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ON THE CAUCHY PROBLEM WITH SMALL ANALYTIC
DATA FOR NONLINEAR WEAKLY HYPERBOLIC
SYSTEMS

By

Tamotu KINOSHITA

Abstract. In this paper we investigate the life span of the Cauchy
Problem for nonlinear systems of the form

ou = f(t,x,u,01u,...,0nu)
(%)

u(0, x) = eg(x).

Assuming that (x) is weakly hyperbolic and has the solution
u=0 with ¢ =0, we prove that

i) lifespan T, — € o0 as ¢ — 0.

T. admits the asymptotic estimate

T, >y~ (ulog log(1/e), where y(t) = f(; |f(z)|dr,u > 0.
i1) u =0 is a stable solution.

In order to get this fact, we first consider the case of linear
systems and then apply to nonlinear systems.

§ 1. Introduction

The Cauchy-Kovalevski theorem assures that the Cauchy problem for the
first order systems with analytic coefficients and analytic data are locally
solvable in the class of analytic functions. Here we must pay attention to the
fact that this theorem can be applied to any type of systems, but gives only the
local solvability. For this reason, Bony and Schapira restricted the type of
weakly hyperbolic systems, and showed the global solvability for linear systems
(see [BS]). And then, their results were extended by D’Ancona and Spagnolo to
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the following nonlinear weakly hyperbolic systems with small analytic data (see

[DS).
(A) O = f(u,01u,...,0,u).

Noting that the system (A) doesn’t contain variables ¢, x, we shall consider
the following more general systems.

(B) O = f(t,x,u,01u,...,0,u).

In order to investigate the system (B), we first consider the linear system

O = i An(2,x)0nu + B(t,x)u + g(t, x)
1) =

u(0, x) = uo(x),
where
An(t,x), B(t,x) are N x N matrices which are analytic in R and satisfy,
(2)  |0%A4n(t,x)| < Ma(2)p;™at, |6%B(2, x)| < My(t)p;“a! a.e. on (0, o)

for Yu e N, Yx € R" with "M, (t), *My(¢) € L}, (0, =), 3p,, 3p, > 0.

Now we assume that (1) is weakly hyperbolic, i.e.

(3) “ Z ErAn(t, x) has real eigenvalues A (¢, x, &) a.e. on (0, o).
h=1

THEOREM 1. Assume that the coefficients Ax(t,x) and B(t,x) satisfy (2), (3).
LetT >0,s€R,0< py <min{p,/+/n,py/\/n}. p(t) is a function defined as p(t) =

e Ch M, Jie€ M@)o Cipg,(2) + 1)de), with 2C2C >0, 0<ip<

T
po(foT s Moo (CIM () + 1)d7)™". Then for any ug(x) € H; and, g(t,x) sat-
isfying e?W<Pg(f) e Ll ((0, € ), H®), the Cauchy Problem (1) has the unique
(global) solution u(t) satisfying

@ { e?O<D>y(1) e CO([0, T), H?)

e’ P> 3.u(t) e L'((0,T), HY),

and it holds that



On the Cauchy Problem with small analytic 399

. !
XDl < KO Il + €[ 170D g0 e,

(5)

N

t
IeX0P 3+ < G0 ol + e[ e g(e) e

\ + 120D g(t, )| s 2. 00 0, T),
where *C" > 0, K(t) is a continuous function on [0,T), and G(t) is a integrable
Sfunction on (0,T).
We rewrite the system (B) more precisely.
© ou=f(t,x,u,01u,...,0,u)
u(0, x) = ed(x),

where

f(t,x,y,21,...,2,) is a RV¥-valued function which is analytic in R and a
neighbourhood of 0 in R) x R} x---x RY, and satisfies,

Zp?
|6§6§6§} ---@:f(t, X, 0,21, 2n)| < M(t)pc—lalp;!ﬂl—lvlI—..._b,nl
(7)

x a!Bly!---y,!lae. on (0, o)

v VoV v NV n
for e N*,'B,7y, -y, e N, (x,y,21,...,2) € R},

x “a neighbourhood of 0 in R} x RY x --- x RY”

with 3IM(7) e L} (0, o) such that M(f) >0 a.e. on (0, o), ?p., 3p; > 0.
Besides we assume that (6) with ¢ = 0 has the solution u =0, i.e.

(8) £(t,%,0,0,...,0) =0,

and is weakly hyperbolic at ¥ =0, i.e.

n
9 - Z éhgzi(t, x,0,0,...,0) has real eigenvalues Ax(¢, x, &) a.e. on (0, 00)”.
h=1 h

THEOREM 2. Assume that f satisfies (7), (8), (9). Let s> (n/2), 0 < py <
pc/V/n, ¢(x) € H, . Then there exists T > 0 such that the Cauchy Problem (6) has
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the solution u(t) satisfying

eP(<D>y, ]
(10) { Pouy(t) € C°([0, T), H*)

e”(')<D>6,ue(t) € Ll((O, T), Hs“),
and it holds that

(i) T,— ooase— 0.
T, admits the asymptotic estimate
1 T
(11) 4 T, >y (u log log E) where (1) = J M(z)dr, u> 0.
0

ii) u = 0 is a stable solution, i.e.

\ lePO<Poy,|| ;s — 0 as & — 0.

where p(t) is a function defined as

p(t) = ¢~ C Jy M(x)de { Bo — C,{ ( L’) M(r)d‘t) (1 og %) -1 }c,,

t T
x J C o M@do cmpr(oy 4 1)d1}
0

with 3C3C"3C"3C" >0, 0<3p, < py, and T, is the positive number defined as
T, = max{T = 0; p(T) = 0}.

We remark that i) doesn’t hold generally unless we assume (9). For
example, for the Cauchy-Riemann system which is elliptic, 7, is concerned with
the radii of the analytic data, independently of &. If we wouldn’t stick at the
type of equations, our theorem could be extended by using the methods of
Kajitani [K] for linear systems, and we could know the relation between the
domain of existence of analytic solutions and the imaginary part of the
eigenvalues of the characteristic matrix. Further work will be required to get
this fact.

The proofs of Theorem 1 and 2 rely on the following ideas. In the proof
of Theorem 1, we give two transformations to the equation (1). One is due to
decompose the Hermitian part and the small remainder part for the principal
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symbol of the equation, and another is due to change the type of the system
into the parabolic system. Thanks to these we can get a priori estimate. In the
proof of Theorem 2, we show that (6) can be reduce into a quasilinear system,
and apply the estimate obtained in Theorem 1 to the quasilinear system whose
analytic data is small. Then we can conclude Theorem 2.

Notations
x=(x1,...,%) €R}, o= (ar,...,0,) € N",
(x> = 1+|x|2, lof =01 + -+ oy, ol =o0ql---ap!,
0 . 0 P —ix-&
aj:ax,-:_, ij=—-l—, f(f):g;[f](f)z e f(x)dx’

H*={ueS;<&ue*(R})}, H={ueS;{&e" Ve *(R})},

“f(x) is analytic in R"” means that f(x) satisfies |0%f(x)| < Cp~*a! for
Yae N",x e R.

5™ = {p(x,¢) € C2(R™); {5 (O] < Cop<®Y™ ¥ in R for Yo, ¥peN"}
“p(x,D) e OPS™” means that p(x,D) is a pseudodifferental operator which
has its symbol p(x, &) € S™.

§ 2. Preliminaries

We shall introduce some properties of the analytic norms defined as follows

1/2
llull 5y = { Ln <é>ZSe2P<f>la(é)|2dé} :
4

which will be used in § 4.

i) 4+ 0ll gy < el + Nl
Proor. It is easily proved by Schwarzian inequality.

. n
ii) (K3 -u2||H; < Cs||u1||H;||u2||H; for r > 5,0 <s<r
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ProOF. See Theorem 4.4 in [CL].
iii) Let a(x) be a real analytic function on R” satisfying

|0%a(x)| < Cp_1|°‘|oz!.

If |p| < py/n, then it holds that

lla- “”H; < CSH“HH;

Proor. Using e?<P’q(x)e P> € OPS? (see Prop 2.3 in [KY]), we have for
some non-negative integer / = I(s) (see Th 2.7 in [KG]),

la - ull gy = IKDY*e” P ae™?P> (DY~ (KDY e* P u)|| 12

< Clo(e”Pa(x)e )| <DY e’ Pu 1,

= éSHuHH;-

1
p—7r

iv) ”u”H;,H < ”"”H; forp' < p

ProOF. We take p” = (p' + p)/2. Since it generally holds that

er <

l for x > 0,
x

putting x = 2(p"” — p/)<&> > 0 and multiplying the both sides by e*'<>  we

have

2 i’
PO <€ P&
2(p" — p')<&>-
Similarly,
27 e2P<&>

=32 — )&

Noting that
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we get

2p<&>
/ e

T - pE?

Hence it follows that
]2t = j<£>2<f+‘>e2f”<f>|a(é)lzdf
o'

1

< m J<f>2s32p<§>|a(f)|2df |

1 2
=l

(p—r)

v) Let f(x,y) be a real analytic function on R’ and a neighbourhood of 0 in
RY satisfying

¥y
18208 £ (x,)| < G, p; Pl
for Ya e N*, YB e NV, ¥(x,y) € R"x “a neighbourhood of 0 in RY”. If s > (n/2),
lp| < p1/nand f(x,0) = 0 then it holds for u € H}, satisfying 1 — N(Cs/p2)||u||H; >0
that

G < ENE (1= 8 Sy, ) Tl
’ =", o &
PrOOF. Writing u = (u;,...,uy), we have

f(x,u) = Z ____(6gf)(x, 0 ublt by

B>0 B! A
Putting f3(x) = (p¥')/B1(% f)(x,0), we find
03 /3(x)] < C,Plal for"BeN.

Thus by ii) and iii), it follows that
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17 Gl < D 23 P p - G - i)l

p>0
. C 1Bl
<& Z(‘s) loan 14y w5
>0 P2

. C 1
C;s 1 — = |lullge)™ — 1.
{g( ;) }

Using the inequality

N N 1/2
11(1 —a) ' < (1 - N(Z af) )
j= Jj=

and the relation between the H; norms of vector valued functions and the ones of

-1

scalar functions
a 2 2
jzl ||“j“H; = “u”H;,

we have
-1

. Cs Cs |
1Dl < C S (1= N S+ )
vi) Under the same assumptions as v), it holds for u,v e H; satisfying

C
1-2N = (”u”Hs + ”U”H.s) >0 that
P2 ? ’

1

Cs Cs -
{1 2N 2l + ol ) = ol

”f(’u()) —f('7v('))”H/§ < ésN »

PrROOF. We can write
1

£5) £ (30) = (F,£)(5,0)( = 0) + | g, (1= O)o-+ 6w - (e v),

where g(x,y) = (V,f)(x,y) — (V,f)(x,0) satisfies g(x,0) =0 and

C —tal (Pl
0289 (x, )| < CNp3'p;’ '(%) ol



On the Cauchy Problem with small analytic 405

Applying v) to g(x,y) and noting that |(V,f)(x,0)| < (:’szl‘l, we have

~ _ ~ Cs
1FCou) =f o)y < CoNpy'llu = vll gy + 2CsN2p—2 (ol + [124]] )
2

C -1
{128 Sl + ) b = ol

= CS Cs _1
< CN —q1=2N —(llull gs + lIvllgg) ¢ Nt — 0ll -
P2 P2 ? ? g

The following result of Jannelli is very useful to derive the estimate for the
weakly hyperbolic system in § 3.

LEMMA 1. A(t, &) is homogeneous of degree 1 in &. Let 41(t,&),...,An(t, &)
be N functions which, for any fixed & € R", belong to L}, (0, o) and coincide a.e.
on (0, o) with the eigenvalues (allowing multiplicity) of A(t,<).
Then, for 5 € (0,1], there exist a non-singular matrix P,(t,&) € C'(0, ) for
Ve e R\{0}, 4,(1,&) =diag{A"(1,&),...,A0(t,&)} € L (0, ), and Ry(t,¢)e
' (0, 00) such that:

i) Py(t,&) is homogeneous of degree 0 in £, while /i,,(t, &) and R,(t,&) are
homogeneous of degree 1 in &,

i1) P’I(t’ i)A(t7 é)P;l(t’ é) = A;,(t, é) + R’I(t7 5):

iii) |Py(2,&)|C1, | P, (2,8)] < Con™,

iv) Jo [ Ry(s,&)lds < Canlé| [y supjeg1 14 (s, €)1,

V) 1Z Py(t,8)] < Cs for ¥(z,&) € [0, o) x RE\{0},

vi) f(;sup|5|=1,15k5N|Im)~1(c”)(sa E)lds < [y supje=1,1 <k < v TM Ai (s, &)|ds + 7,

where constants Cy, C;, C3, C4, depend on N and Cs depends on n.

For the proof, refer to [J].

§ 3. Proof of Theorem 1

Assuming that u is the solution of (1), we shall derive the estimate (5). It is
sufficient to show when s = 0.

Putting v = e?(0<P>y and operating e”()<?> on the both sides of (1), we get
the equation



406 Tamotu KINOSHITA
(12) o =p' (){DYv+ Z e”(’)<D>Ah([, x)e—P(IKD)ahU
h

+ PP B(1, x)e PPy 4 PP g (4, ).

Supposing 0 < p(¢) < min{p,/+/n,py/\/n}, from the analyticity of A,(¢,x)
and B(t,x), we can write (see Prop 2.3 in [KY]))

ep(t)(D>Ah(t’ x)e—p(t)<D> = Ap(t,x + ip(t)<D>_1) + ru(t, x, D),
ep(t)(D}B(t, x)e—P(’KD) = B(t,x + ip(t)D<D>_l) + ry(t, x, D),

where Ay (¢, x + ip(£)D{DY™), By(2t, x + ip()D{D>~! € OPS®, and r4(t,x,D),
rs(t,x,D) € OPS™! for a.e. t € (0, o0). Hence we can arrange the equation as
follows,

(13) v = p'(1)<DYv + A(t,x, D)v + B(t,x, D)v + ey (1, x),

where  A(t,x,D) =), Ap(t,x + ip(tyD<(D)» "o, € OPS!, and B(t,x,D) =
> 4w 7a(t,x, D)y + B(t, x + ip(t)<{D>') € OPS® for ae. te|0, o).

Let B,(x\)) be a open sphere with center x(/), radius #%*!, and ¢;(x) be a
function which belongs to CP(B,(x())) and satisfy

2
1= Z @;(x)".
J
Then, multiplying the both sides of by ¢;(x), we obtain the equation

(14) 9 (x)v =P (<D>9;(x)0 + p'(1) [ 9;(x), D] v + A(t, x, D)g,(x)v
+ [p;(x), A(t, x, D)Jv + 9;(x) B(t, x, D)v + 9;(x)e” g (1, x).

Writing 4(t, x, D) = A(t,x\Y), D) + (A(t,x, D) — A(t,x\), D)) and putting v; =
9;(x)v, we make simple form as follows.

(15) 0,05 = p'()<DDv; + A(t,x), D)v; + (A(t, x, D) — A(t,x), D))
+ 7 (Dg(x), <D + (), A(2, x, D)]v
+ 9;(x)B(t,x, D)v + ¢j(x)e”(’)<D>g(t, x).

Furthermore we shall change the equation (15) by Fourier transform. Using
P, (1,8), P,;}(t, ¢) which are determined for each A(f,x(),¢) by Lemma 1,
putting w; = P, ;(¢,£)?;, and multiplying the both sides of the Fourier transform

of the equation (15) by P, ;(¢,£), we have the equation
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(16) P'Iaj(ta é)atP;’_l](ta é)wj :pl(t)<é>wj + "4~7I’f(t7 g)Wj

where + Ry (8, E)w; + Py (2, f)i’j(l‘, &),

407

A, (1, &), Ry (1, &) are obtained in Lemma 1, and h; = (4(¢, x, D) — A(t, x1), D))v; +

P (1)lp;(x), KDYJo + [9;(x), A(t, x, D)o + ¢;(x) B(t, x, D)o+ g;(x)e? I P>g(t, x).

At length we are in position to estimate the solution. Noting that

; 5 ) J .
2w {2 PO o+ PO 5

9 o

and Re 4, (t,&) is Hermitian, it follows that

d 0
a1 Ll =2Re(Z )

0
= 2Re{ ({E P, ;(t, é)}P;,}(t, E)wj, Wj)
+ 0 (DK Pw), (&Y Vw;)
+ ((EVPImA, (1, E)KEYTV2EN W, (€Y Pwy)
+ (KEYTV2R, (2, E)EYTVEN Pwy, (€Y W)
+ (Pﬂ,j(ta é)ilj(ta é)a wj)}
< 2CsCon™ % Gyl +20' (DN1<- > 2wyl 22
+ 2 sup K& Tm Ay (1, I il
+ 2 5up [<O™ Ry (1, NI Pyl

+ 2Re(P, (1, Ehi(t, &), w)).

Picking up the last term on the right side, we shall estimate as follows.
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2Re(P, (1, Oy (1,), wy)
= 2Re(P,;(1,£)<E> "2 F((A(t, x, D) — A(t,xD, D))y, P, (1, E)<EY' /o))
+ 2Re(P, ;(t, ) F [ p (1) [9;(x), <DD]v], Py (1, &);)
+ 2Re(Py (1, ) Flg,(x), A(t, x, D)}, Py (1))
+ 2Re(Py, (1, ) F [9;(x)B(t, x, D)v], Py,;(t, $)Dy)
+ 2Re(Py;(1, &) F[p;(x)e? P g], Py (1, O)Dy),
The first term < 2C1 7S M, (1)< - >1/26jI|L§“< : >1/2Wj||L§
< 26 Ma()Con™ %I > P wllzz
< 2C1CM, (1)< - >‘/2w,-||i§.
The second term < 2C}|p' ()| |[g;, <Dl zllvjllz
< C1p' ()| 1l[g;, <D>]U||i§ + G (9| llojl| 2,
here we used 2ab < a® + b?. Similarly, we get the followings.
The third term < C; Mo (2)||[p;, <DD]vll72 + C2Ma (1)l

The fourth term < 2C3(Ma(1) + My (1)) |lo;]%-

Gathering these terms and throw into [17), we have
(18) w0l < 2050) + sup <6 Ry 1,9)
+sup <>~ Im Ay (2, &) + CLCMa(}IC- > 2wl
+ CH{2CsCon™ S + |9/ (0)| + Ma(2)
+ 2(Ma(0) + My(9)}1illZ;

+ CHIP ()] + Ma(0)} gy, <D]el:

+ 2Re(Py ;(t, &) F [0;(x)e?O<P2g), P, i(1, E))).
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We also use the following facts.
> lgglize = Mol - lllgy, <DDIoliz> < Cololiz
J J
and (see Lemma 2.3 in [M]),

(19) > 2Re(Py (1, ) F [9;(x)e” O Pg), Py (1, £)1)
j

<2¢} Z ||¢jep(t)<D>g||L§“”j“Lg
J

1/2 1/2
<261 (Stoe0 ol ) (s )
j J
=2CH[e? P2 g| 2|10l 2
Then it holds that
d 2
(20) 3 S,
J
< 2{p’(t) +sup IKE>T'Ry (1, €)| + sup [K&> ™ m 4,,(1,&)| + G CzMa(t)’I}
J J
x> I >1/2le|§§ + 2GS u(@)|Ivll7: + CHIe? P g]| a0l 2,
J
where u(z) is a locally integrable function on (0, o)
1
u(t) =5 G5 CH2C G~ + 19/ ()] + Ma(?)
+2(Ma(t) + My (1)) + Co(Ip'(1)| + Ma(2))}
= Const{n© (M,(t) + My(t) + 1}

Moreover, noting that

(21) Iwillzz = (o) 2oyl Z2,
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the left side of (20) is estimated as follows

4 4 1/2) 2
2 2
,Z- Wil =2 { (2}: ||WjHLg> }
1/2d 1/2
= 2(2 ||Wj||i§) yr (Z ||Wj||i§)
J J

1/2
= 2(Con™%) ol 2 5 (Z ||w,n,,z)

Hence, integrating from 0 to ¢ and using again [21), we get
t
vl 2 < Gllv(0)]l 2 + G, Jo{p’(f) +sup [KE>™ Ry (%, &)
1]

+sup [<6)7'Im Ay (7, £) + C1 CoMa()n) (Z I<- >‘/2w,-||ig/l|v||,;g) dz
J

J
t t
+ € | WEI@lgde + € [ 1P @)l 50,

Where C, = CiC™®, C, = (Co™ ), C) = (Co™©)’, C; = (Ca™®)*CY.
From Lemma 1 we remark that

t
JO sup K& Ry 1, £)lde < sup &) c4n|¢|j sup 4(r, ), )

1
< J CanM,(7)dr,
0

and

J sup [<&>~'Im 4, (z, &)|dz

0¢&J

< sup(©)” ‘lélj sup [im A%z, %0 + ip(r)ECE, &)\

01e]=1,1<k<N

t
< sup J sup  [Im Ae(z, X9 + ip(r)ECEY, E)ldx + 7
J Jog=1,1<k<N
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rl

IA

) CrM,(7)|p(r)ECE> T |EldT + 1 (see [K] p1491)

r!

< | GiMa(7)p(r)de + 1.
Jo

Supposing  {p'(t) + C1M,(2)p(t) + n(CaM,(t) + 1 + C1CaM,(t))} = 0, since
S I willza/ ol < CollKDYvllzz, we get

22) (ol < CyllvO)llz + €, L{p’(r) + CIMa(1)p(x) + 1(CoMa(z) + 1

+ CLOM (D)} Goll<DYv] 3

t t
+ G | W@l + € | 1P Pg(e)]

where Co = C4 + C1Cs.
Then we can choose 0 < p(¢) < min{p,/+/n,py//n} such that

{p’(t) + CiM,()p(t) +n(CoM,(t) +1) =0  a.e.on[0,7),
p0) =py (0 <py <min{p,//n,ps/\/n}), 1ie.

t t T
(23) p(t) — e-—C7 J;) Ma(T)dT{pO _ 17 Jo eC7 J;) Ma(a')da(cha(T) + l)dT},
where T implies the maximum of ¢ satisfying p(f) > 0 and is defined as
T ; J
(24) po = ”J e Js Mel9o (Copr (7)) + 1)d.
0

Thus if we take n > 0 satisfying for any given T >0 and choose
p(t) = 0 satisfying (23), we can eliminate the second term on the right side of
(22). And then, returning to the original functions, we get

t
1e”OPy(8)|| 2 < C””u()”’“f»o +C JO (1) ]| e?OPy(7) || 2 dr
(25)
t
¢y [ 1erO g de for Vre(0,T),
0
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Finally from (25), Gronwall’s inequality yields the estimate

t
) 1 OPul, < Ky ol + G | ||eﬂ<’><">g<r)||pdr}
for Yte|0,7),
~ _ -1 — cft#(f)df 1114
where C, = C;'C, K, (1) = e has continuity on [0, T').
Similarly, we can also get the estimate which is the general case for s
t
@) [ePOPu)|, < Kno){ ol + G | ne"<f><D>g(r)||Hsdr}
for Yte[0,T).

In order to prove the existence of solutions for system (1), we consider the
following system

{ du =) An(t, x)il sin(Dy/lus + B(t, x)us + g(t, x)
(28) h
(0, x) = up(x),
Here remark that {;(&) = (Isin(&,/1),...,Isin(&,/1)) satisfies
) G@)—¢ (-
i) |88 < |¢]
iil) (67O < Gk (<& = <Gl(©)))

Since ilsin(Dy/l)(h=1,...,n) belongs to OPS® for any fixed I,
> » An(t, x)ilsin(Dy/I) is a bounded linear operator on H°. Thus the integral
equation

(29) w(t) =up + J; > Au(z, x)il sin(Dy/luy(z)dx
h

+ J: B(t, x)u(t)dt + J; g(z,x)dz

is solvable by successive approximations.
With the same methods, we can get the analogous estimate

t
GO 1P DY (Dl Ky Il + G [ 1e%9Pa(0) e

forte [0, T).
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Here, we used
le?o<Px<DYsuollza < lluollzy » 1P OPHDYg(D 2 < 7P g(0)]| g

Furthermore it holds that

(31) [|e?OPLDYBu (D),
(DY ¢ NS o o (Dh
<|e? K{D); Z Ap(t, x)il sin 7 + B(t, x)
h
x (DY~ e PP P DYDYy | 1, + [|ePDPY (DY (1) 2

< C(My(1) + My(1))||e? P> DY | 12 + [|” P71 DYig (1)l 2

t
< Gﬂ(n{uuonH;,;: & ||e"<f><’)>g<r)||m+ldr} + (2P g (1)
a.e.on (0,7),

where G,(f) is a integrable function on (0,T).
While, writing

t
(32) PPNV uy(r) — P IPHDYuy (1) =J 0{e? PP DYjuy(v)}dx
t’

N J | {0 (2)e? <Dy ()

+ P DY o ,u(t) Y,

it also holds

t

e OPDYtu(s) — PP DYt < | H(D)d,

t

where
t .
H(r) = {Ogga;xT P (K, (1) + G(t)} { lluoll gz + € JO ||e”(')<D>g(r)||Hs+1dt}

+ [[e” P g (1))

is a integrable function on (0, 7).
From (30) and (32), we find than the sequence {e”VPX{(D>u(£)}2, is
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bounded in L? and has a week limit e?(<P>{DYu(t) satisfying
t
(33 [e0Pu(t) - PO Pu(O)y < | H(sar,
tl
and
t
(349 1Pl < 6] Il + G [ 1649200 e}
0
+ ||e?OP2>g(0)|| H*! a.e.on (0,7),
Considering  [] [ (1, x)¥(t,x)dzdx  for  y(t,x) = Y, (P,(x) € C°
((0,T) x R%), we get the following as the limit of
t
u(t) =up +J Z Ap(t, x)0pu(t)dr
0 "h
t t
+ j B(z, x)u(t)dt + J g(7)dz.
0 0

Then for Juo(x)e HY and Jg(t,x) satisfying e/<PJg(r) e
Ll ((0, o0), H®) with then Friedrichs mollifier {Je}o <e <1 it holds that

{ e?O<Py(1) e C°([0, T), H®)
(35)

e?OP>o,u(t) e L'((0, T), HY).

As ¢ — 0, also holds for ug(x) € H: and g(t,x) satisfying e”<P>g(z) e
Ll ((0, o), H®).

§ 4. Proof of Theorem 2

It is sufficient to prove Theorem 2 for quasilinear systems. In fact we can
easily show that the fully nonlinear Cauchy Problem (6) is equivalent to a
quasilinear system as below.

If u="'(u,...,u,) is a solution to (6) on [0,T) x R", by differentiating (6)
we see that the N(n+ 1)-vector U ='(u,01u,...,0,u) is a solution of the
quasilinear system

n
AZEDY gi(t,x, U)o’ +?£(t, x, U)U + gj(t,x,U) (0<j<n)
(36) =t Oz o

UO(O,x) = 8¢(X), uj(O,x) = 86j¢(x)’
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where gO(t? X, U) Zf(t, X, U) - ZZ—I(af/aZh)(ta X, U) Ut — (af/ay)(t, X, U) UO,
gj(t’ x,U) = (af/axj)(t’x’ U) 1<j<n).

Now it seems that apparently the dimension of the system has increased
from N to N(n+ 1). But, considering that (36) is the system of the (n+ 1)-
vector equations which have same principal part, we can see that (36) cor-
responds actually to a system of order N. Moreover if u = 0 is a solution to (6),
then U =0 is also a solution to (36). And then the characteristic roots of (36)
are exactly same with those of (6), since the characteristic equation of (36)
at u=0 is the form that {det(A— S, & (df/0z4)(t,x,0))}""! = 0. Hence the
hyperbolicity also holds for (36).

Conversely if U=*U°...,U") is a solution to (36), the Nn-vector
V=4v.. ., vy =4U'-4U°...,U"-5,U% is a solution of the another
quasilinear system

n

(. of . of N~ J 0 [of
Vi = il 74 L Vi — (=L yh
O E o (t,x, U)oV’ + 3 (t,x, )V’ + ;,E_l {6xj (62;, (2, x, U)) }

h=1 =

(1<j<n)

| V(0,x) =0.

Noting that the initial datum and inhomogeneous part are zero, we have V = 0,
i.e. U/ = 9;U°. Hence returning to (36), we find that u = U° is a solution to (6).
This shows the equivalence of (6) with the quasilinear system (36).

Taking account of this fact, we can reduce (6) to the following quasilinear
system

O — Z Ap(t,x)0pu — B(t,x)u = Z Fy(t,x,u)0pu + Fo(t,x,u)u
(37) h=1 h=1

u(0,x) = ed(x)

where

o Ap(t,x) = (0f/0zn)(t,x,0), B(t,x) = (0f /dy)(t,x,0) are N x N matrices
which are analytic in R, and satisfy |054x(t, x)| < M(t)p: 1ol g, |0%B(t,x)| <
M(H)p;™al ae. on (0, ) for Yae N*, Yx e R",

o Fy(t,x,y)(0 <h <n) are N x N matrices which are analytic in R} and a
neighbourhood of 0 in Riv , and satisfy |6§6§Fh(1, x,y)| < M(t)pe '“'p;w B!
a.e. on (0, o) for Ya, YBe NV, V(x,y) e R%x “a nighbouhood of 0 in
RY”, and satisfy Fj(t,x,0) = 0.
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Moreover the assumption (3) also holds for the system (37).
We next consider the equation

(38) {L(ﬁ)u = I(¢,x)
u(0,x) = up(x),

where the linearized operator L(#) is defined as

L(#)u =0u — Z An(t,x)0pu — B(t,x)u
h=1

n
— Z Fy(t,x,u)0pu — Fy(t, x, u)u.
h=1

In order to estimate solutions of [38), we modify the estimate (5). Putting
k(t,x) =33, Fu(t,x,4)0pu + Fo(t,x,)u and g(t,x) = I(¢,x) + k(2,x), the sixth
term on the right side in (19) is changed into

> 2Re(Py,(1,E)<EY F Loy (x)e?IP2), Py (1, £)<EDD))
J
+ ) 2Re(P, (1, E)<E 2 F 9;(x)e? VLK), Py (1, E)<EYH Pty)
J
< CHlle” P g ||vll g + 2CFe” P2kl i |0]] s

n
< CHlle*P || g loll g +2CF Y IFw(@)<DIull a0l o
h=0
n

< CHle” P gllol g +2CF Y 1 Fu (@)l IKD Yl e [19]] o
: h=0

n
~ 2
= CHlle” P | gl|oll = +2CF Y I1Fn(@) || (Z ¢,‘-"IIvIIH;+vz)
h=0 J

n
~ 2 2
< Cille” P galloll g +2CF D I Fn(@)ll g (Z o7l sz + C6||U||Hs—1/2)
h=0 J

n

~ 2
< CHlle* 1| g llvll g +2CF Cs Y I1Fw(@) gl
h=0

n
+2CCoS S I1Fa(@) | B (Z I<- >S+‘/2w,~||ig)
h=0 J

In the third inequality we used ii) in § 2. Similarly we get the following
estimate corresponding to (22)
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t
(39) Mlv@llgs < Collo(O)]lgs + G, JO{P’(T) + CrM(7)p(t) +1(CoMa(r) + 1)

n
+ CICn™ @ Y | Fa@) | H Hlo(o) |+ de
h=0
t

t
+ G | W@ e+ [ 110 e,

where u(?) includes 2C7Cs >4 || (@) g5-
When ||#]|, < 7S+l by v) in § 2 it holds that

3 Y Cs Cs .. -1 B
S U@y < n(CHMOIN G2 (1= (i) Vil
h=0 Pd Pd 4 ’

-1
<n(CM(t))N 9 (1 —N E ”C3+1) ”C3+1
Pd Pd

< C'M(t)n<*!  (for small > 0)
Hence if p(?) is given as
p'(t) + CIM(£)p(t) +n((Co + C?C,C")M(t) +1) =0 a.e.on (0,T)
{p(O) =po (0<py<p/vn) ie.
(40) p(f) =@ 5 MWT{ Po—1 J; el M@do (car(2) 4+ l)dr},
where Cjo = Cy + C?C,C' and T is defined as |

T T
(a1 2o =nj e Iy Mo (M (1) + 1),
0

then we can eliminate the last term on the right side of (39). Thus by the proof of
Theorem 1, the problem has a unique solution satisfying

t
@ 1 PuDy < Ky Il + G [ 1D e}
P0 0

where K, (1) = C,,eq" e 0 continuity on [0, T'). Since we can take the small
n to satisfy K,(¢) > 1, we suppose K,(¢) =1 without loss of generality.
In order to solve the system (37), writing (37) as

{ L(uw)u=0

43
) u(0, x) = up(x) = ey (x),
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we define recursively the sequence {u;};., as
up(t,x) =up(x) fori=0

{ L(u,-_l)u,- =0

(44) :
u;(0,x) = up(x) = ep(x) fori<1.

LEMMA 2. Assuming that

”C3+1
(45) ol (= eldla,) < s

then the function u;(t,x) are well defined on [0,T,) x R, and satisfy the estimate

(46) 1e”P2us ()| e < Kn()luoll gy Sor 1€ [0, T)

ProOOF. Since K,(t) =1, it follows that
le?Pug || 1, < lluoll gy < K ()0l -

Hence we find (46) holds for i = 0.
Assuming that (46) holds for some i > 0, by (45) we obtain

1e?OP>u ()13, < 7S+ ae. on (0, T).
Thus by (42) we have the estimate with /(z,x) =0
||e”(')<D>ui+l||Hs < Krr(‘)”“O”H;o-

This concludes the proof of Lemma 2.

LEMMA 3. Under the assumption of Lemma 1, it holds that
x© ~
(47) D 1ePOP (1) — w1 (1)) || s < 00 for V2 e [0, T),
i=1
where p(t) = e~C7fo M(’)d’{ﬁo -7 jot ec7fo M(")d"(ClOM(r) + 1)dz} with ¥py < p,.

ProOOF. Putting w; = u; —u;—1,i = 1,2,..., we can see that w;,; satisfies the
problem

(48) {L(ui)wi+l = [i(¢, x)

Wil (0, x) = O,
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where [;(¢,x) = > p_y (Fu(t:) — Fp(ti-1))0ntti + (Fo(u;) — Fo(u;i—1)u;. By vi) in § 2 it
holds that

. C C -1
||li||H; < (n+1)CN p_;{l — 2N p—;(”“i”H; + ||ui—1||H;)} Hwi”H;”“i”H;“.

Consequently, by and iv) in § 2, we see that

C

||e7’(‘)<D>l,-(t)||H: < =
o — Po

|e? (D) g, for Ve e [0, T).

Now using again with uy(x) =0, I(t,x) = (¢, x), we get

- Cl t -
20D 1 (Dl < —— [ P9 Pwi(0) pde for " [0, T)
Po — Po Jo

Hence easily follows.

The sequence {u;} converges to some function u.(z,x), and passing to the
limit in (44), [46), we see that u, is a solution of and holds that for
Vte[0,T)

(49) 1O (1)l < Ky(®)lt0ll ;. = 2Ky (DIl -

In conclusion, if ¢ — 0, then by |e?O<P>u, || yre — 0. While from the
condition [45), we find the relation

73 d
| Blle Cpe Jomeycst < 1
) &

C4C) Cz?l_C3 e(Czn‘Cé ) J: (S M(r)+1)dr’7_c3_1 < %

vz of (] mioar) (s 2) '}

Gcic >0)

!

Thus by we can find the relation between ¢ and T,

Po = c{ (JT M(r)d‘c) (log é)ﬁl}o LT Ol M@da (0 Af(7) 4 1)de

0
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Putting y(f) = J; M(z)dx,

IA

-1\¢ .1,
cy(T,) (log 1) L ec"’(T)C%W(r)dt

&

-1\C.1,
= C{n//(Te) (log %) } L .(%(ecll/(t))dt
"¢
= C{l//(Te) (log E) } (eV(T) 1),

Since Y (¢) is a increasing function for ¢, we can see T, — oo as ¢ — 0. Hence
we can also get the asymptotic estimate

T, >y (,u log log %) (u>0).

This concludes our proof.
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