset(b/a)^{*}\}$ . If $a/b\in K\cap D_{*}$ ,
then $(a)^{*}\subset(b)^{*}$ , i.e., $(a)\subset(b)^{*}$ , and so $D\subset 1/a\times(b)^{*}=(b/a)^{*}$ . Conversely, if
$D\subset(b/a)^{*}$ , then $(a/b)\subset D^{*}$ . Moreover, $D\subset(b/a)^{*}$ if and only if $a/b\in D^{*}$ .
Hence our assertion follows. The proofs of (b) and (c) are the same as in those
of (b) and (c) of [$G$ , Theorem (32.7)].

COROLLARY 3. If $*$ is an e.a.b. semistar-operation on $D$ , then $D^{*}$ is
integrafly closed.

PROOF. Since $D_{*}$ is a Bezout domain, $D_{*}$ is integrally closed and then our
assertion follows from Proposition 2(a).

EXAMPLE 4. Let $V$ be a valuation overring of $D$ . Then $A\rightarrow A^{*}=AV$ is a
semistar-operation on $D$ and is denoted by $*(V)$ in [OM]. In this case, $*(V)$ is
an e.a. $b$ . semistar-operation on $D$ and $D^{*}(V)=V$ is a valuation domain and
is also integrally closed. Moreover, $D_{*}(V)=\{0\}\cup\{f/g|f,$ $g\in D[X]-\{0\}$ and
$c(f)V\subset c(g)V\}$ .
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REMARK 5. Let $S(D)$ be the set of all semistar-operations on $D$ . For any
two $*1*2$ in $S(D)$ , we define $*1\leq*2$ if $A^{*}1\subset A^{*}2$ for all $A\in F(D)$ . Let $*1$ and
$*2$ be two e.a. $b$ . semistar-operations on D. $If*1\leq*2$ , then $D_{*}1\subset D_{*}2$ In fact, if
$f/g\in D_{*1}$ , then $c(f)^{*}1\subset c(g)^{*}\mathfrak{l}$ and then, by [OM, Lemma 16], we get $c(f)^{*}2=$

$(c(f)^{*}1)^{*}2\subset(c(g)^{*}1)^{*}2=c(g)^{*}2$ and hence $f/g\in D_{*}2$

For any two $*l,$ $*2\in S(D),$ $*1$ and $*2$ are said to be equivalent if $A^{*}l=A^{*2}$

for each $A\in f(D)$ . $If*\iota$ and $*2$ are equivalent, then $*1$ is e.a. $b$ . $iff*2$ is e.a. $b.$ .
Moreover, for any two e.a. $b$ . semistar-operations $*1*2$ , it is easily seen that $*1$

and $*2$ are equivalent iff $D_{*}|=D_{*}2$

DEFINITION 6. Let $\{D_{\lambda\in\Lambda}\}$ be a family of overrings of $D$ . Then $A\rightarrow A^{*}=$

$\bigcap_{\lambda}AD_{\lambda}$ is a semistar- operation on $D$ (cf. [OM, Corollary 10]). This is called a
semistar-operation of $D$ induced by overrings $\{D_{\lambda}\}$ and is denoted by $*\{D_{\lambda}\}$ . If
$\{V_{\lambda}\}$ is a family of valuation overrings of $D$ , then a semistar-operation
$A\rightarrow A^{*}=\bigcap_{\lambda}$ $A$ $V_{\lambda}$ is called a w-operation on $D$ .

PROPOSITION 7 (cf. $[G$ , Theorem (32.5)]). Each w-operation of $D$ is an $a.b$.
semistar-operation on $D$ .

THEOREM 8 [cf. ( $G$ , Theorem (32.11)]). Let $\{D_{\lambda\in\Lambda}\}$ be a family of overrings

of D. Then $D_{*\{D_{\lambda}\}}=\bigcap_{\lambda\in\Lambda}D_{*}(D_{\lambda})$

PROOF. Let $A^{*}=\cap AD_{\lambda}$ for all $A\in F(D)$ . Let $f$ and $g$ be nonzero elements
of $D[X]$ . If $f/g\in\bigcap_{\lambda\in\Lambda}D_{*}(D_{\lambda})$ then $c(f)D_{\lambda}\subseteq c(g)D_{\lambda}$ for all $\lambda\in\Lambda$ . Then $c(f)^{*}=$

$\bigcap_{\lambda}c(f)D_{\lambda}\subseteq\bigcap_{\lambda}c(g)D_{\lambda}=c(g)^{*}$ and so $f/g\in D_{*}$ and therefore $\bigcap_{\lambda\in\Lambda}D_{*}(D_{\lambda})\subset D_{*}$ .
Conversely, if $f/g\in D_{*}$ then $c(f)^{*}\subseteq c(g)^{*}$ and so $ c(f)D_{\lambda}=c(f)^{*}D_{\lambda}\subseteq$

$c(g)^{*}D_{\lambda}=c(g)D_{\lambda}$ for each $\lambda\in\Lambda$ . Henoe $f/g\in\bigcap_{\lambda\in\Lambda}D_{*}(D_{\lambda})$ and so $ D_{*}\subseteq$

$\bigcap_{\lambda\in A}D_{*}(D_{\lambda})$ Thus $D_{*}=\bigcap_{\lambda\in A}D_{*}(D_{\lambda})$

Let $v$ be a valuation on $K$ and let $V$ be the valuation overring of $D$

associated with $v$ . For each $a_{0}+a_{1}X+\cdots+a_{n}X^{n}\in K(X)$ , we define
$\overline{v}(a_{0}+a_{1}X+\cdots+a_{n}X^{n})=\inf\{v(a_{i})|a_{i}\neq 0\}$ , then $\overline{v}$ is a valuation on $K(X)$ . The
valuation $\overline{v}$ is called the trivial extension of $v$ to $K(X)$ . Let $W$ be the valua-
tion ring associated with $\overline{v}$ . Then, for any two elements $f$ and $g$ in $K[X]-$

$\{0\},$ $f/g\in W$ if and only if $c(f)V\subset c(g)V$ .

PROPOSITION 9 (cf. $[G$ , Theorem (32.10)]). Let $A\rightarrow A^{*}$ be an e.a.b.
semistar-operation on $D$ and let $W$ be a valuation overring of $D_{*}$ , then $W$ is the
trivial extension of $V=W\cap K$ to $K(X)$ .
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LEMMA 10. If $V$ is a valuation overring of $D$, then $D_{*}(V)$ is the trivial
extension of $V$ to $K(X)$ .

PROOF. Let $f$ and $g$ be non-zero elements of $D[X]-\{0\}$ . Then $f/g\in D_{*}(V)$

if and only if $c(f)^{*}(V)\subset c(g)^{*}(V)$ i.e., $c(f)V\subseteq c(g)V$ . Hence $f/g\in D_{*}(V)$ if and
only if $f/g\in W$ , the trivial extension of $V$ to $K(X)$ .

COROLLARY 11 (cf. $[G$ , Theorem (32.11)]). Let $\{V_{\lambda}\}$ be a family of
valuation overrings of $D$ and let $A\rightarrow A^{*}=\bigcap_{\lambda}AV_{\lambda}$ be a semistar-operation on $D$

induced by $\{V_{\lambda}\}$ . Then $D_{*}=\bigcap_{\lambda}W_{\lambda}$ , where $W_{\lambda}$ is the trivial extension of $V_{\lambda}$ to
$K(X)$ .

PROOF. This follows from Theorem 8 and Lemma 10.

PROPOSITION 12 (cf. $[G$ , Theorem (32.12)]). Each $e.a.b$ . $semistar- operation*$

on $D$ is equivalent to a w-operation on $D$ .

PROOF. Since $D_{*}$ is integrally closed, we have $D_{*}=\bigcap_{\lambda}W_{\lambda}$ , where $\{W_{\lambda}\}$ is
the family of valuation overrings of $D_{*}$ . For each $\lambda$ , we set $V_{\lambda}=W_{\lambda}\cap K$ . Then

$V_{\lambda}$ is a valuation overring of $D$ and by Proposition 9, $W_{\lambda}$ is the trivial extension
of $V_{\lambda}$ to $K(X)$ . Hence, if we set $A\rightarrow A^{w}=\bigcap_{\lambda}$ A $V_{\lambda}$ , then, by Corollary 11,
$D_{w}=\cap W_{\lambda}=D_{*}$ , and hence by Remark 5 $w$ and $*are$ equivalent.

COROLLARY 13 (cf. $[G$ , Corollary (32.13)]). Each e.a.b. semistar-operation
on $D$ is equivalent to an $a.b$ . semistar-operation on $D$ .

If $\{V_{\lambda}\}$ is the family of all valuation overrings of $D$ , then $A\rightarrow A_{b}=\bigcap_{\lambda}$ $A$ $V_{\lambda}$

is an a.b. semistar-operation on $D$ and is called the b-operation on $D$ .

COROLLARY 14 (cf. $[G$ , Corollary (32.14)]). Each Kronecker function ring
$D_{*}$ of $D$ contains $D_{b}$ , the Kronecker function ring of $D$ with respect to the
b-operation.

PROOF. If $\{V_{\lambda}\}$ is the family of all valuation overrings of $D$ and $W_{\lambda}$ is the
trivial extension of $V_{\lambda}$ to $K(X)$ , then $D_{b}=\bigcap_{\lambda\in\Lambda}W_{\lambda}$ by Corollary 11. Next, for
each e.a. $b$ . semistar-operation $*onD$ , Proposition 12 shows that $D_{*}=\bigcap_{\lambda}W_{\lambda}$ ,
where $W_{\lambda}$ is the trivial extension of a valuation overring $V_{\lambda}$ of $D$ , and so
$D_{*}\supset D_{b}$ as desired.

PROPOSITION 15 (cf. $[G$ , Theorem (32.15)]). Let $D_{b}$ be the Kronecker

function right of $D$ with respect to the b-operation on D. Then
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(1) If $R$ is an overring of $D$ and $*is$ a semistar-operation on $R$, then $R_{*}$

contains $D_{b}$ .
(2) If $R$ is an overring of $D_{b}$ , then $R$ is a Kronecker function ring of $R\cap K$ .

PROOF. (1) It is evident that $D_{b}\subseteq R_{b}$ . Then we have $D_{b}\subset R_{*}$ , since
$R_{b}\subset R_{*}$ by Corollary 14.

(2) Since $D_{b}$ is a Bezout domain, $R$ is also a Bezout domain by $[C$ ,
Theorem 1.3], and so $R$ is integrally closed. Then $R=\bigcap_{\lambda}W_{\lambda}$ , where $\{W_{\lambda}\}$ is the
family of valuation overrings of $R$ . By Proposition 9, each $W_{\lambda}$ is the trivial
extension of $V_{\lambda}=W_{\lambda}\cap K$ to $K(X)$ . Moreover, $R\cap K=\bigcap_{\lambda}V_{\lambda}$ . Hence if we set
$A^{*}=\bigcap_{\lambda}$ A $V_{\lambda}$ , then by Proposition 9, $(R\cap K)_{*}=\bigcap_{\lambda}W_{\lambda}=R$ .

REMARK 16. If $W$ is a valuation overring of $D_{b}$ , then $W$ is the trivial
extension of a valuation overring $V=W\cap K$ of $D$ by Proposition 9. Con-
versely, if $V$ is a valuation overring of $D$ , then $D_{*}(V)$ is the trivial extension of $V$

to $K(X)$ and $D_{*}(V)\cap K=V$ by Lemma 10. Hence there is a one-to-one cor-
respondence between valuation overrings of $D$ and valuation overrings of $D_{b}$ . If
$R$ is a Bezout domain, then the set of valuation overrings of $R$ is in one-to-one
correspondence with the set of proper prime ideals of $R$ (cf. [$C$ , Theorem 1.3
and Proposition 1.5]).

PROPOSITION 17 (cf. $[G$ , Proposition (32.16)]). Let $D_{b}$ be the Kronecker
function ring of $D$ with respect to the b-operation. Then $dimD_{b}=dim_{v}D$ , where
$dim_{v}D$ is the valuative dimension of $D$ .

LEMMA 18 (cf. $[G$ , Lemma (32.17)]). Let $A\rightarrow A^{*}be$ a semistar-operation on
D. If $A$ is an invertible fractional ideal of $D$ , then, for each $B\in F(D)$ ,
$($AB$)^{*}=AB^{*}$ .

PROPOSITION 19 (cf. $[G$ , Proposition (32.18)]). $D$ be a Prufer domain. Then
each semistar-operation on $D$ is arithmetisch brauchbar. $If*1and*2$ are semistar-
operations on $D$ such that $D^{*}l=D^{*}2$ then $*1$ and $*2$ are equivalent.

PROOF. Let $A,$ $B,$ $C\in F(D)$ with $A\in f(D)$ . Suppose $($AB$)^{*}\subseteq(AC)^{*}$ . It fol-
lows from Lemma 18 that $AB^{*}=(AB)^{*}\subset(AC)^{*}=AC^{*}$ , since $D$ is Pr\"ufer and
$A$ is invertible. Then, $B^{*}=A^{-1}AB^{*}\subseteq A^{-1}AC^{*}=C^{*}$ , which implies that $*is$

arithmetisch brauchbar. Let $*1$ and $*2$ be two semistar-operations on $D$ such
that $D^{*\iota}=D^{*}2$ Then, by Lemma 18, we have $A^{*}l=(AD)^{*}1=AD^{*}\mathfrak{l}=AD^{*}2=$

$(AD)^{*}2=A^{*}2$ for all $A\in f(D)$ . Hence $*1$ and $*2$ are equivalent.
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PROPOSITION 20. Let $\{D_{\alpha}|\alpha\in A\}$ and $\{D_{\beta}|\beta\in B\}$ be two families of over-
rings of a Prufer domain $D$ such that $\cap\{D_{\alpha}|\alpha\in A\}=\cap\{D_{\beta}|\beta\in B\}$ . Then $\{D_{\alpha}\}$

and $\{D_{\beta}\}$ induce equivalent semistar-operations on $D$ .

PROOF. Set $A^{*}1=\cap AD_{\alpha}$ and $A^{*}2=\cap AD_{\beta}$ for all $A\in F(D)$ . Then clearly
$D^{*\iota}=\cap D_{\alpha}=\cap D_{\beta}=D^{*}2$ Next, if $A\in f(D)$ , then $A$ is invertible and so, by
Lemma 18, we have $A^{*\iota}=(AD)^{*}1=AD^{*1}=AD^{*}2=A^{*}2$ Thus $*1$ and $*2$ are
equivalent as wanted.

We shall now state our main results of this section.

LEMMA 21. Let $T$ be a Bezout overring of D. Then the semistar-operation
$*(T)$ on $D$ is arithmetisch brauchbar.

PROOF. Let $A,$ $B$ and $C$ be in $F(D)$ , with $A$ finitely generated. Suppose
$(AB)_{*}(T)\subseteq(AC)_{*}(T)$ Then $ATBT=(AB)_{*}(T)\subseteq(AC)_{*}(T)=ATCT$ . Since $AT$ is
principal, $(AT)(BT)\subseteq(AT)(CT)$ implies $BT\subseteq CT$ . Hence $*(T)$ is an a.b.
semistar-operation on $D$ .

THEOREM 22. Let $T$ be a Bezout overring of D. Then $D_{*}(T)$ is a Bezout
overring of $D[X]$ and $D_{*}(T)\cap K=T$ .

PROOF. Since $*(T)$ is e.a. $b$ . by Lemma 21, $D_{*}(T)$ is a Bezout domain and
$D_{*}(T)\cap K=D^{*}(T)=T$ by Proposition 2.

PROPOSITION 23 (cf. $[G$ , Proposition (32.19)]). Let $D$ be a Prufer domain,
and let $\{D_{\alpha}\}$ be the set of overrings ofD. The mapping $D_{\alpha}\rightarrow(D_{\alpha})_{b}$ is $a$ one-to-one
mapping from the set $\{D_{\alpha}\}$ onto the set of overrings of $D_{b}$

PROOF. Let $R$ be an overring of $D_{b}$ . Then $R=\cap W_{\lambda}$ , where $\{W_{\lambda}\}$ is a
family of valuation overrings of $R$ . If we set $V_{\lambda}=W_{\lambda}\cap K$ , then $V_{\lambda}$ is a
valuation overring of $R\cap K$ and $R\cap K=\cap V_{\lambda}$ . Set $A^{*}=\cap AV_{\lambda}$ for all
$A\in F(D)$ . Then, by Proposition 20, $*is$ equivalent to the b-operation on $R\cap K$ .
By Proposition 15(2), we have $R=(R\cap K)_{*}=(R\cap K)_{b}$ . Thus the mapping
$\pi$ : $D_{\alpha}\rightarrow(D_{\alpha})_{b}$ is surjective.

Next, let $D_{\alpha}$ and $D_{\beta}$ be two overrings of $D$ and assume that $(D_{\alpha})_{b}=(D_{\beta})_{b}$ .
Then, by Proposition 2(a), $D_{\alpha}=(D_{\alpha})_{b}=(D_{\alpha})_{b}\cap K=(D_{\beta})_{b}\cap K=(D_{\beta})_{b}=D_{\beta}$ ,
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because, by [$G$ , Theorem (23.4)], $D_{\alpha}$ and $D_{\beta}$ are both integrally closed. Thus $\pi$ is
also injective and our proof is complete.

PROPOSITION 24 (cf. $[G$ , Exercise 12, p. 409]). Let $V$ be a rank one val-
uation ring of the form $K(X)+M$ , where $M$ is the maximal ideal of V. If
$J=K+M$, then $J$ admits a unique S-representation and $J$ has a unique Kro-
necker function ring, but $J$ is not a Prufer domain.

PROOF. First, by [G2, Theorem A i), p. 561], $J$ is not a Pmfer domain.
Next, by [BG, Theorem 3.1], each overring of $J$ is of the form either $D_{\lambda}+M$

or $V$, where $\{D_{\lambda}\}$ is the family of subrings of $K(X)$ containing $K$ . Moreover,
by [G2, Theorem A $h)$ ], $D_{\lambda}+M$ is a valuation ring of $V$ if and only if $D_{\lambda}$

is a valuation ring on $K(X)$ . Now, by [$G$ , Exercise 4, p. 249], the family
of nontrivial valuation rings on $K(X)$ containing $K$ is $\{K[X^{-1}]_{(X^{-1})}\}\cup$

{ $K[X]_{(P(X))}|P(x)$ is prime in $K[X]$ }. In above, $K[X^{-1}]_{(X^{-1})}$ is the valuation
ring of the valuation $v_{\infty}$ , where $ v_{\infty}(0)=\infty$ and $v_{\infty}(f(X))=-degf(X)$ for
each $f(X)\neq 0$ in $K[X]$ , and $K[X]_{(P(X))}$ is the valuation ring of the $P(X)-$

adic valuation on $K(X)$ . Then $\{K[X^{-1}]_{(X^{-1})}+M\}\cup\{K[X]_{(P(X))}+M|P(X)$ is
prime in $K[X]$ } gives a unique S-representation of $J=K+M$ , and our assertion
follows.

PROPOSITION 25. Let $\{V_{\alpha}|\alpha\in A\}$ be a family of valuation overrings of $D$ and
let $\{W_{\beta}|\beta\in B\}$ be the family of all valuation rings $W$ on $L$ such that $W\cap K$ is in
$\{V_{\alpha}\}$ . Assume that $L$ is an algebraic extension field of $K$ and denote by $J$ the
integral closure of $D_{*}$ in $L$, where $D_{*}=\cap\{V_{\alpha}|\alpha\in A\}$ . Then

(1) $J=\cap\{W_{\beta}|\beta\in B\}$ .
(2) Let $*^{\prime}$ and $*be$ semistar-operations on $J$ and $D$ induced by $\{W_{\beta}\}$ and

$\{V_{\alpha}\}$ respectively. Then $J_{*}$ , is the integral closure of $D_{*}$ in $L(X)$ .

PROOF. (1) follows from [$G$ , Exercise 14, p. 409].

(2) Let $V_{\alpha}$ and $\overline{W}_{\beta}$ be the trivial extension of $V_{\alpha}$ and $W_{\beta}$ to $K(X)$ and $L(X)$

respectively. Then, by Corollary 11, $D_{*}=\cap\{\overline{V}_{\alpha}|\alpha\in A\}$ and $J_{*}/=\cap\{\overline{W}_{\beta}|\beta\in B\}$ .
It is easily seen that if $\overline{W}_{\beta}\cap K=V_{\alpha}$ , then $\overline{W}_{\beta}\cap K(X)=V_{\alpha}$ . Next, let $W$ be
a valuation ring on $L(X)$ such that $W\cap K(X)\in\{V_{\alpha}|\alpha\in A\}$ . Then by $[G$ ,

Theorem (19.16)], $W$ and $W\cap K(X)$ have the same rank, since $L(X)/K(X)$ is
algebraic. Moreover, $W\cap L\in\{W_{\beta}|\beta\in B\}$ , because $W\cap K\in\{V_{\alpha}|\alpha\in A\}$ . Let $\overline{W}$

be the trivial extension of $W\cap L$ to $L(X)$ and let $M$ be the maximal ideal of
$W\cap L$ . Then, by [BJ, Theorem 3.6.20], $\overline{W}=(W\cap L)[X]_{M[X]}$ . By [$K$ , Theorems
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39 and 68], we have height $(M)=height(M[X])$ , and so $\overline{W}$ and $W\cap L$ have the
same rank. On the other hand, $W$ and $W\cap L$ also have the same rank. Then,
since $W\supset\overline{W}$ , we have $W=\overline{W}$ . Hence our assertion also follows from $[G$ ,

Exercise 14, p. 409].

DEFINITION 26. Let $\{M_{\beta}|\beta\in B\}$ be the set of maximal ideals of $D$ and set
$S=D[X]-\cup\{M_{\beta}[X]|\beta\in B\}$ , where $X$ is an indeterminate over $D$ . Then we
denote by $D(X)$ the quotient ring $D[X]_{S}$ . Then $\{M_{\beta}D(X)|\beta\in B\}$ is the set of
maximal ideals of $D(X)$ .

PROPOSITION 27 (cf. [G. Theorem (33.3)]). If $D^{\prime}$ is the integral closure of $D$ ,
then $D(X)$ is contained in $J$, the Kronecker function ring of $D^{\prime}$ with respect to the
b-operation.

PROOF. Let $\{V_{\alpha}|\alpha\in\Lambda\}$ be the set of valuation overnings of $D$ . Then
$D^{\prime}=\cap\{V_{\alpha}|\alpha\in A\}$ . Here, by [$G$ , Corollary $(19.7)(2)$ ], we may assume that
each $V_{\alpha}$ is centered on a maximal ideal of $D$ . By Corollary 11, $J=(D^{\prime})_{b}=$

$\cap\{W_{\alpha}|\alpha\in A\}$ , where $W_{\alpha}$ is the trivial extension of $V_{\alpha}$ to $K(X)$ and, by [BJ,

Theorem 3.6.20], $W_{\alpha}=V_{\alpha}[X]_{P_{\alpha}[X]}=V_{\alpha}(X)$ , where $P_{\alpha}$ is the maximal ideal of
$V_{\alpha}$ . Now, let $\{M_{\beta}|\beta\in B\}$ be the set of maximal ideals of $D$ . Then, by $[G$ ,
Theorem (33.3)], $D(X)=\cap\{D[X]_{M_{\beta}[X]}|\beta\in B\}=\cap\{D_{M_{\beta}}(X)|\beta\in B\}$ . If $P_{\alpha}\cap D=$

$M_{\beta}$ , then $D_{M_{\beta}}(X)\subset V_{\alpha}(X)$ , and so each $W_{\alpha}=V_{\alpha}(X)$ contains some $D_{M_{\beta}}(X)$ .
Hence $D(X)\subset J=(D^{\prime})_{b}$ as wanted.

Let $*$ be an e.a. $b$ . semistar-operation on a domain $D$ . We set $U^{*}=$

$\{g\in D^{*}[X]|c(g)^{*}=D^{*}\}$ . Then $U^{*}$ is a multiplicative system of $D^{*}[X]$ .

PROPOSITION 28 (cf. $[G$ , Theorem (33.4)]). Let $D$ be a domain with quotient

field $L$ , let $X$ be an indeterminate over $D$, and let $D_{b}$ be the Kronecker function
ring of $D$ with respect to the b-operation. The following conditions are equivalent:

(1) $D^{b}$ is a Prufer domain.
(2) $D^{b}[X]_{U^{b}}=D_{b}$ .
(3) $D^{b}[X]_{U^{b}}$ is a Prufer domain.
(4) $D_{b}$ is a quotient ring of $D^{b}[X]_{U^{b}}$ .

PROPOSITION 29 (cf. [$G$ , Theorem (34.11)]. Let $D$ be a Prufer v-multi-
plication ring with quotient field L. Then $D$ is a v-domain, and $\iota fH$ is the group
of divisor classes of $D$ offinite type, the $H$ is order isomorphic to the group of
divisibility of $D_{v}$ .
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PROPOSITION 30 (cf. $[G$ , Exercise 6, p. 430]). Assume that $D$ is a v-domain,
that $X$ is a set of indeterminates over D. Then the following conditions are
equivalent:

(1) $D$ is a Prufer v-multiplication ring.
(2) $D_{v}$ is a quotient ring of $D[X]$ .

PROPOSITION 31 (cf. $[G$ , Proposition (36.7)]). Let $D$ be a domain which is
not a field. The following conditions are equivalent:

(1) $D^{b}$ is almost Dedekind.
(2) $D^{b}[X]_{U^{b}}$ is almost Dedekind.
(3) $D_{b}$ is almost Dedekind.

PROPOSITION 32 (cf. $[G$ , Proposition (38.7)]). In an integral domain $D$ the
following conditions are equivalent:

(a) $D^{b}$ is a Dedekind domain.
(b) $D^{b}[X]_{U^{b}}$ is Dedekind.
(c) $D_{b}$ is Dedekind.
(d) $D_{b}$ is Noetherian.
(e) $D_{b}$ is a $PID$ .

PROPOSITION 33 (cf. $[G$ , Corollary (44.12)]). If $D$ a Krull domain with
quotient field $K$, then $D_{v}$ is a $PID$ .

PROPOSITION 34 (cf. $[G$ , Exercise 21, p. 558]). Assume that $D$ admits a
Kronecker function ring $D_{*}$ which is a $PID$ . Then $D^{*}$ is a Krull domain.

3. The case of commutative rings with zero-divisors

Let $R$ be a commutative ring with zero-divisors. A non-zero-divisor of $R$ is
called a regular element of $R$ and an ideal $I$ of $R$ is said to be regular if it
contains a regular element of $R$ .

DEFINITION 35. A commutative ring $R$ is called a Marot ring if each
regular ideal of $R$ is generated by regular elements. Let $f(X)$ be a regular
element of a polynomial ring $R[X]$ . The ideal of $R$ generated by the coefficients
of $f(X)$ is called the content of $f(X)$ and is denoted by $c(f)$ .

DEFINITION 36. A commutative ring $R$ is said to have the Property $A$ if for
any regular element $f(X)$ of $R[X]$ , the content ideal $c(f)$ is a regular ideal of $R$ .
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Hereafter, a commutative ring $R$ will denote a Marot ring with the prop-
erty $A$ and the total quotient ring of $R$ will be denoted by $K$ . Let $F(R)$ be the
set of nonzero R-submodules of $K$ and let $F^{\prime}(R)$ be the subset of $F(R)$ con-
sisting of all members $I$ of $F(R)$ such that there exists a regular element $d$

of $R$ with $dI\subseteq R$ . Let $f(R)$ be the subset of finitely generated members of
$F(R)$ .

A mapping $A\rightarrow A^{*}$ of $F(R)$ into $F(R)$ is called a semistar-operation on $R$ if
the following conditions hold for all regular elements $a\in K$ and $I,J\in F(R)$ :

(1) $(aI)^{*}=aI^{*};$

(2) $I\subset I^{*}$ ; if $I\subset J$ , then $I^{*}\subset J^{*}$ ; and
(3) $(I^{*})^{*}=I^{*}$ .
$R$ is called a Bezout ring if every finitely generated regular ideal of $R$ is a

principal ideal.

LEMMA 37. Let $T$ be a Bezout overring of $R$, then $A\rightarrow A^{*}(T)=AT$ is an
$a.b$ . semistar-operation of $R$ .

PROOF. The proof is the same of that in Lemma 20.

Let $ R_{*}=\{0\}\cup$ {$f/g|f,$ $g\in R[X],$ $g$ is regular and $c(f)^{*}\subseteq c(g)^{*}$ }. Then we
have the following.

THEOREM 38. Let $T$ be a Bezout overring of R. Then $R_{*(T)}$ is a Bezout
overring of $R[X]$ and $R_{*}(T)\cap K=T$ .
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