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1. Introduction

Throughout this paper by a space we mean a topological space. Let $X$ be
a space and $A$ its subspace. Then $A$ is said to be $C^{*}$ -embedded (resp. C-
embedded) in $X$ if every bounded real-valued (resp. real-valued) continuous
function on $A$ can be extended to a continuous function over $X$ . For an infinite
cardinal number $\gamma,$

$A$ is said to be $P^{\gamma}$ -embedded in $X$ if for every locally finite
cozero-set cover $\mathscr{U}$ of $A$ with Card $\mathscr{U}\leq\gamma$ there exists a locally finite cozero-set
cover $\mathscr{V}$ of $X$ such that $\gamma\cap A(=\{V\cap A|V\in\gamma\})<(=refines)\mathscr{U};$ $A$ is P-
embedded in $X$ if $A$ is $P^{\gamma}$ -embedded in $X$ for every $\gamma$ . $P^{\gamma_{-}}$ and P-embeddings
were originally introduced by Shapiro [16]. For the case $\gamma=\aleph_{0}$ it is known that
$P^{\aleph_{0}}$ -embedding coincides with C-embedding. And a well-known fact is that
collectionwise normal spaces are those spaces in which every closed subset is P-
embedded. For basic facts of these embeddings the reader is referred to Al\‘o and
Shapiro [1] and Hoshina [3].

As for normality of product spaces we have known the following results due
to Morita [4] and Rudin and Starbird [15], respectively, that a Hausdorff space
$X$ is $\gamma$-paracompact normal iff $X\times Y$ is normal for any compact Hausdorff
space $Y$ of weight $ w(Y)\leq\gamma$, and that for a normal space $X$ and a non-discrete
metric space $Y,$ $X\times Y$ is normal iff $X\times Y$ is countably paracompact. Being
motivated by the first result Morita and Hoshina [7] and Przymusi\’{n}ski [12]
independently proved that for a compact Hausdorff space $Y$ with $w(Y)=\gamma,$ $A$

is $P^{\gamma}$-embedded in $X$ iff $A\times Y$ is $C^{*}$ -embedded in $X\times Y$ . On the other hand,
corresponding to the second result above, the following problem was posed in
Przymusi\’{n}ski [13] (see Hoshina [3]) but still remains open: for a non-discrete
metric space $Y$ is it true that $A\times Y$ is $C^{*}$ -embedded in $X\times Y$ iff $A\times Y$ is C-
embedded in $X\times Y$? Recently Ohta [10] proved this equivalence when $Y=\kappa^{\omega}$ ,
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the product of countably many copies of the discrete space with Card $\kappa\geq\aleph_{0}$

under an additional assumption on $A$ ; in particular, in case $\kappa=\aleph_{0}$ , that is, $Y$ is
space of irrationals, he showed the problems is affirmative.

In this paper we study to obtain further such equivalences when $X$ and $Y$

belong to other classes of spaces. Indeed, it is known so far that in case either $Y$

is non-discrete compact Hausdorff, or $A$ is C-embedded in $X$ and $Y$ is locally
compact paracompact Hausdorff, then in $X\times YC^{*}$ -embedding of $A\times Y$

implies its C-embedding (see [3]). But, any other case of $X$ and $Y$ for which
similar results hold seems to be unknown. In this paper first we prove the
following theorem. As a corollary to this result, in case $Y$ is non-discrete $\sigma-$

locally compact metrizable we have a partial answer to the Przymusi\’{n}ski’s
problem, which seems to be interesting when compared with the Ohta’s result
above. Here, $Y$ is $\sigma$-locally compact if $Y$ is a union of countably many locally
compact closed subspaces.

THEOREM 1.1. Let $A$ be a C-embedded subspace of a space $X$ and $Y$ a $\sigma-$

locally compact paracompact Hausdorff space. Then $A\times Y$ is $C^{*}$ -embedded in
$X\times Y$ lff $A\times Y$ is C-embedded in $X\times Y$ .

Using Theorem 1.1, in Theorem 2.4 we show further the corresponding
result for the case of P-embedding. In the next two theorems we discuss for the
case $X$ is a P-space and $Y$ is a $\Sigma$-space or a $\sigma$-space. It may be emphasized that
these results seem to give a new possibility to discuss various embeddings such
as $C^{*}-,$ C- or P-embedding on products for known classes of generalized metric
spaces.

THEOREM 1.2. Let $X$ be a normal P-space and $A$ be C-embedded in X. Let $Y$

be a paracompact Hausdorff $\Sigma$-space. Then $A\times Y$ is $C^{*}$ -embedded in $X\times Y$ iff
$A\times Y$ is C-embedded in $X\times Y$ .

In case $Y$ is a $\sigma$-space, Theorem 1.2 enables us futher to prove the following
theorem which shows the equivalence of $C^{*}$ -embedding and P-embedding of
$A\times Y$ in $X\times Y$ .

THEOREM 1.3. Let $X$ be a normal P-space and $A$ be P-embedded in X. Let $Y$

be a paracompact Hausdorff $\sigma$-space. Then $A\times Y$ is $C^{*}$ -embedded in $X\times Y$ iff
$A\times Y$ is P-embedded in $X\times Y$ .
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P-spaces, $\Sigma$-spaces and $\sigma$-spaces are due to Morita [5]. Nagami [8] and
Okuyama [11], respectively. Our results are motivated by the results obtained in
Nagami [8], [9] and Chiba [2] which show equivalences between normality and
either countable paracompactness or collectionwise normality on product spaces.

2. Proof of Theorem 1.1

Throughout this paper $N$ denotes the set of positive integers.
Let $A$ be a subspace of a space $X$ . Then it is well-known that $A$ is C-

embedded in $X$ iff $A$ is $C^{*}$ -embedded in $X$ and is completely separated from any
zero-set $Z$ of $X$ which is disjoint from $A$ . This fact will be frequently used in
this paper. Moreover, for later use let us recall two lemmas below.

LEMMA 2.1 (see [3]). Let $B$ be a compact subset of a Tychonoff space $Y$.
Then for any space $X,$ $X\times B$ is P-embedded in $X\times Y$ .

(1) $\leftrightarrow(4)$ of the following lemma was mentioned in the introduction.

LEMMA 2.2 (Morita and Hoshina [7], Przymusi\’{n}ski [12]). For a subspace $A$

of a space $X$ the following statements are equivalent.

(1) $A$ is $P^{\gamma}$-embedded in $X$

(2) $A\times Y$ is $P^{\gamma}$-embedded in $X\times Y$ for every compact Hausdorff space $Y$

with $ w(Y)\leq\gamma$

(3) $A\times Y$ is C-embedded in $X\times Y$ for every compact Hausdorff space $Y$

with $ w(Y)\leq\gamma$

(4) $A\times Y$ is $C^{*}$ -embedded in $X\times Y$ for some compact Hausdorff space $Y$

with $ w(Y)=\gamma$

Let us now prove Theorem 1.1.

PROOF OF THEOREM 1.1. We only prove the “only if” part since the “if”
part is clear. Suppose $A$ is C-embedded in $X$ and $A\times Y$ is $C^{*}$ -embedded in
$X\times Y$ . To prove C-embedding of $A\times Y$ in $X\times Y$, let $Z$ be zero-set of $X\times Y$

disjoint from $A\times Y$ . We shall show that $A\times Y$ and $Z$ are completely separated
in $X\times Y$ .

Since $Y$ is $\sigma$-locally compact and paracompact, $Y$ admits a $\sigma$-locally finite
cover $\mathscr{C}=\bigcup_{i\in N}\mathscr{C}_{i}$ consists of compact subsets, where $\mathscr{C}_{i}$ is locally finite. Let
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$\mathscr{C}_{i}=\{C_{i\lambda}|\lambda\in\Lambda_{i}\}$ . For each $C_{i\lambda}\in \mathscr{C}_{i}$ , put

$G_{i\lambda}=(X\times C_{i\lambda})\cap(X\times Y-Z)$ .

Then $G_{i\lambda}$ is a cozero-set of $X\times C_{i\lambda}$ containing $A\times C_{i\lambda}$ . Hence, since $C_{i\lambda}$ is
compact, it is easy to see that we can take a cozero-set $H_{i\lambda}$ of $X$ so that

$A\times C_{i\lambda}\subset H_{i\lambda}\times C_{i\lambda}\subset G_{i\lambda}$ .

Sinoe $A$ is C-embedded in $X$ , there exists a cozero-set $L_{i\lambda}$ of $X$ such that

$ A\cap L_{i\lambda}=\emptyset$ and $X-H_{i\lambda}\subset L_{i\lambda}$ .

On the other hand, since $Y$ is paracompact and $\mathscr{C}_{i}$ is locally finite, there
exists a locally finite collection $\{U_{i\lambda}|\lambda\in\Lambda_{j}\}$ of cozero-sets of $Y$ such that
$C_{i\lambda}\subset U_{i\lambda}$ for each $\lambda\in\Lambda_{i}$ . Hence it follows that $\{L_{i\lambda}\times U_{i\lambda}|\lambda\in\Lambda_{i}\}$ is a locally
finite cozero-set collection of $X\times Y$ which satisfies for each $\lambda\in\Lambda_{i}$

$(A\times Y)\cap(L_{i\lambda}\times U_{i\lambda})=\emptyset$ and $L_{i\lambda}\times U_{i\lambda}\supset(X\times C_{i\lambda})\cap Z$

Let us now put

$K=\cup\{L_{i\lambda}\times U_{i\lambda}|\lambda\in\Lambda;i\in N\}$ .

Since $\{L_{i\lambda}\times U_{i\lambda}|\lambda\in\Lambda;i\in N\}$ is $\sigma$-locally finite, $K$ is a cozero-set of $X\times Y$ , and
we have

$(A\times Y)\cap K=\emptyset$ and $K\supset Z$ .

Hence $X\times Y-K$ is a zero-set of $X\times Y$ containing $A\times Y$ and disjoint from Z.
Thus $A\times Y$ and $Z$ are completely separated in $X\times Y$ . This completes the proof
of the theorem. $\square $

COROLLARY 2.3. Let $A$ be a subspace of a space $X$ and $Y$ a non-discrete $\sigma-$

locally compact metrizable space. Then $A\times Y$ is $C^{*}$ -embedded in $X\times Y$ iff
$A\times Y$ is C-embedded in $X\times Y$ .

PROOF. Suppose that $A\times Y$ is $C^{*}$ -embedded in $X\times Y$ . $Y$ being non-
discrete metrizable, it is essentially proved in [3] that $A$ is C-embedded in $X$ .
For completeness we give its proof. $Y$ contains a convergent sequence
$\{y_{n}|n\in N\}$ of distinct points having $y0$ as its limit. Let $C=\{yo\}\cup\{y_{n}|n\in N\}$ .
Then $C$ is compact, and by assumption and Lemma 2.1 we see that $A\times C$ is
$C^{*}$ -embedded in $X\times Y$, especially in $X\times C$ . Hence by Lemma 2.2 $A$ is C-
embedded in $X$ . The corollary now follows from Theorem 1.1. $\square $
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REMARK. Let $A$ be a C-embedded subset of a space $X$ . It is known that
if $Y$ is locally compact metrizable, then $A\times Y$ is C-embedded in $X\times Y$ (see
[3]). In case $Y$ is $\sigma$-locally compact metrizable, then $A\times Y$ need not to be $C^{*}-$

embedded in $X\times Y$ . Indeed, Przymusi\’{n}ski [14] pointed out that there exists a
nomal space $X$ with the property that for a non-locally compact metric space
$M$ (in particular, $Q=the$ space of rational numbers) $X$ contains a closed subset
$A$ such that $A\times M$ is not $C^{*}$ -embedded in $X\times M$ .

For the case of P-embedding corresponding to Theorem 1.1 we have the
following theorem. The result is motivated by a theorem of Chiba [2] that for a
collectionwise normal space $X$ and a $\sigma$-locally compact paracompact Hausdorff
space $Y,$ $X\times Y$ is normal iff $X\times Y$ is collectionwise normal.

A collection $\{C_{\lambda}|\lambda\in\Lambda\}$ of subsets of a space $X$ is uniformly locally finite
if there exist a locally finite cozero-set collection $\{G_{\lambda}|\lambda\in\Lambda\}$ and a zero-set
collection $\{Z_{\lambda}|\lambda\in\Lambda\}$ such that $C_{\lambda}\subset Z_{\lambda}\subset G_{\lambda}$ for each $\lambda\in\Lambda$ .

THEOREM 2.4. Let $A$ be a P-embedded subset of a space $X$ and $Y$ a $\sigma$-locally
compact paracompact Hausdorff space. Then $A\times Y$ is $C^{*}$ -embedded in $X\times Y$ iff
$A\times Y$ is P-embedded in $X\times Y$ .

PROOF. It is sufficient to show the “only if” part. Let $\mathscr{C}=\bigcup_{i\in N}\mathscr{C}_{i}$ be as in
the proof of Theorem 1.1. Let $\mathscr{U}$ be a locally finite cozero-set cover of $A\times Y$ .
Put

$F_{i}=\cup\{C_{i\lambda}|\lambda\in\Lambda_{i}\}$ .

Since $A$ is P-embedded in $X$ , by Lemmas 2.1 and 2.2 $A\times C_{i\lambda}$ is P-embedded in
$X\times Y$ . Since $Y$ is paracompact Hausdorff, $\{C_{i\lambda}|\lambda\in\Lambda_{j}\}$ is uniformly locally finite
in $Y$ and so is also $\{A\times C_{i\lambda}|\lambda\in\Lambda_{i}\}$ in $X\times Y$ . For $\lambda,\mu\in\Lambda_{i},$ $(A\times C_{i\lambda})\cup$

$(A\times C_{i\mu})=A\times(C_{i\lambda}\cup C_{i\mu})$ is P-embedded in $X\times Y$ . Hence by Morita [6] (see
[3, Theorem 3.12]), $A\times F_{i}$ is P-embedded in $X\times Y$ . Consequently there exists a
locally finite cozero-set cover $\gamma_{i}$ of $X\times Y$ such that

$\mathscr{V}_{i}\cap(A\times F_{t})<\mathscr{U}\cap(A\times F_{i})<\mathscr{U}$ .

For any $V\in\gamma_{i}$ select $U_{V}\in \mathscr{U}$ so that

$V\cap(A\times F_{i})\subset U_{V}$ .

Since $A\times Y$ is $C^{*}$ -embedded in $X\times Y$, there exists a cozero-set $U_{V}^{\prime}$ of $X\times Y$



520 Kaori YAMAZAKI

such that $U_{V}^{\prime}\cap(A\times Y)=U_{V}$ . Let us put

$W_{V}=V\cap U_{V}^{\prime}$ and $\mathscr{V}=\{W_{V}|V\in\gamma_{l}t\in N\}$ .

Then $\mathscr{V}$ is a $\sigma$-locally finite collection of cozero-sets of $X\times Y$ such that

$\nu^{-}\cap(A\times Y)<\mathscr{U}$ and $A\times Y\subset\cup \mathscr{V}$ .

Since $\cup \mathscr{V}$ is a cozero-set of $X\times Y$ containing $A\times Y$ , by Theorem 1.1 there
exists a cozero-set $H$ of $X\times Y$ such that

$(A\times Y)\cap H=\emptyset$ and $\cup \mathscr{V}\cup H=X\times Y$ .

Let

$W^{\prime}=\theta^{\prime}\cup\{H\}$ ,

then $ff^{\prime}$ is a $\sigma$-locally finite cozero-sets cover of $X\times Y$ and

$\mathscr{V}^{\prime}\cap(A\times Y)<\mathscr{U}$ .

Thus, $A\times Y$ is P-embedded in $X\times Y$ , which completes the proof. $\square $

3. Proofs of Theorems 1.2 and 1.3

Before proving these theorems, let us recall the definition of P-spaces and
basic facts of $\Sigma$-spaces and $\sigma$-spaces. In the following we assume all spaces are
Hausdorff.

A space $X$ is a P-space [5] if for any index set $\Omega$ and for any collection
$\{G(\alpha_{1}, \ldots, \alpha_{n})|\alpha_{1}, \ldots, \alpha_{n}\in\Omega;n\in N\}$ of open subsets of $X$ such that

$G(\alpha_{1}, \ldots, \alpha_{n})\subset G(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1})$ for $\alpha_{1},$

$\ldots,$
$\alpha_{n},$

$\alpha_{n+1}\in\Omega$ ,

there exists a collection $\{F(\alpha_{1}, \ldots, \alpha_{n})|\alpha_{1}, \ldots, \alpha_{n}\in\Omega;n\in N\}$ of closed subsets of
$X$ such that the conditions (i), (ii) below are satisfied:

(i) $F(\alpha_{1}, \ldots, \alpha_{n})\subset G(\alpha_{1}, \ldots, \alpha_{n})$ for $\alpha_{1},$

$\ldots,$
$\alpha_{n}\in\Omega$ ,

(ii) $X=\cup\{G(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}\Rightarrow X=\cup\{F(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}$ .
Let $Y$ be a $\Sigma$-space. Then by [8, Lemmal. 4], $Y$ has a sequence, called a

$\Sigma$-net, $\{\mathscr{E}_{n}|n\in N\}$ of locally finite closed covers of $Y$ which satisfies the following
conditions:

(iii) $\mathscr{E}_{n}$ is written as $\{E(\alpha_{1}, \ldots, \alpha_{n})|\alpha_{1}, \ldots, \alpha_{n}\in\Omega\}$ with an index set $\Omega$ ,
(iv) $E(\alpha_{1}, \ldots, \alpha_{n})=\cup\{E(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1})|\alpha_{n+1}\in\Omega\}$ for $\alpha_{1},$

$\ldots,$
$\alpha_{n}\in\Omega$ ,

(v) For every $y\in Y,$ $C(y)$ is countably compact, and there exists a sequence
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$\alpha_{1},$ $\alpha_{2},$

$\ldots,$
$\in\Omega$ such that $C(y)\subset V$ with $V$ open implies $ C(y)\subset E(\alpha_{1}, \ldots, \alpha_{n})\subset$

$V$ for some $n$ , where $C(y)=\cap\{E|y\in E\in \mathscr{E}_{n},n\in N\}$ .
If a regular space $Y$ is a $\sigma$-space, then $Y$ has a sequence, called a $\sigma$-net,

$\{\mathscr{E}_{n}|n\in N\}$ of locally finite closed covers of $Y$ which satisfies (iii), (iv) above and
$(v^{\prime})$ below ([9, Theorem 1]):

$(v^{\prime})$ For each $y\in Y$ there exists a sequence $\alpha_{1},$ $\alpha_{2},$
$\ldots\in\Omega$ such that $ y\in$

$E(\alpha_{1}, \ldots, \alpha_{n})$ for each $n\in N$ and $y\in V$ with $V$ open implies $ y\in E(\alpha_{1}, \ldots, \alpha_{n})\subset$

$V$ for some $n$ .
A space $Y$ is a strong $\Sigma$-space if $Y$ has $\Sigma$-net $\{\mathscr{E}_{n}\}$ such that $C(y)$ is compact

for each $y\in Y$ . Nagami proved in [8, Theorem 4.10] that for a P-space $X$ and a
strong $\Sigma$-space $Y$ if $X\times Y$ is normal, then $X\times Y$ is countably paracompact,
and in [9, Theorem 5] that for a collectionwise normal P-space $X$ and a
paracompact $\sigma$-space $Y$ if $X\times Y$ is normal, then $X\times Y$ is collectionwise
normal. Our Theorems 1.2 and 1.3 are motivated by these results.

PROOF OF THEOREM 1.2. It is sufficient to show the “only if” part. Assume
$A\times Y$ is $C^{*}$ -embedded in $X\times Y$ . Let $Z$ be a zero-set of $X\times Y$ disjoint from
$A\times Y$ . First we observe that

(1) $(\overline{A}\times Y)\cap Z=\emptyset$ .

To see this, let $y$ be any point of $Y$ . Since $A$ is C-embedded in $X,$ $A\times\{y\}$ is C-
embedded in $X\times Y$, and $(A\times\{y\})\cap Z=\emptyset$ . Hence there exists a zero-set $Z^{\prime}$ of
$X\times Y$ such that $A\times\{y\}\subset Z^{\prime}$ and $Z^{\prime}\cap Z=\emptyset$ , which implies $(\overline{A}\times\{y\})\cap Z=$

$\emptyset$ . Hence we have (1).

Let $\{\mathscr{E}_{n}|n\in N\}$ be a $\Sigma$-net. Note that $C(y)$ is compact for any $y\in Y$ since $Y$

is paracompact. Define

$ H(\alpha_{1}, \ldots, \alpha_{n})=\cup$ { $P|P$ is open in $X;(P\times E(\alpha_{1},$
$\ldots,$

$\alpha_{n}))\cap Z=\emptyset$ }

for $\alpha_{1},$

$\ldots,$
$\alpha_{n}\in\Omega$ . Put

$G(\alpha_{1}, \ldots, \alpha_{n})=H(\alpha_{1}, \ldots, \alpha_{n})\cup(X-\overline{A})$ ,

clearly $G(\alpha_{1}, \ldots, \alpha_{n})$ is open in $X$ . Since

$H(\alpha_{1}, \ldots, \alpha_{n})\subset H(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1})$ ,

we have

$G(\alpha_{1}, \ldots, \alpha_{n})\subset G(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1})$
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for any $\alpha_{1},$

$\ldots,$
$\alpha_{n},$ $\alpha_{n+1}\in\Omega$ . Since $X$ is a P-space, there exists a collection

$\{F(\alpha_{1}, \ldots, \alpha_{n})|\alpha_{1}, \ldots, \alpha_{n}\in\Omega;n\in N\}$ of closed subsets such that

$F(\alpha_{1}, \ldots, \alpha_{n})\subset G(\alpha_{1}, \ldots, \alpha_{n})$

and

(2) $X=\cup\{G(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}\Rightarrow X=\cup\{F(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}$ .

Then $F(\alpha_{1}, \ldots, \alpha_{n})-H(\alpha_{1}, \ldots, \alpha_{n})$ is closed and contained in $X-\overline{A}$ . Since $X$ is
normal, there exists a cozero-set $U(\alpha_{1}, \ldots, \alpha_{n})$ of $X$ such that

$F(\alpha_{1}, \ldots, \alpha_{n})-H(\alpha_{1}, \ldots, \alpha_{n})\subset U(\alpha_{1}, \ldots, \alpha_{n})\subset X-\overline{A}$ .

On the other hand, since $Y$ is paracompact, for each $\mathscr{E}_{n}$ , there exits a locally
finite cozero-set cover $\mathscr{L}_{n}=\{L(\alpha_{1}, \ldots, \alpha_{n})|\alpha_{1}, \ldots, \alpha_{n}\in\Omega\}$ of $Y$ such that

$E(\alpha_{1}, \ldots, \alpha_{n})\subset L(\alpha_{1}, \ldots, \alpha_{n})$ .

Let us put

$W_{n}=\cup\{U(\alpha_{1}, \ldots, \alpha_{n})\times L(\alpha_{1}, \ldots, \alpha_{n})|\alpha_{1}, \ldots, \alpha_{n}\in\Omega\}$ .

Since $\mathscr{L}_{n}$ is locally finite, $W_{n}$ is a cozero-set of $X\times Y$ . Hence $W=\bigcup_{n\in N}W_{n}$

is a cozero-set of $X\times Y$, and we have $(A\times Y)\cap W=\emptyset$ because $\overline{\Lambda}\cap$

$ U(\alpha_{1}, \ldots, \alpha_{n})=\emptyset$ .
Finally we shall show $Z\subset W$ . To see this, pick $(x,y)\in Z$ . For $y$ , there

exists a sequence $\alpha_{1},$ $\alpha_{2},$
$\ldots\in\Omega$ satisfying (v) above. First we prove that $X=$

$\bigcup_{n\in N}G(\alpha_{1}, \ldots, \alpha_{n})$ . Pick $z\in X$ . We may assume $z\in\overline{A}$ . Then by (1) we have
$(\{z\}\times C(y))\cap Z=\emptyset$ . Since $C(y)$ is compact, there exist open sets $0$ in $X$ and
$O$ ‘ in $Y$ such that

$\{z\}\times C(y)\subset O\times O^{\prime}\subset X\times Y-Z$ .

By (v), there exists $m\in N$ such that $C(y)\subset E(\alpha_{1}, \ldots, \alpha_{m})\subset O^{\prime}$ . Henoe it follows
that we have $z\in H(\alpha_{1}, \ldots, \alpha_{m})$ . Therefore $z\in G(\alpha_{1}, \ldots, \alpha_{m})$ , which shows that
$X=\cup\{G(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}$ . Consequently by (2) $X=\cup\{F(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}$ .
Select $k\in N$ so that $x\in F(\alpha_{1}, \ldots, \alpha_{k})$ . Then $x\in X-H(\alpha_{1}, \ldots, \alpha_{k})$ because
$(x,y)\in Z$ and $y\in E(\alpha_{1}, \ldots, \alpha_{k})$ . So

$x\in F(\alpha_{1}, \ldots, \alpha_{k})-H(\alpha_{1}, \ldots, \alpha_{k})\subset U(\alpha_{1}, \ldots, \alpha_{k})$ ,

therefore $(x,y)\in W_{k}\subset W$ . Thus, we have $Z\subset W$ . Now $X\times Y-W$ is a zero-set
of $X\times Y$ containing $A\times Y$ and is disjoint from $Z$ . Hence $A\times Y$ and $Z$ are
completely separated in $X\times Y$ , which completes the proo $f$. $\square $
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PROOF OF THEOREM 1.3. Let $\mathscr{G}$ be a locally finite cozero-set cover of $A\times Y$ .
To prove our theorem it suffices to show that there exists a $\sigma$-locally finite
cozero-set cover $’\psi$ of $X\times Y$ such that $\mathscr{K}^{\prime}\cap(A\times Y)<\mathscr{G}$ . Since $\mathscr{G}$ is refined by
a $\sigma$-discrete cozero-set cover of $A\times Y$ , we may assume $\mathscr{G}$ itsel$f$ is $\sigma$-discrete.
Hence let $\mathscr{G}=\bigcup_{i\in N}\mathscr{G}_{i}$ , where $\mathscr{G}_{i}=\{G_{i\lambda}|\lambda\in\Lambda_{i}\}$ is discrete. By assumption, for
any $\lambda\in\Lambda_{i},$ $i\in N$ , there exists a cozero-set $H_{i\lambda}$ of $X\times Y$ such that $ H_{i\lambda}\cap$

$(A\times Y)=G_{i\lambda}$ .
First we shall show the following fact:

(3) $\overline{A}\times Y\subset\cup\{H_{i\lambda}|\lambda\in\Lambda_{i}, i\in N\}$ .

Pick $y\in Y$ . Let $U_{i\lambda}=\{x\in A|(x,y)\in H_{i\lambda}\}$ . Then $\{U_{i\lambda}|\lambda\in\Lambda_{i};i\in N\}$ is a $\sigma$-discrete
cozero-set cover of $A$ . Since $A$ is P-embedded in $X$, there exists a locally finite
cozero-set cover $\{V_{i\lambda}|\lambda\in\Lambda_{i};i\in N\}$ of $X$ such that $V_{i\lambda}\cap A\subset U_{i\lambda}$ for each $\lambda\in\Lambda_{i}$

and $i\in N$ . Since $\{(V_{i\lambda}\times Y)\cap H_{i\lambda}|\lambda\in\Lambda_{i};i\in N\}$ is a locally finite cozero-set
collection of $X\times Y,$ $\cup\{(V_{i\lambda}\times Y)\cap H_{i\lambda}|\lambda\in\Lambda_{i};i\in N\}$ is a cozero-set of $X\times Y$

and we have

$A\times\{y\}\subset\cup\{(V_{i\lambda}\times Y)\cap H_{i\lambda}|\lambda\in\Lambda_{i};i\in N\}$ .

Since $A\times\{y\}$ is C-embedded in $X\times Y$ , there exists a zero-set $Z$ of $X\times Y$ such
that

$A\times\{y\}\subset Z\subset\cup\{(V_{i\lambda}\times Y)\cap H_{i\lambda}|\lambda\in\Lambda_{i};i\in N\}$ .

Hence

$\overline{A}\times\{y\}\subset\cup\{(V_{i\lambda}\times Y)\cap H_{i\lambda}|\lambda\in\Lambda_{j};i\in N\}\subset\cup\{H_{i\lambda}|\lambda\in\Lambda_{i};i\in N\}$ .

Therefore $\overline{A}\times Y\subset\cup\{H_{i\lambda}|\lambda\in\Lambda_{j};i\in N\}$ .
Let $\mathscr{E}=\{\mathscr{E}_{n}\}$ be a $\sigma$-net for $Y$ . By the paracompactness of $Y$, there exists a

locally finite cozero-set cover

$\{K(\alpha_{1}, \ldots, \alpha_{n})|\alpha_{1}, \ldots, \alpha_{n}\in\Omega\}$

of $Y$ such that

$E(\alpha_{1}, \ldots, \alpha_{n})\subset K(\alpha_{1}, \ldots, \alpha_{n})$

for each $\alpha_{1},$

$\ldots,$
$\alpha_{n}\in\Omega$ . Let us put

$ U_{i\lambda}(\alpha_{1}, \ldots, \alpha_{n})=\cup$ { $U|U$ is open in $X,$ $U\times E(\alpha_{1},$
$\ldots,$

$\alpha_{n})\subset H_{i\lambda}$ }

for $\alpha_{1},$

$\ldots,$
$\alpha_{n}\in\Omega$ . Then $U_{i\lambda}(\alpha_{1}, \ldots , \alpha_{n})$ is open in $X$ . Define
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$U_{i}(\alpha_{1}, \ldots, \alpha_{n})=\cup\{U_{i\lambda}(\alpha_{1}, \ldots, \alpha_{n})|\lambda\in\Lambda_{i}\}$

and

$U(\alpha_{1}, \ldots, \alpha_{n})=\cup\{U_{i}(\alpha_{1}, \ldots, \alpha_{n})|i\in N\}$ .

For any $\alpha_{1},$

$\ldots,$
$\alpha_{n},$ $\alpha_{n+1}\in\Omega$ , clearly

(4) $U(\alpha_{1}, \ldots, \alpha_{n})\subset U(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1})$ .

Let $\lambda$ and $\lambda^{\prime}$ be distinct elements of $\Lambda_{j}$ . For $\alpha_{1},$

$\ldots,$
$\alpha_{n}\in\Omega$, we have

$((U_{i\lambda}(\alpha_{1}, \ldots, \alpha_{n})\cap A)\cap(U_{i\lambda^{\prime}}(\alpha_{1}, \ldots, \alpha_{n})\cap A))\times E(\alpha_{1}, \ldots, \alpha_{n})$

$\subset H_{i\lambda}\cap(A\times Y)\cap H_{i\lambda}/\cap(A\times Y)=G_{i\lambda}\cap G_{i\lambda^{\prime}}=\emptyset$ .

Hence

$ U_{i\lambda}(\alpha_{1}, \ldots, \alpha_{n})\cap U_{i\lambda^{\prime}}(\alpha_{1}, \ldots, \alpha_{n})\cap A=\emptyset$ .

Therefore

(5) $ U_{i\lambda}(\alpha_{1}, \ldots, \alpha_{n})\cap U_{i\lambda^{\prime}}(\alpha_{1}, \ldots, \alpha_{n})\cap\overline{A}=\emptyset$ .

Define

$V(\alpha_{1}, \ldots, \alpha_{n})=U(\alpha_{1}, \ldots, \alpha_{n})\cup(X-\overline{A})$ .

Then $V(\alpha_{1}, \ldots, \alpha_{n})$ is open in $X$ and $V(\alpha_{1}, \ldots, \alpha_{n})\subset V(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1})$ by (4).
Since $X$ is a P-space and normal, there exist a zero-set $D(\alpha_{1}, \ldots, \alpha_{n})$ and a
cozero-set $L(\alpha_{1}, \ldots, \alpha_{n})$ of $X$ for $\alpha_{1},$

$\ldots,$
$\alpha_{n}\in\Omega,$ $n\in N$ such that

(6) $D(\alpha_{1}, \ldots, \alpha_{n})\subset L(\alpha_{1}, \ldots, \alpha_{n})\subset\overline{L(\alpha_{1},\ldots,\alpha_{n})}\subset V(\alpha_{1}, \ldots, \alpha_{n})$ ,

(7) $X=\cup\{V(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}\Rightarrow X=\cup\{D(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}$ .

Put

$C(\alpha_{1}, \ldots, \alpha_{n})=\overline{A\cap L(\alpha_{1},\ldots,\alpha_{n})}$ .

Then $C(\alpha_{1}, \ldots, \alpha_{n})\subset U(\alpha_{1}, \ldots, \alpha_{n})=\bigcup_{i\in N}U_{i}(\alpha_{1}, \ldots, \alpha_{n})$ . Since $X$ is countably
paracompact and normal, there exists a locally finite cozero-set collection
$\{N_{l}(\alpha_{1}, \ldots , \alpha_{n})|i\in N\}$ of $X$ such that

(8) $N_{i}(\alpha_{1}, \ldots, \alpha_{n})\subset U_{i}(\alpha_{1}, \ldots, \alpha_{n})=\bigcup_{\lambda\in\Lambda_{j}}U_{i\lambda}(\alpha_{1}, \ldots, \alpha_{n})$
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and

$C(\alpha_{1}, \ldots, \alpha_{n})\subset\bigcup_{i\in N}N_{i}(\alpha_{1}, \ldots, \alpha_{n})$ .

Consequently by (5) and (8) we have that

$\{\overline{N_{i}(\alpha_{1},\ldots,\alpha_{n})\cap A}\cap U_{i\lambda}(\alpha_{1}, \ldots, \alpha_{n})|\lambda\in\Lambda_{j}\}$

is a discrete collection of $X$ and that $N_{i}(\alpha_{1}, \ldots, \alpha_{n})\cap U_{i\lambda}(\alpha_{1}, \ldots, \alpha_{n})\cap A$ is a
cozero-set of $A$ . Therefore

$\{(X-D(\alpha_{1}, \ldots, \alpha_{n}))\cap A, N_{i}(\alpha_{1}, \ldots, \alpha_{n})\cap U_{i\lambda}(\alpha_{1}, \ldots, \alpha_{n})\cap A|\lambda\in\Lambda_{i}, i\in N\}$

is a locally finite cozero-set cover of $A$ . Since $A$ is P-embedded in $X$ , there exists
a locally finite cozero-set cover

$\mathscr{V}^{\prime}(\alpha_{1}, \ldots, \alpha_{n})=\{W_{0}^{\prime}(\alpha_{1}, \ldots, \alpha_{n}), W_{i\lambda}^{\prime}(\alpha_{1}, \ldots, \alpha_{n})|\lambda\in\Lambda_{i}, i\in N\}$

of $X$ such that

$W_{0}^{\prime}(\alpha_{1}, \ldots, \alpha_{n})\cap A\subset(X-D(\alpha_{1}, \ldots, \alpha_{n}))\cap A$

and

$W_{i\lambda}^{\prime}(\alpha_{1}, \ldots, \alpha_{n})\cap A\subset N_{i}(\alpha_{1}, \ldots, \alpha_{n})\cap U_{i\lambda}(\alpha_{1}, \ldots, \alpha_{n})\cap A$ .

Let us put

$W_{i\lambda}(\alpha_{1}, \ldots, \alpha_{n})=W_{i\lambda}^{\prime}(\alpha_{1}, \ldots, \alpha_{n})\cap N_{i}(\alpha_{1}, \ldots, \alpha_{n})$ ,

and

$\mathscr{V}=\{(W_{i\lambda}(\alpha_{1}, \ldots, \alpha_{n})\times K(\alpha_{1}, \ldots, \alpha_{n}))\cap H_{i\lambda}|\lambda\in\Lambda_{i};\alpha_{1}, \ldots, \alpha_{n}\in\Omega;i,n\in N\}$ .

Then $\mathscr{W}$ is a $\sigma$-locally finite cozero-set collection of $X\times Y$ , and $W\cap(A\times Y)<$

$\mathscr{G}$ .
Next we shall show that $A\times Y\subset\cup \mathscr{W}$ . Pick $(x,y)\in A\times Y$ . For this $y$ ,

there exists a sequence $\alpha_{1},$ $\alpha_{2},$
$\ldots\in\Omega$ which has the property $(\sqrt{})$ . Then we have

$X=\cup\{V(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}$ . To see this, pick $z\in X$ . If $z\in X-\overline{A}$, it is clear.
Let $z\in\overline{A}$ . Then by (3) shown above, there exists $i\in N$ and $\lambda\in\Lambda_{i}$ such that
$(z,y)\in H_{i\lambda}$ . So there exists open sets $O$ in $X$ and $O$ ‘ in $Y$ such that

$(z,y)\in O\times O^{\prime}\subset H_{i\lambda}$ .

By the property $(\sqrt{})$ , there exists $m\in N$ such that
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$y\in E(\alpha_{1}, \ldots, \alpha_{m})\subset O^{\prime}$ .
Thus

$z\in O\subset U_{i\lambda}(\alpha_{1}, \ldots, \alpha_{m})\subset U(\alpha_{1}, \ldots, \alpha_{m})\subset V(\alpha_{1}, \ldots, \alpha_{m})$ .

Hence it follows that $X=\cup\{V(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}$ . Therefore $X=\cup\{D(\alpha_{1}, \ldots, \alpha_{n})|$

$n\in N\}$ by (7), so there exists $k\in N$ such that $x\in D(\alpha_{1}, \ldots, \alpha_{k})$ . Since
$\mathscr{V}^{\prime}(\alpha_{1}, \ldots, \alpha_{k})$ covers $X$, there exist $i\in N$ and $\lambda\in\Lambda_{i}$ such that $x\in W_{i\lambda}^{\prime}(\alpha_{1}, \ldots, \alpha_{k})$ .
That is,

$x\in N_{i}(\alpha_{l}, \ldots, \alpha_{k})\cap U_{i\lambda}(\alpha_{1}, \ldots, \alpha k)\cap A$ .

Henoe $x\in W_{i\lambda}(\alpha_{1}, \ldots, \alpha_{k})$ and $y\in E(\alpha_{1}, \ldots, \alpha_{k})\subset K(\alpha_{1}, \ldots, \alpha_{k})$ . Since $ x\in$

$U_{i\lambda}(\alpha_{1}, \ldots, \alpha_{k})$ , we have $(x,y)\in H_{i\lambda}$ . Consequently

$(x,y)\in(W_{i\lambda}(\alpha_{1}, \ldots, \alpha_{k})\times K(\alpha_{1}, \ldots, \alpha_{k}))\cap H_{i\lambda}$ .

Thus we have shown $A\times Y\subset\cup \mathscr{V}$ .
Since $\mathscr{K}^{\prime}$ is $\sigma$-locally finite, $\cup \mathscr{V}$ is a cozero-set of $X\times Y$ , and

$(X\times Y-\cup \mathscr{V})\cap(A\times Y)=\otimes$ .

By Theorem 1.2, there exists a cozero-set $W$ in $X\times Y$ such that

$(A\times Y)\cap W=\emptyset$ and $X\times Y-\cup \mathscr{V}\subset W$ .

Define newly $\mathscr{K}^{\prime}$ by $\mathscr{V}\cup\{W\}$ . Then the above shows that $W$ is the required $\sigma-$

locally finite cozero-set cover of $X\times Y$ . This completes the proof. $\square $

The following results, which are corollaries to Theorems 1.2 and 1.3,
together with Theorems 1.1 and 2.4 are proved in the author’s master thesis at
Univ. Tsukuba (1995) (in Japanese).

COROLLARY 3.1. Let $X$ be a normal P-space and A closed in X. Let $Y$ be
a paracompact $\Sigma$-space. Then $A\times Y$ is $C^{*}$ -embedded in $X\times Y$ iff $A\times Y$ is
C-embedded in $X\times Y$ .

COROLLARY 3.2. Let $X$ be a collectionwise normal P-space and A closed in
X. Let $Y$ be a paracompact $\sigma$-space. Then $A\times Y$ is $C^{*}$ -embedded in $X\times Y$ lff
$A\times Y$ is P-embedded in $X\times Y$ .

REMARK. A subset $A$ of a space $X$ is said to be z-embedded in $X$ if every
zero-set in $A$ is the intersection of $A$ with a zero-set in $X$ . Clearly $C^{*}$ -embedding
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implies z-embedding. We note that in all of our results except Corollary 2.3
$C^{*}$ -embedded” in the assumption can be weakened to “z-embedded”.

For the normality of products, Yang [17] posed a problem whether it is
true that for a collectionwise normal P-space $X$ and a paracompact $\Sigma$-space $Y$

normality of $X\times Y$ implies collectionwise normality of $X\times Y$ . Likewise, in our
case the following question remains open.

QUESTION. In Theorem 1.3 or Corollary 3.2 can $\sigma$-space” be weakened
to $\Sigma$-space”?

Added in proof. Recently the author showed that $\sigma$-space” in Corollary
3.2 can be weakened to $\Sigma$-space”, and solved the Yang’s problem above
affirmatively.
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