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Introduction

Let M = G/K be a compact homogeneous space of a compact semi-simple
Lie group G. Let V be a complex homogeneous vector bundle on M. The group
G acts naturally on the space of sections I'(¥V) of V. By a theorem of Peter and
Weyl, I'(V) is a unitary direct sum of finite dimensional representations of G. It
is an important problem to decompose I'(¥) into irreducible G-modules. By the
Frobenius reciprocity theorem, the problem is divided into two parts:

1. How does an irreducible G-module decompose as a K-module (branching
law)?
2. How does the fiber ¥y decompose as a K-module?

In spite of its importance there are not so many pairs (G, K) of which the
branching law is investigated. For instance, see the list in Strese [7]. The
branching law of the compact symmetric pair of rank one are fully explained
except the case (Fy4, Spin(9)). On the branching law of the pair (F4, Spin(9)), we
have a result of Lepowsky [5]. But his result is not sufficient to decompose the
space of sections I'(V).

A section of A\?(T*MC) is a (complex) p-form on M. Since the Laplacian
on M acting on p-forms commutes with the action of G, A is a scalar operator
on each irreducible component of A?(T*M€) and the eigenvalue is calculated
by Freudenthal’s formula [3] By this program, the spectra of p-forms on
spheres and complex projective spaces are calculated by Ikeda and Taniguchi
[3], and the spectra of quaternion projective spaces and real Grassmann
manifolds of 2-planes are calculated by Strese and Tsukamoto [9]. The
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decomposition of the space /\I(M ) of l-forms on a compact irreducible
Riemannian symmetric space M is given by Kaneda [4].

In this paper, we calculate the spectra of the Laplacian acting on p-forms
(0 <p <5) on the Cayley projective plane.

The author would like to express his sincere gratitude to the referee for his
valuable comments.

1. Preliminaries

Let G be a compact connected Lie group and M be a homogeneous space
of G. Take a point 0 of M and let K be the isotropy subgroup of G at 0. We
denote by g and f the Lie algebras of G and K respectively. Let £ be a G-
homogeneous complex vector bundle on M. The fiber E, over o is a K-module.
The space of smooth sections of E on M is denoted by I['(E). Let C*(G; Ep) be
the space of smooth Ej-valued functions on G and put

C®(G; Eo)x = {f € C°(G; Eo)| f(uk) = k~'f (u) for any u € G and k € K}.

We have natural actions of G on I'(E) and on C®(G;Ep); and a natural G-
isomorphism

5:C®(G;E0)g = T(E); f—1[g9-0- gf(g))

Each element of the Lie algebra g of left invariant vector fields on G acts on
C*(G;Ep) as a left invariant linear differential operator. The action of g on
C*®(G; Ep) is extended to that of the universal enveloping algebra U(g) of g in a
natural manner. An element L ® X of Hom(E,, E,) ® U(g) acts (as a linear
differential operator) on C®(G;E,) by

(L® X)(f) = L(Xf) feC*G;E,).

Define an action of K on Hom(E,,E,) ® U(g) by k(L® X) = (kLk™') ®
Ad(k)X for ke K. A K-invariant element D of Hom(E,, E,) ® U(g) leaves the
subspace C®(G;E,), invariant and induces a G-invariant linear differential
operator of I'(E). Conversely every G-invariant linear differential operator of
I'(E) is obtained in the above manner.

Let T be a maximal torus of G and t be its Lie algebra. Take an Ad(G)-
invariant inner product {,)» on g. Let (V,p) be a complex representation of G.
For an element Aet, put

Vo={X e V|p(H)(X) = V-1{A, HYX forany H et}.
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If V; # 0, then A is called the weight and V) is called the weight space. Especially,
if (V,p) = (g%, ad), then a weight is called a root and a weight space is called a
root space. We denote by X(G) the set of non-zero roots of G with respect T and
2t (G) the set of all positive roots. For the sake of brevity, we normalize the inner
product <, so that the length of long root is equal to 2. We denote by 2(G) the
set of all equivalence classes of the complex irreduible representations of G. Let
VG(A) be a representation space of an element A of 2(G).

Take a K-invariant Hermitian inner product in E, and extend it to a
unitary structure on E. For each irreducible complex representation ¥ (y), we
define a map 4, of V(y) ® Homg(V,, E,) to C*(G;E,)x by

A,(v® L)(g) = L(g™" - v).

Then we have the following:

THEOREM 1 (Frobenius reciprocity). The unitary representation I'(E) is the
unitary direct sum:

T(E)= Y A4,(V%(y) ® Homk(VE(y), E)).
7eD(G)

Assume that 7 is also a maximal torus of K (namely G and K are of the
same rank.) We denote by f and t the Lie algebras of K and T respectively. We
denote by X(K) the set of all non-zero roots of € with respect to t€. By our
assumption Z(K) is contained in X(G). We denote by £*(K) the set of positive
roots of fC.

Let y,,...,y, €t be the set of elements of T*(G)\E™(K). For every vet, we
denote by P(v) the number of non-negative integral r-tuples (ni,...,n,) such
that v=73""_, n;.

Let W be the Weyl group of G. Let D(G) and D(K) be the set of dominant
integral linear forms for G and K respectively. Then we can identify D(G) [resp.
D(K)] with the set 2(G) [resp. 2(K)] of all finite dimensional irreducible G-
[resp. K-] modules. For each A€ D(G) [resp. ue D(K)], we denote by VE(4)
[resp. VK(u)] the irreducible G- [resp. K-] module which corresponds to
A € D(G) [resp. u € D(K)] (i.e., the irreducible G- [resp. K-] module with highest
weight A [resp. u]). Since K is compact, V' ¢(A) is decomposed into irreducible K-
modules:

vemy = Y. m@AuvEQ.

neD(K)

The multiplicity m(4,u) is counted by the following:
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THEOREM 2 (Kostant)

m(d, 1) = ) _ (det 0)P(a(4+ ) — (1 +9)),
ceW

where J is half the sum of positive roots of g¢.
For the proof, we refer to Lepowsky [5], [6] or Cartier [2].
2. Cayley projective plane

2.1 ROOT AND WEIGHT SYSTEM OF F4 AND Spin(9). Thy Cayley projective
plane CaP? is isomorphic to the coset space G/K for G = F4, K = Spin(9). Let
T be a maximal torus of Spin(9). We denote by g,f and t the Lie algebras of G,
K and T respectively. The complexification t€ of t is a Cartan subalgebra of g€
and f€. Under a suitable choise of an orthonormal base {e1,82,¢€3,€4} of t, the
set of roots X(G) [resp. (K)] of g€ [resp. f€] with respect to t€ are

i81(1_<_l$4), "_‘8,’i8j (1Sl<]£4),
E(G) = 4 )
1/ 58 (5= +1,1<j<4)
ib‘ii&j(l <i<j<4),
I(K) = 4 .
(1/2) Zj=1 sigi(sj = +1,851-852-53-54 = —1)
Define a lexicographic order > in t by
&1 > & >¢e3 >8> 0.
Then the set of positive roots of g€ and € are as follows:
a(1<i<4), g+g(l<i<j<4),
2H(G) = 4 )
(1/2) ijl sigj (51 =1,82,83,54 = £ 1)
&t (1 Sl<jﬁ4)
E+(K) = 4 ’
(1/2) ijl sigj (51 =1,50,83,54 = %,5-53-54 = —1)

and the set of dominant forms D(G) [resp. D(K)] of G [resp. K] are

4
D(G) = {Z aigilay = ay > az3 > as > 0,a; > ax + as +a4},

i=1

4
D(K) = {Z bieilby = by = b3 > |bs|, b1 = by + b3 +b4}.

i=1
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A linear form Zle a;e; 1s an integral form for Fy, which is also an integral
form for Spin(9), if and only if 2a;, a; — az, a» — a3 and a3 — a4 are integers.
The set of simple roots of X(G) with respect to > is

o =& —¢€3, Oy =¢€ —&, 03=2=¢, os=I(e —&—¢& —&4)/2,

and the set of simple roots of X(K) with respect to > is

Bir=e—¢e, Pr=er—¢&, Py=e3+e, Ps=(a1—& —& —e&)/2
The set of fundamental weights of X(G) with respect to > is

M=e+e&, h=2+e+e, A3=QCea+e+e+es)/2, A4=e,
and the set of fundamental weights of X(K) with respect to > is

u=(1+e+e—¢e)/2, w=e+ée, up=0CBa+e+e+e)/2, u=e.

Half the sum of positive roots of G is

5= (11/2)e1 + (5/2)e2 + (3/2)es + (1/2)za.

2.2 WEYL GROUP W(F) oF F4. Take 3 subsets K, K3, K3 of Z(Fy) defined

by
tete (1<i<j<4),
K = ,
1)

(1/2) Z,; sigi (5= =L, ][ si=—
teteg (1<i<j<4),
{isf (1<j<4) }
teteg (l1<i<j<4),
i {(1/2) Z,; sg (=L ][ s=1) }

Each set K; is isomorphic to a root system of type bs. We denote by S,, the linear
transformation on t defined by S,(H) = H — 2({a, H)/<{a,a))a. Let Yy = Sy, 0 Sy;.
Then  acts on the set {Kj, K>, K3} as a permutation:

Y(Ki) =Kz, Y(K2) =Kz, ¥(K3) =K.
Let W’ be the subgroup of W(F;) generated by {Sy|x € K>}.

LEMMA 1. The Weyl group W(F,) is the semidirect product of {1,y,y?}
and W'.
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Let U be the subgroup of W(F4) generated by {S;,,S:,,Se,S:} and V' be the
symmetric group of 4 characters. Then the group W’ is the semidirect product of
V and U. The group W (F,) is the disjoint union of 3 right cosets of W’ ([5]). It
is easy to see that 3 right cosets W', W'y and W'(S,, - y*) of W' are mutually
disjoint subsets. We will use the following coset space decomposition of W (F,).

(1) W(Fs3) = W'UW'YyU W (S 0¥?).

2.3 DECOMPOSITION OF A?(T.x(CaP?))€. The complexified cotangent space
of the Cayley projective plane CaP? at the origin o = eK is an irreducible
Spin(9)-module with highest weight u,. Let {@;|]1 <i < 16} be the set of weights
of (T,(CaP?))€. The multiplicity of each weight w; is equal to 1. Thus the set of
weights of A?(T,(CaP?))€ is as follows

{wi1+"‘+wip|i1 <...<ip}.

Count the multiplicities of dominant integral weights and looking the table of
dominant integral weight multiplicities, we can decompose A’ (T,,(CaPZ))C into
Spin(9)-irreducible modules.

For example, the multiplicities of dominant integral weights of
A(T,(CaP?))€ are as follows:

mult. 8 4 2 1

On the other hand, the multiplicities of ¥X(u;) are as follows (see, for example,

[1D:

mult. 4 3 1 1

and the multiplicities of VX (u,) are follows:

mult. 4 1 1 0
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Thus we have the following decomposition:

N (To(CaPY))€ = VE (1) @ VE (uy).

We give the table of the highest weights of irreducible Spin(9)-submodules
of AP(T,(CaP?))€.

Table 1: Highest weight of irred. Spin(9)-submodule of A’(T.x(CaP?))C.

)4 Highest weight
0 0 |
1 Ha
2 H ]
3 My + iy oty
4 2u4 2u M+ wy+2py
2
5 M+ My Hy + Hy 3u4 2u + py
ottt
6 ) M M+ M+
M+ 24 Ha + 24, 2um + 1y 2u + s
7 Ha M+ iy Hy + Uy M3+ Uy
8 0 2 ) 2u4
2u Mt  +2p, 2p,
M + U 2, 3m 2u +u3
2u + 2py 4

The multiplicity of each Spin(9)-submodule is 1.
3. Branching Law of (Fy4, Spin(9))
3.1 LEpowsKY’s RESULT. Lepowsky proved the following

THEOREM 3 (Lepowsky [5], [6]). (1) Let A € 2(Fs), u e 2(Spin(9)). Suppose
A is the highest weight of a class 1 finite dimensional irreducible representation of
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F4, so that A =ali(ae Z,). Then m(A,u) =1 iff by = by = —by and b; + b, < a;
otherwise m(A,u) = 0.

(2) Let A= Zf;l aiAi € D(Fy). Then pu=azer+azez +ases —ases € D(Spin(9)),
and m(A,u) = 1.

Here we give a short review on a part of his proof of the above theorem.

For two real numbers x,y we write x <y or y > x if y — x is a non-negative
integer and we write x <y or y > x for the relation x # y and x <y. The
partition function P is described by the following:

LeMMA 2 (Lepowsky [5]). Letv= E?:] x;&; be an integral linear form. Then
P(v) is the number of real quadruples (pi,p>,p3,ps) satisfying the conditions
(P1+p2+p3+ps 20,
p1+p2—p3—ps =0,

p1—p2+p3—ps =0,

(p1—Pp2—pP3+ps 20,

4

(3) Y pie2z,

i=1

(4) pi=<xi (1<i<4).
For the sake of completeness, we give the proof of Lemma.

PrROOF. Let
y1=(81+e+e+e)/2,
Y2 = (&1 + & — & —&)/2,
y3 = (e1 — &+ &3 —&4)/2,
va= (81— &2 —&3+e¢)/2.

Then X*(G)\Z*(K) consists of ¢ (1 <i<4) and y; (1 <i<4). Thus P(v) is the
number of elements of the set

4 4
g(")z{(J’l,---,)’4,21,---,24)528“’:Z}’isi‘l‘zzﬂ’j,h,---,.V4,Zl)---,24 2 0}
i=1 Jj=1
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Put p,=x; —y; (1 <i<4). Then (y1,...,y4,21,...,24) is contained in 2(v)
if and only if
( p1+p2+p3 +pa =221,
P1+p2—p3 — pa =223,

p1 — P2+ p3 — ps = 2z3,

| P1 — P2 — p3 + pa = 224

Thus, if (y1,...,Vs,21,---,24) is contained in 2(v), then pjs satisfy (2), (3) and
(4). Conversely if p}s satisfy (2), (3) and (4) then (y1,...,y4,21,...,24) defined by
yi=x; —pi(l <i<4) and (5) is contained in 2(v). Q.E.D.

For all integral linear forms v and £ and a subset X of W, we put

MY() =Y det(a)P(a(y) - O).

geX

LEmMMA 3 (Lepowsky [S5]). Let v= E?:l x;g; and & = Z?=1 yi€; be integral
linear forms. If we assume that x; > x3 > x3 > x4 > 0, then MU (&) is the number
of real quadruples (p1,p2,p3,ps) satisfying (2), (3) and the condition

—xi—yi<pi<xi—yi (1<i<4).

For an integral linear form v = Y"1, xiei(x1 > x2 > x3 > x4 > 0), we define
T(v);={teR|—xi <t=X —xporx; <t=x},
T(v),={teR|—x; <t= —x30rx3 <1t=x},

T(v); = {teR| —x3 <t =X —xq0rx4 <t=x3},
T(v),={teR|—x4<1t= xa}.
Let Q’(¢) be the number of real quadruples p = (p1,p2,p3,p4) satisfying (2),
(3) and
(6) pityieT(V),, (1<i<4)
and put

N,(&) =) _(det 7)Q2(&).

teV
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LemMMA 4 (Lepowsky [5]). Let v= E;Ll x;& and & = E?zl yi&; be integral
linear forms. Assume that x| > x > x3 > x4 > 0. Then MY (&) = N,(¢).
The above lemma, with (1) and Theorem 2, implies
(7) m(A, 1) = Nays(1 +0) + N(pi5)* (1 + 0) — Nipyg= (1 + 6)
where
(A+0)* = ¥(A+8),(A+0)™ = Sy F2(A +6).
We omit the proofs of and Lemma 4.
For a real quadruple p = (pi,p2,p3,ps), we put
Mi(p) = —p2 —p3 —ps, Ma2(p) = —p2+ p3 + pa,
M;3(p) =p2 —p3 +pa, Ma(p) =p2+p3 —pa.
If we put M(p) = max<;<4M;(p), then (2) is equivalent to

P = M(p).

Since M\ (p) — M>(p), M1(p) — M3(p) and M;(p) — My(p) are even integers, (3)
is equivalent to

p1—M;(p) =0 (mod2) forsome;.

LEMMA 5. Let v= ZLI xi&; be an integral linear form satisfying x1 > x; >
x3 > x4 >0 and u be a dominant integral form for Spin(9). Then

Ny(u+8)= Y det(s)Qy(p+9).

teV,7(1)=1

PROOF. Put u = Z}‘:l bjei and u+06 = E;:l yj¢j. Namely
yi=b + 11/2, Y2 =b2+5/2, y3 =bs +3/2, ys = by + 1/2

Let p = (p1,p2,P3,P4) be a real Quadruple satisfying (2), (3) and (6). Assume that
7(1) # 1. Since p; + y1 € T(v),UT(v); U T(v), we have

P1<x2—y1 =x2—b; —11/2.
There exists j # 1 such that z(j) = 1. Since p; + y; € T(v), we have
ijl = X3 — lyjl >xy;— by — 11/2 = Pi1.
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From (2), we have

p1=1pa|, pi=|ps| and pi > |pd4l,
which is a contradiction. Thus Q)(u +J) = 0 and the Lemma is proved. Q.E.D.

3.2 FURTHER CALCULATION OF N,(4). Letv= E,‘;l x;¢; be an integral form
with x; > x3 > x3 > x4 > 0. We put

T(v)? = {tjxa < t < x1}
={x14+1—itli€Z,1<i <x —x},

T(v)s = {t|xs < t < x}
={x+1-bhlbeZ1<i<x—x3},

T(v)y ={t] —x2 <t < —x3}
={-x3+1—hliheZ 1 <i<x;—x3},

T(v)3 = {t|xs < t % x3}
={xs+1-islizeZ,1<i3 <x3— xs},

T(v); = {f] — %3 < t < —xa}
={-xa+1-islizeZ,1<i3 <x3— x4},

T(v), = {t| — x4 <t % x4}
={x4+1—islise Z,1 < iy < 2x4}.

Let p = (p1,p2,p3,p4) be a real quadruple satisfying (2), (3) and (6). Since

p1 >0 and 7(1) =1 (see the proof of [Lemma J), we have p; + (b1 +11/2) €
TY(v). Let &), . (&)(re V,t(1) =1,s,,53 =0,1) be the set of real quadruples

T,52,53

p = (p1,P2,p3,p4) satisfying
pi+y1e T,
Pr-1(2) + Vo1 € T(V)7,
Pr-1(3) + Ye13) € T(V)3,

Pr14) + Ve-14) € T(V)y
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and
g—,sz,g( ) {p € ISZ,Sg(é)lpl = M(p) P+ M(p) (mOd 2)}
If we denote by Q; ({) the number of elements of I (&), then we have
1
(8) M= ) > s, (9.

teV,z(1)=1 $2,53=0

Let
I = ([1,x1 — x2] x [1, %2 — x3] x [1,x3 — x4] x [1,2x4]) N Z*
and p. be a mapping of I, to R* defined by

(pr,sz,S3 (i))l =x1—-yn+1-1i,

X2 = Y1)+ 1 =iy, if55=0,

(Prsrs (D)) r-12) =
7,52,83 t1(2) —xs_yr-'(2)+l—i2’ ifS2=1,

—yr-1(3) +1- i3, if §3 = 0,
(p‘t,sz,sa (i))t—1(3) =

X4 — Y3+ 1 -3, ifs3=1,
(Prsyss (1)) 14y = Xa — Yery + 1 — da.

Then p.s,,s, gives a bijection of I, onto &, (). Hereafter we consider 7", . (&)
as a subset of I, by the bijection p,, s,.
Put

1 2 3 4 1 2 3 4 1 2 3 4

70 = y T1 = y T2 = )
1 2 3 4 1 3 4 2 1 4 2 3
1 2 3 4 1 2 3 4 1 2 3 4

73 = ) T4 = 3 T = .
1 2 4 3 1 3 2 4 1 4 3 2

From the following table we can see that AM(P; 10(i)) is equal to
M(P, 10(i)) for any i e I,. Thus we have

10,1,0(6) 13,1 O(é)
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(1,S2,S3) (7:0’170) (T3a170)

M, (p) —x4+y2+y3+ya —X4+y2+¥y3+ys
34+ +iz+is —3+ib+iz+ia

M>(p) 2X3+ X4+ Y2 — Y3 — V4 2x3+Xs+y2—y3—ya
+1+i—i3— iy +l 40 —iz—is

M;(p) (—2x3+x4 —y2+y3 — ya (=x4—y2+y3—
+1-—i2+i3—i4) +1—i2_i3+4)

My(p) (—x4 —y2—y3+y4 (-2x3+ x4 —y2—y3 + a4
+1—-i2—i3+i4) +1—i2+i3—i4)

t P = Prsys (i)
i parenthesized entry is smaller than or equal to another entry in the same

column

Similarly, we have
(&) =02 118), Q1 01(8) = Qr01(8);  2r10(8) = 27 10(8),
¥ 10(©) =00 11(8),  Or,0008) = Qri00(8),  Cr10(8) = Q7 10(¢)
51,18 = @1, 1,1(9)-

Thus by (8), we have

Nrw)(&) = 02 00(&) + 07, 00(8) — O2,00(&) — @2,00(8)
+ 0 01(8) +07,01(8) — Cr,01(8) — O 01(S)-

Now we consider 9’:0,0,0(6) and 9’1300(5). From M3(p.,00() — Ma(Pz00(0) =
2(x3 — x4 +y3 —ya— i3 +i4) = 2, we have

M (pr,00(i)) = max{M1(pz,00(i)), M2(Pzs00(7)), M3(Pry00(0))}-
Since
M(p;,00(5)) = Mi(Pro00(9)),
M) (P 00(1)) = M2(Pro00()),
M;3(Pry00(0)) — M3(Peo00(i)) = 2(x3 — x4 — i3 +1a) 2 2,
M3(pey00(8)) — Ma(pry00(i)) = 2(v3 — ya) > 0,

hold for any iel,, we have M(ps00(i)) < M(pr00(i) and M(pg00()) =
M(p,a,oo(i)) (mod 2) for any i € I,. Namely .}, ,(&) is a subset of 7.’ 4(¢) and
T 00(E\T) 00(&) is the set of integral quadruples i = (i1, i2, i3, ia) € I, satisfying
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M3(pey00(i) >x1 —y1 + 1 — iy = M(py00(i)),
{ —y1+1—i1 = My(pyp0(i)) (mod 2).
Similarly 77 (S) is a subset of 7.7 (¢) and .} ,(&\T,) (&) is the set of
integral quadruples i = (iy, i, i3,is) € I satisfying
M;3(pr00(i) > x1 —y1+ 1 =iy = M(pe,00(i)),
{ —y1+1—ip = My(pr00(i)) (mod 2).

From M3(pr,00(i)) — M3(Prioo(i)) =202 —x3+y2—y3—ia +1i3) =2, we
have

M(pzy00(i) = max{M(pz,00(i)), Ma(Pr,00(i)), Ma(Pzy0,0(i))}-

Since
M3(pe,00(i)) = M3(ps, 00(i)),

My (pry00(1)) = Mi(pey00(0)),
M>(Pe00(i)) — Ma(pry00(i)) = 2(x2 — x3 — i + 13) > 2,
M3 (Pri0,0(i)) — M3(pry00(i) = 2(32 — y3) = 2,

My(pzi00(i)) = Ma(pry00(5)),

hold for any i€ I,, we have M(p.,00(i)) =M (py,00(i)). Thus (7, 00(é)\ 00({)) )

(T200(EN\T;) 0,0($)) and ( o"oo(f)\g;”oo(@)\%}oo(@\%foo@)) is the set of
integral quadruples i = (i), i, i3, i4) € I, satisfying

min{ M3 (pz,0,0(7)), M3(Pr;00(i)} > x1 —y1 — it + 1 = M(pr00(i)),
-yn—i+1- M(p,oyo,o(i)) =0 (mod 2).

By a similar argument, we can show that
Tea01(&) 270 41(),
Ter0,1(8) 2 77 0.1(8),
Ty 01 (ENT 5 0,1(€) 2 T3 01 (T2 0,1(8)
and 77 | (E)\T;)0.1(8) 2 74 01(E)\T200,1($) is the set of integral quadruples j =

73,

(J1,J2,3,Ja) € I, satisfying

min{ M>(px,0,1(/)) M3(Pr0,1(7)) > x1 —y1 —j1 + 1 = M(p1,0.1(j)),
- —ji+1—=M(p,01())) =0 (mod?2).
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If we put ji =i1,j» = is,j3 = x3 — x4+ 1 —1i3 and js = 2x4 + 1 — i4, then we have
M>(py0,1())) = Ma(pry0(5)),
M3(P2,01()) = M3(pz;00(0),
Mi(pey0,1())) > M2(pe0,1())),
M (pry0,1(J)) > Mi(Pro00(3)),
M1(pe;0,1(J)) > Ma(pr0(0),
M3(pe;,01(1) = M3(Pe00(0)),

M4(pr;0,1(7)) = Ma(pro00())

for any iel,. Thus ((7;)01(O\(Z;01(E\(T01(E\T0,1(£)) is a subset of

3, 12,
(Zaa 00N, 0,0(ENT2, 00(O\T 0,0(€))) and Ny(u +9) is the number of integral
quadruples i = (i1, iy, i3,14) satisfying

) { min{hy, by, h3} > x1 — by — i) — 9/2 > max{l, b, 55,14},

x1—b1—i1—9/2=h (mod 2)
where we put

hi = Mi(pr,01(j)) = —xa+x3+xa+by+bs+bs+ir—izs—is+7/2,
hy = My(pr00(i)) =x2—x3+x4+by — b3 —bs—ia+ i3 —ig+3/2,
hy = M3(pr,00(i)) =X2+x3 — x4 — by + b3 —bs— b — i3 +isg — 1/2,
h = Mi(pey00(j)) = —X2 — X3 — Xa+ by + b3 + ba+ i+ i3 + ia + 3/2,
b= My(pro0(J)) = —x2+x3+Xx4+ by —bs —bs+ip — i3 —is+3/2,
B=M3(Pro(J)) = X2 — X3+ X4 —by+ b3 — by —ip +i3 —is — 1/2,

Iy = M4(p,0,0,0(j)) =Xo4+Xx3—X4—by—b3s+by—ir—iz+is—5/2.
Thus we have the following

THEOREM 4. The multiplicity m(i,p) of VE(u) in VO(A) is given by
(10) m(4, 1) = Nj1s(p+6) + Niays) (1 +6) — Nigyg)= (1 +9)

where
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A+ = (a1 + 11/2)81 +(a2+5/2)£2+ (613 +3/2)63 + (a4+ 1/2)84
_aitataz—as+9 ay+a—az+as+7

(A+5) = ) & + ) &
- 5 —ay; —as — 1
+a1 a +as+ a4 + 83+a1 a, —as —ag+ &
2 2
« a+a+az+as+10 a+ay—ay—as+6
(A+9) :1+2+3 4 81_'_1 2 3 4 &
2 2
al—a+az—as+4 a—ay—az+as+2
+ ) & + ) &4

and N,(u+6) is the number of integral quadruples

i = (i1, ip, i3,i8) € ([1,%1 — x2] X [1,%2 — x3] x [1,x3 — x4] x [1,2x4]) N Z*
satisfying
([ bi+by+bys+bs+ir+ir—iz—ig—x1—x2+x3+x3+8>0,
by +by—bs—bs+ii—h+iz—isa—x1+xX2—x3+x3+6>0,
by —by+bs—bs+i1—ih—is+is—x1+x2+x3—x3+4>0,
by —by—b3s—bys—i1—h—i3—i4+x1+X2+x3+x4—6=>0,
—by —by+b3+bs—iy—bh+iztis+x1+x2—-x3—x—6>0,
—b1+by—b3+bs—i1+ir—i3+ig+x1 —x3+x3—x4—4>0,
b1 +by+bys—bs—i1+ir+iz—is+x1—X2—X3+x3—22>0,
| Shix+ b+, i =0 (mod2).

(1)

PROPOSITION 1. Let v= Yt x& be an integral weight with x| > x3 >
x3>x4>0 and pu= Z,‘;l bie; be a dominant integral weight of Spin(9) with
b3 +bs =0. Then N,(u+ 3) is the number of integral quadruples

i= (i1, i2,03,0a) € ([1,x1 — x2] % [1,x2 — x3] X [1, X3 — x4] x [1,2x4]) N Z*
satisfying
X1+X2—X3—X4—by—by—i1 —bhb+i3+is—6=0,
X2 —x4—by—bs—ir+is—2 >0,
— X2+ x3+by—bs+ir—i3+1>0,
—Xp2+X4+by—bsg+ir—isg+2>0.

PROPOSITION 2. Let v = Z,‘Ll xi&; be an integral weight with x; > x; >
x3>x4>0and u= Z?:l biei be a dominant integral weight of Spin(9) with bz =
bs. Then N,(u+9) is the number of integral quadruples
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i = (iy,i2,13,04) € ([1,x1 — x2] X [1,x2 — x3] x [I, x3 — x4] X [1,2x4])ﬂZ4
satisfying
( X1—Xp—X3+Xa—b1+by—i1+i2+i3—is—2=0,
—Xy+Xx4+by+bs+ip—is+2=>0,
 —x3+x4+by—b3s+i3—isg+1=0,
Xo+x3—by—b3—ip—i3—22=>0,

\ xo—x4—by+bs—ih+ig—22=>0.

PrOOF OF ProposiTION 1. Let i= (iy,i,i3,is) be an integral quadruple
satisfying (9). Since h; — , =2, we have

min{hy,hy, b3} =h >x1—b—i1—-9/2=h = max{li,h, 5, 14}.
Inequalities Ay > hy, I, > [} hold for any i€ l,. From
xt—b1—i1—9/2—bh=x1+x—x3—X4—b—by—ih—h+iz+is—6=0,
hy —hy = 2(xa — X4 — by — by — iy +is — 2) = 0,
L—bL=2(-x2+x3+by—b3+i—i3+1) >0,
h—Ily=2(—x2+x4+by—bs+ir—is+2)=0

we obtain the Proposition. Q.E.D.

4. Spectra of A’P(CaP?) 0 <p <5)

4.1 MULTIPLICITY OF IRREDUCIBLE Spin(9)-SUBMODULES. In order to cal-
culate the spectra of the Laplacian A?(CaP?) (0 <p <5), we calculate the
multiplicity m(4, ) of V"®)(y) in V¥4 (A) for some classes of the dominant
integral weight u of K.

CASE  u = mu, + nyy.

LEMMA 6. Let A= Z:‘:—l ae; € D(Fy) and u = myy + nuy € 2(Spin(9)). Then
the multiplicity m(4,u) of VP"O)(u) in VF+(A) is equal to

#{jeZ
—#{jeZ

1 <j<min(—a3+as+m+1,2a4+ 1) }

m+a+j—-1<m+n<a—a+j-—1
(12)
1stmin(—ag.—a4+m,a1—a2—a3—a4+1)}

m+a+j-l1<m+n<ar+az+22as+j—1
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PROOF OF LEMMA 6. Let A = Z?:l x;¢; be an integral weight with x; > x; >
x3>x4 >0 and u=mu, +nuy = (m/2+n)e; + (m/2)(e2 + &3 — &4) be a domi-
nant integral weight of Spin(9). By [Proposition 1, N;(x+6) is the number of
integral quadruples

= (il,iz,i3,i4) € ([1,x1 —xz] X [I,X2 —X3] X [I,X3 -—X4] X [1,2x4])ﬂZ4

satisfying
( XI+Xy—X3—X4—m—n—i1—bh+iz3+i4—6=0 (13.1)
X2—Xx4—bhh+isg—2=20 (13.2)
(13)
—X2+Xx3+ihb—i3+1>0 (13.3)
\ —X2+X4s+m+ir—i43 +2>0 (13.4)

From (13.1) and (13.3), we have i =x; —x3, i3 =1 and i =is+ x; —
X4 —m—n — 5. The integral quadruple i = (is + x1 — x4 —m —n—5,x; — x3,1,i3)
satisfies (13.2) automatically and satisfies (13.4) if and only if iy < —x3+
X4 +m+2. The integral quadruple i is contained in [1,x; — x;] x [1,x; — x3] %
[1,x3 — x4] x [1,2x4] if and only if

X2—X4—S5<m+n—ig <x1—x4—6, 1<is<2xy.

Thus N;(u+J) is equal to

#{jeZ
We have

Nis(p+0) — Njysy (u+9)

1 <j <min(2x4, —x3 + x4 + m + 2) }

X2 —X4—5<m4+n—j<x;—x4—6

1 <j < min(—as +a4+m+1,2a4+1)}

=#jel
ay—ay—3<m+n—j<a —a;—1

- #{jeZ

—#keZ|2a4+2<k<a—ay—az—as+2

1sjsmin(——a3+a4+m+1,2a4+1)}

a—as—3<m+n—j<ary+a;—-2

I<k< —as+as+m+1,

a—as—-3<m+n—-k<ay+a;—-2
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=#{jeZ

—#cjel

1sjsmin(——a3+a4+m+l,2a4+l)}

a+az—1<m+n—j<a —as—1

1 <k <min(—a3 — a4 +m,a; —ay—a3—as+1)

a+as—2<m+n—-k<a+az+2a4—1

We obtain the Lemma by adding

1 <k <min(—a3 —as+m,a; —a, — a3 —as + 1)
Niioy(u+0)=#S jeZ

at+a—-2<m+n—j<a+a—2

to the both side of the above. Q.E.D.

THEOREM 5. Let A = Z,‘Ll a;ei € D(Fy) and pu = nuy € 2(Spin(9)). If a3 = as
and a, + as < n < a; — a3 then the multiplicity m(A,u) is equal to 1 otherwise
m(4,u) is equal to 0.

THEOREM 6. Let A= Y% aiei€ D(Fy). If p= p + nuy € D(Spin(9)), then
the multiplicity m(A,u) of VSP"O)(u) in VFs(2) is given as follows:

Condition
m(4, p)
a3 — as _

1 a3 =0 G+az—1<n<a —as-1 1
0 a42% at+as<n<a —az—1 2
n=aytaz—lorn=a —a4 1
as =0 @ <n<a -1 1
otherwise 0

THEOREM 7. Let A= Y4 aiei€ D(Fa). If u=2u; + ny, € 2(Spin(9)), then
the multiplicity m = m(A, ) of VS"O)(u) in VF (1) is given as follows:
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Condition
m(A, p)
a; —ay
2 a+as—-2<n<a —as-2 1
1 a.:g% n=ay+a3—2ora; —as —1 1
tas—1<n<a —ay-2 2
a3 =0 a@a<n<a —2 1
0 as > 1, amt+as<n<a —ag—2 3
a >a+az+ay n=a2+a3—iora1—a4—1 2
n=ay+a3—2o0ra —a, 1
as > 1, @ata3—2<n<a —a 1
ay =ax+az +ay

a4=%, az+%$n$a1—§ 2
a>a;+as+as n=a -4 ora-3 1
a3 =0, 2ay+1 a<n<a —2 1
otherwise 0

ProOF OF THEOREM 5. The second term of (12) is equal to 0, for
min(—a3 —as +m,a1 —a; — a3 —as +1) = —a3 — a4 <0. Since min(—a3 + a4 +1,
2a4 + 1) <1 (the equality holds if and only if a3 = a4) the first term of (12) is
less than or equal to 1. The first term of (12) is equal to 1 if and only if a3 = a4

and ay + a3 <n < a; —a4. Thus we obtain the theorem. Q.E.D.
Similarly we can prove and Theorem 7. So we omit the proof of
them.

CASE  u = mu; + nu,. In this case, we can prove the following by a similar
manner to the proof of lemma 6.

LEMMA 7. Let A= E;l aie; € D(Fs) and p = mus + nu, € 2(Spin(9)). Then
the multiplicity m(4,p) of VSP"O)(u) in V(1) is equal to
l1<j<ay—a3+1
#JjeNag—-—a—m+1<j<art+tas—m+1

aat+a—1<m+n—j<a —a -1
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l<j<ay—a3+1

aa—a—2<m+n—j<as+as—2

Using the above lemma, we can prove the following theorem.

THEOREM 8. Let A= Z?=1 aig; € D(Fy). If u= ps+nyuy € 2(Spin(0)), then

the multiplicity m(4,u) of VSP"O)(u) in VF4(A) is given as follows:

Condition
m(4, p)
ay —ay

1 a;taz—2<n<a —ag—2 1
0 a=a3=as >0 a—-l<n<a —a—1 1
a>az=a4>0 n=a+as—2orn=a;—as—1 1
a+as—1<n<a —az3—2 2
a>a3=a,=0 a—-l<n<a -2 1
otherwise 0

CASE  u = mu, + nus(m=1,2).

THEOREM 9. Let A= 2,‘;1 aie; € D(Fy). If u= u, +npuy € 2(Spin(9)), then

the multiplicity m(A,u) of VP"O)(u) in V(1) is given as follows:

Condition
m(4, p)
as —ay

1 m+as<n<a —az—1 2
n=a+as—lorn=a —as 1
0 w>a=a2=1 atas—1<n<a —a;—1 2
G=az=as =} atas—1<n<a —as—1 1
a>a3=a3=0 a—-1l<n<a —1 1
otherwise 0
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THEOREM 10. Let A = Zle aie; € D(Fy). .'If,u = 2u, + nu, € 2(Spin(9)), then
the multiplicity m(4,u) of VSP"O)(u) in V(1) is given as follows:

Condition
m(4, u)
ay —ay
2 ay > a,+az+a, n=a+as—2o0ra —as 1
n=ay+a4—lora; —a; —1 2
@m+tas<n<a —a3-2 3
ay=ay+az+as @tas—-2<n<a —a3 1
1 a—a3=>la>1 n=a,+as—2ora —a; —1 2
a+a—1<n<a —az3—2 4
a—a3>1,a3=0 n=a;—2ora —2 1
a-l<n<a -3 2
az=a3,a42% n:a2+a4~.20ra1—a3—1 1
@t+as—1<n<a —az3—2 2
0 a—az>2,a4 > 1 a+as—-2<n<a —az—-2 3
@m—ay>2,a3=} @atas—2<n<a —az-2 2
a—ay=1,a,=1 atas—-2<n<a —a3—2 2
a—a3z=1a4 21 @p+as—-2<n<a —a3—2 1
a =as,a4 =1 ay+as—-2<n<a —a3—2 1
as=0 @G-2<n<a -2 1
otherwise 0

PROOF OF THEOREM 9. Let u = u, + nu, € 2(Spin(9)). Then, for an integral
weight v= E;l xigi(x1 > x3 > x3 > x4), Ny(u+9) is the number of integral
quadruples

i= (i, i,03,i4)€l, = ([1,x1 —x2] x [1,x2 —X3] x [1,x3 — x4] X [1,2x4)) nz+
satisfying
X1+X2—X3—X4—n—i1—bh+i3+is—8=0,
(14) X2—X4—3=i2—i4,

Ihb—i3=>x)—Xx3—2.
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The integral quadruples i satisfying i < x; — x3,i3 > 1 and are as follows;
M = (x1 —xp—n—4,x; — x3,1,—x3 + x4 + 3),
iD= —xp—n—4,x—x3—1,1,—x3+ x4 + 2),

i®) = (x1 —xp —n—3,x — x3,2,—x3 + x4 + 3).
Since
Ny(u+03) = #{k|i® e L},

by examining the condition i (k) € I,, we obtain the following

X3 — X4 Condition N,(A+9)
2 Xp—x3—3<n<x—x3—5 2
n=x3—x3—4orx —x;—4 1
1 Xp—Xx3=22,x42>1 X2 —x3—4<n<x3—x3—95 2
Xy —x322,%4 2> % Xp—~x3—4<n<x —x3—5 1
x2—x3=1,x4=1 Xp—x3—4<n<x —x3—5 1
otherwise 0

For each case v=A+d, v=(A+06)* and v= (1+9)", we have

(2, fas—as=l,aa—a3—2<n<ay—az—1,

1, ifaz—as=1,n=a,—az—3ora —as,

2, fey>m=asziem—az—-3<n<a—a;-1,

Nirs(u+06) = 4
( ) , ifaz>a3=a4=0,a2—a3—33n3a1—a3—1,

1
1, far=az=a4>0,aa—a3—3<n<a —az—1,
0

L 0, otherwise.

ifaz=a3=0,n=ay—a3—3o0ra; —as—2,

1
N (u+96 ={ ’
(4+9) (n+9) 0, otherwise.

(2, ifaz—as=l,ap—a3—2<n<ay+as—2,
1, fas—as=1l,n=ay—a3—3oray+a4—1,
Niioy=(u+9) = § 2, ifay>as=as,ay—a3—3<n<ay+as—1,

1, fay=as=as,ap—a3s—3<n<ay+as—2,

\ 0, otherwise.

Thus we obtain the theorem from (10). Q.E.D.
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Though they are much complicated, we can prove theorem 10 and the

following theorem 11 by similar manner to the proof of theorem 9. So we omit
the proof of them.

CASE  u= pu; + uy, + nu,.

THEOREM 11. Let A=Y} (aieie D(Fa). If p=py + py + npg € 2(Spin(9)),
then the multiplicity m(A,p) of VSP"O)(u) in VF(A) is given as follows:

Condition
m(2, u)
as — ag
2 n=ay+as—1ora; —a;s 1
@ptas<n<a-a-1 2
1 a>az>1, n=a,+as—2o0ra; —as 1
a > a+asz+as
n=ay+as—lora —as;—1 4
aa+as<n<a —az;—1 5
a>a3>1, n=a+as—2o0ra; —as 1
a=a+az+as
n=ay+a;—1 3
a>a=1, n=a—1lora -2 2
ay >ax+asz+as
a—-1<n<ag -3 3
a=a3>1, n=a; -1 1
a=a+a3+a,
am=a3>1 n=ay+as—2o0ra —a; 1
ay >ax;+az+ay
n=a+as—lora —as; —1 3
n=a+as<a —a3—2 4
a=as>1, n=ay+a4—2o0ra; —as 1
ay=ax+az+a,
n=a —ay—1 2
a=a3=1 l<n=a -3 2
a2=a3=l,a1>3 n=0ora -2 1
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Condition
m(4, )
as — aa

0 a2>a3>% n=ay+as—2ora;—az—1 2
a+as—1l<n<a —a3—2 4
a>a3=3} n=a +as—2ora —as—1 1
m+a—1<n<a —a3—2 3
a>ap>a3=0 n=a —lora; —2 1
a2=a3>% n=a;+as—2o0ra; —az—1 1
@ta—-1<n<a —a3—-2 2
am=a3=3% n<a —3 1
otherwise 0

4.2 SPECTRA OF THE LAPLACIAN. We denote by A? the Laplacian acting on
p-forms on the Cayley projective plane. The set of eigenvalues of A? is given as

follows (see [3]);
{<A+ 26, 4)|A € D(G), dim¢c Homg(/\" T,(CaP?)€, V¥(2)) # 0}

By using Theorem 35-11, we can find all of the irreducible F4-modules
VFs(2) satisfying Homg (AP T,(CaP?)€, VF+(2)) # 0. We give a list of them in
table 2.

ReEMARK. (1) Dimension of the complex irreducible representation
yFa (Z?=1 a,—a,-) of G‘ is calculated by using the Weyl’s dimension formula.

wl( )

1
= SaTa16806a0000 (@ T @2 + 8@ — a2 +3)(a1 + @2 + a3 + a4 + 10)

X (ai+ay+a3—as+9)(a1 +a2 — a3 +as+7)(a1 +ax—az —as + 6)

X(a—am+az+as+5)(a—ay+as—as+4) (a1 —ax— a3 +as + 2)
X (@) —ay—az —ag+1)(a; + a3 + 7)(a1 — a3 + 4)(a1 + a4 + 6)

X (a1 —ag + 5)(ay + a3 +4)(az — a3 + 1)(a2 + as + 3) (a2 — as + 2)

X (a3 + a4 + 2)(as — as + 1)(2as + 1)(2a3 + 3)(2a2 + 5)(2a; + 11)
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(2) The first eigenvalue of the Laplacian A? acting on p-form (0 < p < 5) on
the Cayley projective plane CaP? is

4 First eigenvalue mult.
0 0 1
1 12 26
2 18 1053
3 24 4096
4 46 628
5 24 4096
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Table 2: Spectra of the Laplacian A? on CaP?.

)4 highest weight eigenvalue mult.
0 | ki (k=0) K+ 11k 1
A +kiq (k= 0) k?+13k+18 1
1 | A +khs (k=0) | k*+14k+24 1
k4 (k=1) k2 + 11k 1
2 | M+A3+kis (k=0) k* + 16k + 46 1
A+ ki (k=0) | kK2+13k+18 2(k=1)
1 (k= 0)
A+ kg (k>=0) | k*+15k+36 2
A3+ kg (k=0) k? + 14k + 24 2
3 | M+i+kis (k=0) k? + 17k + 60 1
A+ A3+ kAy (k=0) k2 + 16k + 46 3
A+ As + kg (k=0) | k*+18k+68 1
241 + kig (k = 0) k% + 15k + 40 1
2)3 + kA4 (k=0) k% + 17k + 54 2
M+ kg (k=1) k2 + 13k + 18 2
Ay + kida (k=0) | k2+15k+36 3(k=1)
2 (k=0)
A3+ ks (k=0) k? + 14k + 24 3(k=1)
1(k=0)
kg (k>3) | kK2+11k 1

393
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Table 2 (continued)
4 highest weight eigenvalue mult.
4 | 24+ ki (k=0) | k2419 +84 1
A+ 243 + kg (k =0) k% + 19k + 80 1
A+ Ao + ki (k=0) | k2+17k+60 2
22 + kg (k=0) | k%+15k+40 3(k=1)
2 (k=0)
243 + kAq (k>0) k% + 17k + 54 6(k=1)
5(k=0)
A2+ kg (k=1) k? 4+ 15k + 36 2
A+ ki (k=1) | kK2+13k+18 3(k=3)
2(kk=1,2)
kis (k>2) | k2+11k 3 (k> 5)
2 (k=3,4)
201 + A3 + kg (k=0) k?+ 18k + 72 1
343 + kig (k=0) | k%+20k+90 1
A+ A3+ kg (k=0) | k*+18k+68 3
M+ Az + ki (k= 0) k? + 16k + 46 5(k=1)
4 (k = 0)
A3+ kiy (k=0) | k*+14k+24 5(k=2)

4 (k=1)
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Table 2 (continued)

)4 highest weight eigenvalue mult.
5 | 34 +kis (k=0) k* + 17k + 66 1
A+ 243 + ks (k > 0) k? + 21k + 106 1
2 + k4 (k= 0) | k2+19k+84 1
A+ 243 + kAs (k=0) k? + 19k + 80 4
A+ Ax+ Kdg (k=0) | k2+17k+ 60 3(k=>1)
2 (k =0)
21 + kA4 (k=0) k? + 15k + 40 3tk=1)
1 (k=0)
243 + kia (k= 0) k? +17k + 54 7(k=1)
4 (k=0)
Ao + kg (k=0) k? + 15k + 36 6 (k=2)
5(k=1)
2 (k=0)
M+ ks (k=1) k2 4+ 13k + 18 5(k=3)
2(k=1,2)
kia (k>2) | kK2+11k 3(k=5)
1 (k=3,4)
M+A+is+kls (k=0) k? + 20k + 96 1
21 + A3 + ks (k=0) k? 4+ 18k + 72 2
323 + ks (k =0) k2 + 20k + 90 3
Jo+ A3 + ki (k>0) | k2+18k+68 5(k=1)
4(k=0)
A+ A3+ kis (k >0) k? + 16k + 46 8(k=1)
| 4 (k =0)
s+ kiq (k=0) k2 + 14k + 24 7(k=3)
5(k=2)

4(k=1)

1 (k =0)
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