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MODULES OF INFINITE PROJECTIVE DIMENSION OVER
ALGEBRAS WHOSE IDEMPOTENT IDEALS ARE

PROJECTIVE

By

Fl\’avio U. COELHO, Eduardo N. MARCOS, H\’ector A. MERKLEN, and
Mar\’ia I. PLATZECK

Abstract. Let $A$ be a finite dimension algebra over an algebraically
closed field such that all its idempotent ideals are projective. We
show that if $A$ is representation-infinite and not hereditary, then
there exist infinitely many nonisomorphic indecomposable A-modules
of infinite projective dimension.

In [2], M. Auslander, M. I. Platzeck and G. Todorov have studied
homological properties of the idempotent ideals of an artin algebra $A$ . They
gave there a characterization of the idempotent two sided ideals which are
projective left A-modules. Their main motivation for this study came from the
work of Cline Parshall-Scott [6], Dlab-Ringel $[7, 8]$ and Burgess-Fuller [5]. Also,

in [9], Platzeck has studied artin rings with the property that all their idem-
potent ideals are projective. In particular, she has shown that the finitistic
projective dimension of such a ring is at most one.

Let $A$ be a finite dimensional k-algebra, where $k$ is an algebraically closed
field, and assume in addition that each idempotent ideal of $A$ is a projective A-

module. By Platzeck’s result, the projective dimension of any indecomposable
nonprojective A-module is either one or infinite. Therefore, if $A$ is not hereditary,
then there always exist nonprojective indecomposable A-modules of infinite
projective dimension. In case $A$ is representation-infinite (that is, such that
there exist infinitely many nonisomorphic indecomposable A-modules) and not
hereditary, one can ask if the number of nonisomorphic indecomposable A-

modules of infinite projective dimension can be finite. The main aim of this
paper is to show the following result.
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THEOREM. Let $A$ be a finite dimension indecomposable algebra over an
algebraically closed field. Suppose that all idempotent (bilateral) ideals are
projective A-modules. If $A$ is representation-infinite and not hereditary, then there
exist infinitely many nonisomorphic indecomposable A-modules of infinite pro-
jective dimension.

The proof of this theorem will be given in section 3. Observe that if $A$ is
such that all idempotent ideals are projective and there exist only finitely many
nonisomorphic indecomposable A-modules of infinite projective dimension, then
the projective dimension of all but finitely many nonisomorphic indecomposable
A-modules is at most one, because the finitistic projective dimension is at most
one. We will use the fact that the latter condition is equivalent to saying that $A$

is a right glueing of tilted algebras in the sense studied by I. Assem and F. U.
Coelho in [1]. In section 1 we shall recall some basic facts in representation
theory of algebras, and also recall the notion and basic properties on right glued
algebras. Section 2 will be devoted to some preliminary results on algebras
whose idempotent ideals are projective modules.

1. Preliminaries

1.1. Unless otherwise stated, all algebras in this paper are basic, connected
finite dimensional algebras over a fixed algebraically closed field $k$ . Therefore,
any algebra $A$ can be viewed as a quotient $kQ(A)/I$ of a path algebra $kQ(A)$ ,
where $Q(A)$ is a finite quiver and $I$ is an admissible ideal of $kQ(A)$ . Recall that
an ideal $I$ of $kQ(A)$ is said to be admissible if there exists an $n$ such that
$J^{2}\supset I\supset J^{n}$ , where $J$ is the ideal of $kQ(A)$ generated by the arrows from $Q(A)$ .
The elements of an admissible ideal are called admissible relations. The uniquely
determined quiver $Q(A)$ will be referred to as the ordinary quiver of $A$ . For a
given quiver $Q$ , we shall denote by $Q_{0}$ and by $Q_{1}$ , the set of vertices and arrows
of $Q$ , respectively. If $\alpha$ is an arrow in $Q_{1}$ then $s(\alpha)$ and $e(\alpha)$ denote, respectively,
the start and the end vertices of $\alpha$ . A loop is an arrow $\alpha$ such that $s(\alpha)=e(\alpha)$ .
Following [4], we shall sometimes equivalently consider an algebra as a k-linear
category. An ideal is always a two sided ideal.

Let $I$ be an admissible ideal in a path algebra $kQ$ and let $a,$ $b\in Q_{0}$ . We
denote by $I(a, b)$ the set of the elements $\sum\lambda_{i},$ $\gamma_{i}\in I$, where, for each $i,$ $\lambda_{j}\in k$, and
the path $\gamma_{i}$ starts at $a$ and ends at $b$ .

1.2. For a given algebra $A$ , let A-mod denote the category of finitely
generated left A-modules. All modules and maps are in A-mod. Denote by A-ind
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the category with one representative of each isoclasse of indecomposable A-

modules.
Given $M\in A$ -mod, denote by add $M$ the full subcategory of A-mod consisting

of all finite direct sums of summands of $M$.
Let $A=kQ(A)/I$ be an algebra and let $a\in(Q(A))_{0}$ . Denote by $S(a)$ the

simple A-module associated to $a$ and by $P(a)$ the projective cover of $S(a)$ . It is
well-known that there exists an equivalence between the category A-mod and the

category of the $(Q(A), I)$ -representations. Recall that a $(Q(A), I)$ -representation
$X$ is given by $X=((X_{i})_{i\in(Q(A))_{0}}, (f_{\alpha})_{\alpha\in(Q(A))_{1}})$ , where for each $i\in(Q(A))_{0},$ $X_{i}$ is a
finite-dimensional k-vector space, for each $\alpha\in(Q(A))_{1},$ $f_{\alpha}$ is a linear trans-

formation from $X_{s(\alpha)}$ to $X_{e(\alpha)}$ , and such that these linear transformations are
subjected to the relations of $I$. We shall now agree to identify a $kQ(A)/I-$

module with the corresponding $(Q(A),I)$ -representation.
We denote by $pdX$ the projective dimension of the module $X$. Also, the

global and the finitistic projective dimensions of $A$ are defined, respectively, by

gl.$\dim A=\max${$pdX$ : $X\in A$ -ind} and

fpd $ A=\max${$pdX$ : $X\in A$-ind and pd $ X<\infty$ }

1.3. We shall now recall the notion of right glued algebras introduced in
[1] that will be needed in the proof of our main theorem. Let $B_{1},$ $\ldots,B_{t}$ be
representation-infinite tilted algebras having complete slices $\Sigma_{1},$ $\ldots\Sigma_{t}$ respec-
tively, in the preinjective components and no projectives in these components,
$B=B_{1}\times\cdots\times B_{t}$ and $C$ be a representation-finite algebra. An algebra $A$ is
called a right glueing of $B_{1},$

$\ldots,$
$B_{t}$ by $C$ along the slices $\Sigma_{1},$ $\ldots\Sigma_{t}$ or, more

briefly, to be a right glued algebra if $A=C$ or:

(RG1) each of $B_{1},$
$\ldots,$

$B_{t}$ and $C$ is a full convex subcategory of $A$ , and any object

in $A$ belongs to one of these subcategories;
(RG2) no injective A-module is a proper predecessor of the union $\Sigma_{1}\cup\cdots\cup\Sigma_{t}$ ,

considered as embedded in A-ind; and
(RG3) B-ind is cofinite in A-ind.

The algebra $C$ being an arbitrary representation-finite algebra, the com-
ponent of the Auslander-Reiten quiver $\Gamma_{A}$ of $A$ containing $\Sigma_{1}\cup\cdots\cup\Sigma_{t}$ may
contain periodic modules and oriented cycles: it is actually an $\iota$-component
containing all the injective A-modules (see [1] for details). On the other hand,

the projective A-modules are either projective B-modules or belong to the $\iota-$

component containing the $\Sigma_{i}^{\prime}s$ . Consequently, the ordinary quiver of $A$ is the
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union of the ordinary quivers of $B_{1},$
$\ldots,$

$B_{t}$ and $C$ together with some additional
arrows of the form $x\rightarrow y$ , with $x$ in the quiver of $C$, and $y$ in the quiver of
some $B_{i}$ . In particular, a right glued algebra $A$ may be written as a lower
triangular matrix algebra

$A\cong\left(\begin{array}{ll}C & 0\\N & B\end{array}\right)$

where $N$ is a B-C-bimodule.
The next result, proven in [1], will be very useful. We say that a property

holds for almost all A-modules if it holds for all but finitely many of the
indecomposable A-modules.

THEOREM. Let $A$ be a finite dimensional k-algebra, where $k$ is an alge-
braically closed field. Then $A$ is a right glued algebra if and only if $pdX\leq 1$ for
almost all indecomposable A-modules $X$.

We refer the reader to [1] for details on right (and its dual left) glued
algebras. For unexplained notations and notions in representation theory, we
refer the reader to $[3, 10]$ .

2. Algebras whose idempotent ideals are projective

2.1. Let $A$ be an algebra. If $M,$ $N$ are A-modules, denote by $\tau_{M}(N)$ the
trace of $M$ in $N$, that is, the submodule of $N$ generated by all homomorphic
images of $M$ in $N$. If $P$ is a projective A-module, then $\tau_{P}(A)$ is an idempotent
ideal of $A$ , and any such ideal is obtained in this way. Observe also that if $P$ and
$P$ ‘ are projective A-modules, then $\tau_{P}(A)=\tau_{P^{\prime}}(A)$ if and only if add $P=addP$‘

(see [2]).
We are particularly interested in the situation when the algebra $A$ satisfies

the following property:
(IIP) All idempotent (bilateral) ideals of $A$ are projective A-modules.
The class of algebras satisfying (IIP) clearly includes the hereditary and the

local algebras, but it also contains other algebras as shown by the following
examples.

EXAMPLES. Let $Q$ be the quiver
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(a) Let $A_{1}$ be the k-algebra given by $Q$ with relations $\alpha^{3}=0$ and $\gamma^{2}=0$ .
Clearly, $\tau_{P(1)}(A_{1})=P(1)$ and $\tau_{P(2)}(A_{1})=P(2)\oplus P(2)\oplus P(2)\oplus P(2)$ , and hence
$A_{1}$ satisfies (IIP) (see $[9](1.2)$ ).

(b) Let $A_{2}$ be the k-algebra given by $Q$ with relations $\alpha^{2}=0,$ $\gamma^{2}=0$ and
$\beta\alpha=0$ . In this case, $\tau_{P(1)}(A_{2})=P(1)$ and $\tau_{P(2)}(A_{2})=P(2)\oplus P(2)$ , and hence $A_{2}$

also satisfies (IIP) (see $[9](1.2)$ ).

2.2. The next result has been proven in [9](2.5).

THEOREM. If $A$ is an algebra satisfying $(IIP)$ , then $fpdA\leq 1$ .

COROLLARY. Let $A$ be an algebra satisfying $(IIP)$ . Then there exists an
indecomposable A-module $M$ of infinite projective dimension $lf$ and only if $A$ is
not hereditary.

Our main result states that, if $A$ is a representation-infinite algebra with
(IIP) which is not hereditary, then, in fact, there are infinitely many non-
isomorphic indecomposable A-modules with infinite projective dimension.
Therefore, from now on, we shall concentrate our attention on the study of
algebras satisfying (IIP) which are not hereditary. For such an algebra $A=$

$kQ(A)/I$ , with $I\neq 0$ , we shall see that $Q(A)$ has always a loop and $I$ is
generated by relations which contain always summands starting at loops. We
shall also discuss the notion of suitable arrows for $A$ . The rest of this section
will be devoted to these questions.

2.3. We recall the following result from [9](2.1), which holds for artin
algebras.

PROPOSITION. Let $A$ be an (artin) algebra with $(IIP)$ , and let $P$ and $P$‘ $be$

indecomposable projective A-modules such that $Hom_{A}(P, F)\neq 0$ . Then
$\tau_{P}(P^{\prime})\cong P^{r}$ , for some $r>0$ . Consequently, if $P$ is not isomorphic to $P$‘, then
$Hom_{A}(P^{\prime}, P)=0$ .

This proposition has the following nice consequence. Let $A$ be an algebra
with (IIP). Then the indecomposable projective A-modules $P_{1},$

$\ldots,$
$P_{n}$ can be

indexed in such a way that $Hom_{A}(P_{j}, P_{j})=0$ whenever $i<j$ . In particular, the
ordinary quiver $Q(A)$ has no oriented cycles involving arrows which are not
loops. Example (2.1) shows that loops can occur in $Q(A)$ , and, in fact, we shall
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show now that they do occur if $A$ is not hereditary. This fact will be a
consequence of the next proposition.

2.4. PROPOSITION. Let $A$ be an (artin) algebra satisfying $(IIP)$ . If $P$ is an
indecomposable projective A-module whose endomorphism ring is a division ring,
then radP is projective. As a consequence, pd(P/radP) $\leq 1$ .

PROOF. Since $P$ is an indecomposable projective module, then $P=P_{i}$ for
some $i$, in the indexing given in (2.3). Therefore, the projective cover of rad $P_{j}$ ,
$P$‘, belongs to add $(P_{i}\oplus\cdots\oplus P_{n})$ . However, by hypothesis, $Hom_{A}$ ( $P_{i}$ , rad $P_{i}$ ) $=0$

and then $P^{\prime}\in add(P_{i+1}\oplus\cdots\oplus P_{n})$ . Then $\tau_{P}(P_{i})=radP_{j}$ , and hence, rad $P_{i}$ is
projective, as required. $\square $

2.5. COROLLARY. Let $A$ be a basic (artin) algebra satisfying $(IIP)$ . Then $A$ is
hereditary $lf$ and only $lfEnd_{\Lambda}(P)$ is a division ring for every indecomposable
projective module $P$ .

PROOF. By (2.4), rad $P$ is a projective A-module for every indecomposable
projective module $P$, and therefore the algebra $A$ is hereditary. The converse is
direct. $\square $

2.6. COROLLARY. Let $A=kQ(A)/I$ be a finite dimension k-algebra with
$(IIP)$ . If $Q(A)$ has no loops, then $A$ is hereditary, that is, $I=0$ .

PROOF. Let $P(i)$ be the indecomposable projective associated with the
vertex $i$ . Then, $P(i)=Ae_{i}$ , where $e_{i}$ is an idempotent of $A$ . Since $Q(A)$ has no
loops and $A$ satisfies (IIP), we infer that there are no oriented cycles in $Q(A)$

(2.3). Therefore

$End_{\Lambda}(P(i))=\frac{e_{i}(kQ(A))e_{i}}{I(i,i)}$

is a division ring. This being tme for each vertex $i$, we conclude, by (2.5), that $A$

is hereditary. $\square $

2.7. For the rest of this section let $A=kQ(A)/I$ be a nonhereditary
algebra over the algebraically closed field $k$, and satisfying (IIP). We shall
look now at the relations which generate $I$. Fix $u\in(Q(A))_{0}$ and let $\beta_{j}$ : $u\rightarrow v_{i}$ ,
for $i=1,$

$\ldots,$
$n$ , be all the arrows starting at $u$ which are not loops. Let

$P=\oplus_{i=1}^{n}P(v_{i})$ , where $P(x)$ denotes the indecomposable projective module
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corresponding to the vertex $x$ . Let

$(c_{1}, \ldots, c_{m})$ : $\bigoplus_{i=1}^{n}P(v_{j})^{d_{i}}\rightarrow\tau_{P}(P(u))$

be the projective cover of $\tau_{P}(P(u))$ . Since $A$ satisfies (IIP), then $(c_{1}, \ldots, c_{m})$ is
indeed an isomorphism. Denote $P=\oplus_{i=1}^{n}P(v_{j})^{d_{i}}$ .

PROPOSITION. Under the above hypothesis, there exists an isomorphism

$(\beta_{1}, \ldots,\beta_{n}, b_{n+1}, \ldots, b_{m})$ : $P^{\prime}\rightarrow\tau_{P}(P(u))$

(reordering the summands of $P$‘ $lf$ necessary), with $b_{n+1},$
$\ldots,$

$b_{m}\in rad^{2}A$ .

PROOF. We first show that there exists an isomorphism

$(c_{1}, \ldots, c_{l-1},\beta_{1}, c_{l+1}, \ldots c_{m})$ : $\bigoplus_{i=1}^{n}P(v_{i})^{d_{i}}\rightarrow\tau_{P}(P(u))$

(using the above notations). Indeed, since $\beta_{1}\in\tau_{P}(P(u))$ , and $(c_{1}, \ldots, c_{m})$ is an
epimorphism, there exists

$(\delta_{1}, \ldots,\delta_{m})\in\bigoplus_{i=1}^{n}P(v_{i})^{d_{i}}$ , such that $\beta_{1}=\sum_{i=1}^{m}\delta_{i}c_{i}$ .

Observe that $c_{j}\in rad$ $A$ because $v_{i}\neq u$ for each $i=1,$ $\ldots,n$ , and the rela-
tions are all admissible. Then, there exists an $l$ such that $0\neq\delta_{l}\not\in radA$ .
Therefore $\delta_{l}=\lambda_{l}v_{l},$ $\lambda_{l}\in k$ . We claim that $f^{\prime}=(c_{1}, \ldots, c_{l-1},\beta_{1}, c_{l+1}, \ldots c_{m})$ is also
an isomorphism. It suffices to show that it is an epimorphism. This is indeed the
case, because if $x\in\tau_{P}(P(u))$ , then

$x=\sum_{j=1}^{m}\mu_{j}c_{j}=\mu_{l}(\lambda_{l}^{-1}\beta_{1}-\sum_{j\neq l}\lambda_{l}^{-1}\delta_{j}c_{j})+\sum_{j\neq l}\mu_{j}c_{j}$

and then $x\in{\rm Im} f^{\prime}$ , which proves the claim. Reordering the summands of $P$‘, we
have an isomorphism

$(\beta_{1}, c_{1}, \ldots, c_{l-1}, c_{l+1}, \ldots c_{m}):P^{\prime}\rightarrow\tau_{P}(P(u))$ .

Observe that the same procedure can be repeated for $\beta_{2},$ $\ldots,\beta_{n}$ . In the i-th
step one can choose the element $c_{l_{i}}$ we removed to be different from $\beta_{1},$ $\ldots\beta_{i-1}$

because the relations are admissible. Then, reordering the summands of $F$ we
will end up with an isomorphism $(\beta_{1}, \ldots,\beta_{n}, b_{n+1}^{\prime}, \ldots, b_{m}^{\prime})$ from $P$‘ to $\tau_{P}(P(u))$ .
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By subtracting, for each $i=1,$
$\ldots,$ $m-n$ , from the $b_{n+i}^{\prime}$ appropriate linear

combinations of $\beta_{1},$ $\ldots,\beta_{n}$ , we obtain $b_{n+1},$
$\ldots,$

$b_{m}$ in rad2A such that
$(\beta_{1}, \ldots,\beta_{n}, b_{n+1}, \ldots, b_{m})$ is the required isomorphism. $\square $

2.8. We have seen in (2.6) that, since $A=kQ(A)/I$ is not hereditary, $Q(A)$

has loops. The next result, which follows easily from the above proposition,
shows that there is a set of relations, each of them with a summand starting at a
loop, which generates $I$.

COROLLARY. Let $A=kQ(A)/I$ be an algebra satisfying $(IIP)$ , and $\beta_{1},$ $\ldots,\beta_{n}$

be arrows in $Q(A)$ which are not loops and starting at the same vertex. If
$r=\sum_{i=1}^{n}\gamma_{i}\beta_{i}\in I$, for some linear combinations ofpaths $\gamma_{1},$

$\ldots,$
$\gamma_{n}$ , then $\gamma_{i}\in I$, for

each $i=1,$
$\ldots,$

$n$ .

PROOF. By (2.7), there exists an isomorphism $(\beta_{1}, \ldots,\beta_{n}, b_{n+1}, \ldots, b_{m})$ from
$P$‘ to $\tau_{P}(P(u))$ . The hypothesis implies that the element $(\gamma_{1}, \ldots, \gamma_{n}, 0, \ldots, 0)$ goes
to zero under this isomorphism. Therefore, $\gamma_{i}=0$ , for each $i=1,$

$\ldots,$
$n$ . $\square $

2.9. In the proof of our main theorem in section 3, we will consider the
following constmction. We shall start with a subquiver $Q^{\prime}$ of $Q(A)$ and extend a
representation of $Q^{\prime}$ to one of $Q(A)$ through an arrow $\alpha\not\in(Q^{\prime})_{1}$ . Clearly, this
can not be done always because of the relations involving $\alpha$ . However, we shall
show that, under the hypothesis of the theorem, we can always find a suitable
arrow for this extension. We shall prove now some preliminary results in this
direction. We start with an example.

EXAMPLE. Let $A=kQ(A)/I$ , where $Q(A)$ is the quiver

$\alpha$

and $I$ is generated by the relations $\delta\alpha-\gamma\beta,$ $\beta\alpha$ and $\alpha^{2}$ . We leave to the reader to
show that $A$ satisfies (IIP). Consider the full subquiver $Q^{\prime}$ of $Q$ containing the
vertices 1 and 3 and let $V$ be an indecomposable Q’-representation. Observe that
we can extend $V$ to a $Q(A)$ -representation $\overline{V}$ given by $\overline{V}_{1}=V_{1}$ , $\overline{V}_{2}=V_{1}$ ,
$\overline{V}_{3}=V_{3},\overline{f}_{\gamma}=f_{\gamma},\overline{f}_{\delta}=Id$, and $\overline{f}_{\beta}=\overline{f}_{\alpha}=0$ . However, if one tries to extend $V$
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to $\overline{V}$ through the arrow $\beta$ in the same fashion, that is, by putting, $\overline{V}_{1}=V_{1}$ ,
$\overline{V}_{3}=V_{3},\overline{V}_{2}=V_{3},\overline{f}_{\gamma}=f_{\gamma},\overline{f}_{\beta}=Id$ , and $\overline{f}_{\delta}=\overline{f}_{\alpha}=0$ , this does not define a $Q(A)-$

representation because of the relation $\delta\alpha-\gamma\beta$ . In the sense given by the definition
below, the arrow $\delta$ is suitable and the arrow $\beta$ is not suitable.

DEFINITION. An arrow $\beta_{1}$ : $u\rightarrow v_{1}$ which is not a loop, is called suitable if

there are no relations of the type

$\sum_{i=1}^{r}\gamma_{i}\beta_{i}+\sum_{i_{1}i}\gamma_{ij}\beta_{\iota}\delta_{ij}$

where arrow $\gamma_{i}$ and $\gamma_{ij}$ are linear combinations of paths from $v_{i}$ to a (fixed) vertex
$w,$ $\gamma_{1}\neq 0$ and $\delta_{ij}\in radA$ , that is, it is a nonzero linear combination of $\alpha_{j}^{l}$ , which
$l>0$ and $\alpha_{j}$ is a loop around $u$ .

2.10. Fix $u\in(Q(A))_{0}$ and let $\beta_{i}$ : $u\rightarrow v_{i}$ , for $i=1,$
$\ldots,$

$n$ , be all the arrows
starting at $u$ which are not loops. We will show that if there are no loops at the
vertices $v_{1},$

$\ldots,$
$v_{n}$ and $u$ has a unique loop around it, then there exists a suitable

arrow starting at $u$ . We need the following result.

PROPOSITION. Let $u\in(Q(A))_{0}$ and let $\beta_{i}$ : $u\rightarrow v_{i}$, for $i=1,$
$\ldots,$

$n$ be all the
arrows starting at $u$ which are not loops. $\beta_{1}$ is not suitable, then there exists a
path of length greater than zero from $v_{1}$ to $v_{i}$ , for some $i$ .

PROOF. Assume that $\beta_{1}$ satisfies a relation

$\sum_{i=1}^{r}\gamma_{i}\beta_{i}+\sum_{i,j}\gamma_{ij}\beta_{\iota}\delta_{ij}$
$(*)$

where $\gamma_{i}$ and $\gamma_{ij}$ are linear combinations of paths from $v_{j}$ to a (fixed) vertex $w$,
$\gamma_{1}\neq 0$ and $\delta_{ij}$ ( $\in$ rad $A$ ) are nonzero linear combinations of $\alpha_{j}^{l}$ , with $l>0$ and $\alpha_{j}$

is a loop around $u_{i}$ . Let $P=\oplus_{i=1}^{n}P(v_{j})$ , and $P‘=\oplus_{i=1}^{n}P(v_{i})^{d_{i}}\cong\tau_{P}(P(u))$ . We
know by (2.7) that there exists an isomorphism

$(\beta_{1}, \ldots,\beta_{n}, b_{n+1}, \ldots, b_{m})$ : $P^{\prime}\rightarrow\tau_{P}(P(u))$

with $b_{1}=\beta_{1},$
$\ldots,$

$b_{n}=\beta_{n}$ and $b_{n+1},$
$\ldots,$

$b_{m}\in rad^{2}A$ . Since $\beta_{l}\delta_{ij}\in\tau_{P(v_{i})}(P(u))\subset$

$\tau_{P^{\prime}}(P(u))$ , we can write

$\beta_{i}\delta_{ij}=\sum_{l}\mu_{ijl}b_{l}$
$(**)$
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with $\mu_{ijl}$ linear combinations from the end of $b_{l}$ to the end of $\beta_{i}$ . In particular,
since $b_{1}=\beta_{1}$ , we have that $\mu_{ij1}$ goes from $v_{1}$ to $v_{i}$ . Observe that $\mu_{ij1}\in radA$

because $\beta_{i}\delta_{ij}\in rad^{2}A$ , all relations are admissible and $(b_{1}, \ldots, b_{m})$ is a mono-
morphism. Assume that there are no paths of length greater than zero from $v_{1}$ to
$v_{i}$ , for any $i$ . Hence $\mu_{ij1}=0$ , for each $i$ . Replacing now $(**)$ in $(*)$ , we get a
relation, which is a linear combination of $b_{1},$

$\ldots,$
$b_{m}$ with the coefficients of

$b_{1}=\beta_{1}$ equal to $\gamma_{1}$ . Using again that $(b_{1}, \ldots, b_{m})$ is a monomorphism, we conclude
that $\gamma_{1}=0$ , a contradiction. Therefore, there exists a path from $v_{1}$ to some $v_{i}$ , as
required. $\square $

2.11. The next result will be essential in the proof of our main theorem.

COROLLARY. Let $u\in(Q(A))_{0}$ and let $\beta_{i}$ : $u\rightarrow v_{i}$ , for $i=1,$
$\ldots,$

$n$ , be all the
arrows starting at $u$ which are not loops. Suppose, furthermore, that there are no
loops at the vertices $v_{i^{\prime}}s$ . Then one of the $\beta_{i}^{\prime}s$ is suitable.

PROOF. Since there are no oriented cycles involving $v_{1},$
$\ldots,$

$v_{n}$ , there exists a
partial order for these vertices given by: $v_{i}\leq v_{j}$ if and only if there exists a path
from $v_{i}$ to $v_{j}$ . Let $v_{l}$ be a maximum element under this order. The corresponding
arrow $\beta_{l}$ is, clearly, by (2.10), a suitable arrow. $\square $

2.12. We end this section with the following example which shows that the
hypothesis of the nonexistence of loops around the vertices $v_{i}^{\prime}s$ is essential for
the validity of (2.11).

EXAMPLE. Let $A$ be the algebra given by the quiver

with relations $\alpha^{2}=0,$ $\gamma^{2}=0$ and $\beta\alpha=\gamma\beta$ . Observe that $A$ satisfies (IIP) but there
are no suitable arrows.

3. The main theorem

3.1. In this section we shall prove our main result, that is, that any
representation-infinite artin algebra satisfying (IIP) and not hereditary has an
infinite number of nonisomorphic indecomposable modules of infinite projective
dimension. First we start observing that there are many such algebras, showing
examples of them. Then we will prove some preliminary results needed in the
proof of the theorem.
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EXAMPLES. The following are examples of representation-infinite artin
algebras satisfying (IIP) and not hereditary.

(a) Representation-infinite local algebras. Our main theorem is trivial in this
case, since the only modules of finite projective dimension are projective.

(b) Let $Q$ be a quiver with at least one loop but not oriented cycles
containing an arrow which is not a loop. Consider the algebra $A=kQ/I$ , where
$I$ is an admissible ideal generated by linear combinations of products of loops.
Then $A$ satisfies (IIP) and it is not hereditary. Many of these algebras are
representation-infinite.

(c) Let $A$ be the algebra given by the quiver

$\gamma$

with relations $\alpha^{3}=0,$ $\gamma^{2}=0$ and $\beta_{1}\alpha=0$ . Clearly, $A$ satisfies the required
conditions.

3.2. We shall need the following lemma.

LEMMA. Let $R$ and $B$ be algebras, $M$ be a B-R-bimodule and

$A=\left(\begin{array}{ll}R & 0\\M & B\end{array}\right)$

If $A$ satisfies $(IIP)$ , then $B$ also does.

PROOF. Observe that we have an embedding of categories $ B-mod \rightarrow$

A-mod, which preserves projective modules and resolutions. Let $I$ be an
idempotent ideal of $B$ . Therefore

$J=\left(\begin{array}{ll}0 & 0\\IM & I\end{array}\right)$

is an idempotent ideal of $A$ . In fact,

$(_{M}R$ $B0$ . $(_{IM}0$ $I0$ . $(_{M}R$ $B0$ $=(_{IM}0$ $I0$ . $(_{M}R$ $B0$ $=(_{IM}0$ $I0$

and $(_{IM}0$ $I02_{=}\left(\begin{array}{ll}0 & 0\\IM & I\end{array}\right)$
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Since $A$ satisfies (IIP), we have that $J$ is a projective A-module. On the
other hand, the natural epimorphism

$\pi$ : $A\rightarrow B$ given by $\pi\left(\begin{array}{ll}r & 0\\m & b\end{array}\right)=b$

takes projective modules to projective modules. Since $\pi(J)=I$ , we conclude that
$I$ is projective, as required. $\square $

3.3 Corollary. Let $A$ be a right glueing algebra of $B_{1},$
$\ldots,$

$B_{t}$ by C. If $A$

satisfies $(IIP)$ , then $B_{i}$ is hereditary for each $i$ .

PROOF. By (1.3), we know that

$A\cong\left(\begin{array}{ll}C & 0\\M & B\end{array}\right)$

where $B=B_{1}\times\cdots\times B_{t}$ and $M$ is a B-C-bimodule. By the lemma above, $B$ also
satisfies (IIP) and, in particular, fpd $B$ is at most one (2.2). On the other hand,
since $B$ is a product of tilted algebras, we have that gl. $\dim B\leq 2$ . Hence,
gl.$\dim B\leq 1$ , and $B$ is a product of hereditary algebras. $\square $

3.4. We shall now prove our main theorem.

THEOREM. Let $A$ be a finite dimension indecomposable algebra over an
algebraically closedfield $k$, satisfying $(IIP)$ . If $A$ is representation-infinite and not
hereditary, then there exist infinitely many nonisomorphic indecomposable A-
modules of infinite projective dimension.

PROOF. By (2.2), we know that fpd $A$ is at most one. Assume that there are
only finitely many nonisomorphic indecomposable A-modules of infinite pro-
jective dimension. Therefore, pd $M\leq 1$ for almost all indecomposable A-
modules $M$.

By (1.3), $A$ is then a right glueing of $B_{1},$
$\ldots,$

$B_{t}$ by $C$, where $C$ is
representation-finite and, for each $i,$ $B_{i}$ is a representation-infinite tilted algebra.
By (3.3), each $B_{i}$ is hereditary.

If now $C=0$ , then $A$ is hereditary, a contradiction. Therefore $C\neq 0$ . By the
description of right glued algebras, the ordinary quivers of $B_{1},$

$\ldots,$
$B_{t}$ , and $C$ are

full convex subquivers of $Q(A)$ , and there are neither arrows from a vertex of
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$Q(B_{i})$ to a vertex of $Q(B_{j})$ , if $i\neq j$ , nor arrows from a vertex of $Q(B_{i})$ to $Q(C)$ ,

for $i=1,$
$\ldots,$

$t$ . Since $Q(A)$ is connected, there are arrows from $Q(C)$ to each
$Q(B_{j})$ . For a given $i,$ $B_{i}$ is a connected representation-infinite hereditary algebra,
and then each vertex of $Q(B_{i})$ belongs to the support of infinitely many
indecomposable $B_{j}$-modules. The strategy now is the following: we start with an
infinite family of indecomposable $B_{i}$-modules with support containing a vertex
which is the end of a convenient arrow $\beta$ which starts at $Q(C)$ . We shall then
extend each module of this family, through the arrow $\beta$, to an indecomposable
A-module which is not a B-module, leading to a contradiction to the fact that
B-ind is cofinite in A-ind. The key point of this proof is the choice of the arrow
$\beta$ .

CLAIM. There exists a suitable arrow from a vertex of $Q(C)$ to a vertex of
$Q(B)$ .

Let $F=$ { $u\in(Q(C))_{0}$ : there exists an arrow $u\rightarrow v$ , with $v\in(Q(B))_{0}$ }. Since
the only oriented cycles are sequences of loops, there exists a vertex $u_{0}\in F$ such
that there are no paths in $Q(C)$ from $u_{0}$ to any other vertex of $F$. Let $i$ be such
that there is an arrow from $u_{0}$ to a vertex of $Q(B_{i})$ . Without loss of generality,
suppose $i=1$ . Let $\beta_{1}$ : $u_{0}\rightarrow v_{1},$ $\ldots,\beta_{n}$ : $u_{0}\rightarrow v_{n}$ be all the arrows from $u_{0}$ to a
vertex of $Q(B_{1})$ . Observe that, by the choice of $u_{0}$ , any path from $u_{0}$ to a vertex
of $Q(B_{1})$ has to pass through one of the $\beta_{i}^{\prime}s$ . On the other hand, observe that
there are no loops around the vertices $v_{i}^{\prime}s$ because they belong to $(Q(B_{1}))_{0}$ and
$B_{1}$ is hereditary. By (2.11), we infer that one of the $\beta_{i}^{\prime}s$ is a suitable arrow. This
proves the claim.

Denote by $\beta:u\rightarrow v$ a suitable arrow in $(Q(A))_{1}$ , with $u\in(Q(C))_{0}$ and
$v\in(Q(B_{1}))_{0}$ . Let now $\mathscr{X}_{v}$ be the (infinite) set of all nonisomorphic indecom-
posable $B_{1}$ -modules whose support contains $v$ . This means that if $((M_{i})_{i\in(Q(B_{1}))_{0}}$ ,
$(f_{\gamma})_{\gamma\in(Q(B_{1}))_{1}})\in \mathscr{X}_{v}$ , then $M_{v}\neq 0$ . We shall constmct an infinite set of non-
isomorphic indecomposable A-modules which are not $B_{1}$ -modules using the
(suitable) arrow $\beta$ . For an $X=((X_{i})_{i\in(Q(B_{1}))_{0}}, (f_{\gamma})_{\gamma\in(Q(B_{1}))_{1}})\in \mathscr{X}_{v}$ define $\overline{X}=$

$((\overline{X}_{j})_{i\in(Q(A))_{0}}, (\overline{f}_{\gamma})_{\gamma\in(Q(A))_{1}})$ , by

$\overline{X}_{j}=\{0X_{v}X$ $ifi=uifi\in(Q(B_{1}))_{0}otherwise$ and $\overline{f}_{\gamma}=\{f_{\gamma}Id0$ $if\gamma=^{S}\beta_{ise^{arrow}}io^{f}th^{\gamma}e^{i}rw^{an}$

in $(Q(B_{1}))_{1}$

Since $\beta$ is a suitable arrow, the representation $\overline{X}$ as defined above satisfies all the
relations required to be an A-module. We shall show now that $\overline{X}$ is inde-
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composable. Suppose $\overline{X}=Y_{1}\oplus Y_{2}$ , and define, for each $i,$ $Y_{i}^{\prime}$ by $(Y_{i}^{\prime})_{j}=(Y_{i})_{j}$ if
$j\in(Q(B_{1})_{0})$ and $(Y_{i}^{\prime})_{j}=0$ , otherwise. Then $X=Y_{1}^{\prime}\oplus Y_{2}^{\prime}$ in $B_{1}$ -ind. Since $X$ is
indecomposable, it follows that either $Y_{1}^{\prime}=0$ or $Y_{2}^{\prime}=0$ . Therefore, either $Y_{1}$ or
$Y_{2}$ is a sum of copies of the simple $S(u)$ associated to $u$ , contradicting the
hypothesis that $\overline{f}_{\beta}=id$ . Moreover, if $X$ and $X^{\prime}$ are two nonisomorphic inde-
composable $B_{1}$ -modules in $\mathscr{X}_{v}$ , then $\overline{X}$ and $\overline{X}^{\prime}$ are also nonisomorphic. Therefore,
there exist infinitely many indecomposable A-modules which are not $B_{1}$ -modules,
a contradiction to the fact that $B_{1}$ -ind is cofinite in A-ind, and the result is
proven. $\square $
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