ON GLOBAL HYPOELLIPTICITY ON THE TORUS

By

Adalberto P. Bergamasco* and Edna M. Zuffi

Summary: We use Fourier series and continued fractions to study the property of regularity of the global solutions of certain partial (or pseudo-) differential equations on the torus.

1. Introduction

Our main purpose in this paper is to study global hypoellipticity for a class of pseudo-differential operators on the n-Torus, T^n , $n \ge 2$, of the form

$$P = p(D_1^2) + e^{imx_1} + ae^{-imx_1},$$

where $a = \pm 1$, $m \in \mathbb{N}$, $D_1 = (1/i)(\partial/\partial x_1)$ and p is a classical symbol satisfying the additional conditions:

$$p(0) = 0; |p(1)| \ge 1; |p(t^2)| > 2, t \in \mathbb{N}, t \ge 2.$$
 (1)

We recall that an operator P is said to be **globally hypoelliptic** (GH) on T^n if the properties $u \in \mathcal{D}'(T^n)$ and $Pu \in C^{\infty}(T^n)$ imply $u \in C^{\infty}(T^n)$.

Under hypothesis (1), we present a **necessary and sufficient** condition for the operators in (1) to be (GH). Our examples show, in particular, that in the case when $p(t) = \lambda t^2$, $1 < \lambda < 2$, the situation m > 1 is different from the case m = 1, (see [5]); namely, when m > 1, the operator may fail to be (GH).

Other related works dealing with global hypoellipticity are [6], [7], [1]. In [6] the operators $D_1^2 + 2\cos x_1 - \lambda$, $\lambda \in C$, are considered; in [7] this result is extended to cover more general operators with the same perturbation of order zero. In [1], the effect of perturbations by terms of order zero is considered only in the case of constant coefficients. Further related recent works are [2], [3].

^{*} Partially supported by CNP_q (Brazil). Received May 25, 1995. Revised December 25, 1995.

2. The Main Theorem and Examples

We will use the notations: T^n , the n-dimensional torus, $n \ge 2$, $(T^n \simeq \mathbb{R}^n/(2\pi\mathbb{Z}^n))$; $\mathscr{D}'(T^n)$, the space of distributions on T^n ; $C^{\infty}(T^n)$, the space of C^{∞} , complex valued functions on T^n ; $x = (x_1, \ldots, x_n)$, the variable in T^n ; if $k = (k_1, \ldots, k_n) \in \mathbb{Z}^n$, $|k| = |k_1| + \cdots + |k_n|$; and the continued fractions:

$$K_{j=1}^{\infty}((-1)^{s}/a_{j}) = \frac{(-1)^{s}}{a_{1} + \frac{(-1)^{s}}{a_{2} + \frac{(-1)^{s}}{a_{3} + \frac{(-1)^{s}}{\vdots}}}}, \text{ where } a_{j} \in \mathbb{C}, s = 0 \text{ or } s = 1.$$

THEOREM 1. Consider the pseudo-differential operator $P = p(D_1^2) + e^{imx_1} + ae^{-imx_1}$, $m \in \mathbb{N} = \{1, 2, 3, ...\}$, acting on $\mathcal{D}'(T^n)$ where $a = \pm 1$ and p = p(t), $t \in \mathbb{Z}$, is a classical symbol satisfying

$$p(0) = 0; |p(1)| \ge 1; |p(t^2)| > 2, t \ge 2, t \in \mathbb{N}.$$
 (1)

Let $a_{l,j} = p((mj+l)^2)/\sqrt{-a}$; $\tilde{a}_{l,j} = p((mj-l)^2)/\sqrt{-a}$, j = 1, 2, ...; $t_l = K_{j=1}^{\infty}(1/a_{l,j})$, if l = 0, 1, ..., m-1, and $\tilde{t}_l = K_{j=1}^{\infty}(1/\tilde{a}_{l,j})$, $g_l = t_l + \tilde{t}_l + p(l^2)/\sqrt{-a}$, if l = 1, 2, ..., m-1.

Then P is globally hypoelliptic on T^n if and only if

$$g_1g_2\cdots g_{m-1}\neq 0. (2)$$

In view of this result a question appears: what kind of operators satisfy condition (2)? In [5], the case m = 1 is dealt with: there, this condition is empty. However, when $m \ge 2$ it may be valid or not, as the following examples show.

EXAMPLE 1. Here we analyze some cases where we take a simple polynomial, but we put the perturbations $e^{imx_1} + ae^{-imx_1}$, $m \ge 2$, $a = \pm 1$. If we take p(t) = t and a = -1, we have the operators $D_1^2 + 2i\sin(mx_1)$, $m \ge 2$. In this case, $t_l + \tilde{t}_l + a_{l,0} > 0$, for each l = 1, 2, ..., m - 1. By taking p(t) = t and a = 1, we have the operators $D_1^2 + 2\cos(mx_1)$, $m \ge 2$, and it is easy to see that $t_l + \tilde{t}_l + a_{l,0} \ne 0$, for all l = 1, 2, ..., m - 1. Therefore, they are all (GH) on T^n .

EXAMPLE 2. Now we take p = p(t) a real symbol that satisfies (1) and the additional condition: |p(1)| > 2 or |p(1)| = 1. (*)

Then, we have the operators $p(D_1^2) + e^{2ix_1} + ae^{-2ix_1}$, $a = \pm 1$, which are (GH) on T^n ; indeed, we can show that $0 < |t_1| \le 1$ and this implies $t_1^2 + 2a_{1,0}t_1 + a_{1,0}^2 + 1 \ne 0$, which, in turn, is shown to be equivalent to $t_1 + \tilde{t}_1 + a_{1,0} \ne 0$. (In fact, when a = -1, condition (*) is not necessary, but it is quite sharp when a = 1, as will be seen later).

This last example implies, in particular, that $D_1^2 + 2\cos(2x_1)$ is (GH). In the next one, we will analyze the polynomial $p(t) = \lambda t$, when $\lambda \in \mathbb{R}$, $1 < |\lambda| < 2$. In [5], it was shown that $\lambda D_1^2 + e^{ix_1} + ae^{-ix_1}$, $a = \pm 1, 1 < |\lambda| < 2$, is a globally hypoelliptic operator, but this is not always true for the operators $\lambda D_1^2 + e^{2ix_1} + ae^{-2ix_1}$, when $1 < |\lambda| < 2$.

EXAMPLE 3. There exist λ_1 , $\lambda_2 \in \mathbb{R}$, $1 < \lambda_1 < 2$, $-2 < \lambda_2 < -1$, such that the operators $Q_j = D_1^2 + (2/\lambda_j)\cos(2x_1)$, j = 1, 2, are not (GH) on T^n . To prove this, we show that $g_1(\lambda_j) = 0$, for some $\lambda_1 \in (-2, -1)$, $\lambda_2 \in (1, 2)$.

This follows from the facts:

- (a) $t_1(\lambda) = ih_1(\lambda)$, where $h_1(\lambda) = 1/\{9\lambda + \sum_{j=2}^{\infty} ((-1)/[\lambda(2j+1)^2])\}$, and $g_1(\lambda) = i[h_1(\lambda) + 1/(\lambda h_1(\lambda)) \lambda]$;
- (b) if we put $H(\lambda) = -ig_1(\lambda)$, since the polynomial $p(t) = \lambda t$, $1 \le \lambda \le 2$, satisfies conditions (1), we can see that $H(\lambda)$ is a well defined and continuous functions of the variable λ on $[-2, -1] \cup [1, 2]$;
- (c) we show that H(1) > 0 and H(2) < 0, and H(-2) = -H(2), H(-1) = -H(1).

We remark that the result contained in Example 3 can be extended to include pseudo-differential operators $\lambda p(D_1^2) + 2\cos(2x_1)$, provided the symbol p(t) satisfies p(1) = 1 and $p(3^2) > 0$, in addition to (1). Note that here we have $h_1(\lambda) = 1/\{\lambda p(3^2) + K_{j=2}^{\infty}((-1)/[\lambda p((2j+1)^2)])\}$, while $g_1(\lambda)$ is the same.

In fact $g_1(\lambda) = 0$ if and only if $h_1(\lambda) - \lambda = \pm 1$. Setting $G_1(\lambda) = h_1(\lambda) - \lambda + 1$, one can see that $G_1(1) > 0$ and $G_1(2) < 0$, hence there exists $\lambda_1 \in (1,2)$ with $G_1(\lambda_1) = 0$, or $g_1(\lambda_1) = 0$. Similarly, set $G_2(\lambda) = h_1(\lambda) - \lambda - 1$, and get $G_2(-2) > 0$ and $G_2(-1) < 0$, and once again we are done.

3. Proof of the Theorem

PROOF OF SUFFICIENCY: Let $u \in \mathcal{D}'(T^n)$ and $f \in C^{\infty}(T^n)$ satisfy Pu = f. We take the Fourier series: $u = \sum_{k \in \mathbb{Z}^n} \hat{u}(k) e_k$; $f = \sum_{k \in \mathbb{Z}^n} \hat{f}(k) e_k$, where $e_k(x) = e^{ik \cdot x}$,

 $x \in T^n$. By substituting then in the equation above, we have:

$$p(k_1^2)\hat{u}(k) + \hat{u}(k - me_1) + a\hat{u}(k + me_1) = \hat{f}(k), \qquad k \in \mathbb{Z}^n,$$
 (3)

where $e_1 = (1, 0, ..., 0) \in \mathbb{Z}^n$. We separate \mathbb{Z}^n in **m** different regions defined by $k_1 \equiv l(mod \, m)$, for l = 0, 1, ..., m - 1.

FIRST REGION: if $k_1 = mj$, $j \in \mathbb{Z}$, equation (3) corresponds to:

$$p(m^{2}j^{2})\hat{u}(mj;k') + \hat{u}(m(j-1);k') + a\hat{u}(m(j+1);k') = \hat{f}(mj;k'),$$

$$\forall j \in \mathbb{Z}, \quad \forall k' = (k_{2}...,k_{n}) \in \mathbb{Z}^{n-1}.$$
(3')

We denote: $a_{0,j} = p(m^2j^2)/\sqrt{-a}$; $f_{0,j} = \hat{f}(mj; k').(\sqrt{-a})^j$ and $v_{0,j} = \hat{u}(m(j-1); k').(\sqrt{-a})^j$, $j \in \mathbb{Z}$. Then, (3') becomes:

$$v_{0,j+2} = a_{0,j}v_{0,j+1} + v_{0,j} - f_{0,j}, \quad j \in \mathbf{Z}.$$

$$\tag{4}$$

Solving (4) for $j \ge 1$, we put the initial conditions $v_{0,1} = \alpha_0$, $v_{0,2} = \beta_0$ (which will be determined later), and we have the solution:

$$v_{0,j} = \alpha_0 p_{0,j} + (\beta_0 - \gamma_{0,1}) q_{0,j} + r_{0,j}, \tag{5}$$

where $p_{0,j}, q_{0,j}$ are given (as in [5]) by:

$$\begin{cases}
p_{0,1} = 1; p_{0,2} = 0; p_{0,j+2} = a_{0,j} p_{0,j+1} + p_{0,j} \\
q_{0,1} = 0; q_{0,2} = 1; q_{0,j+2} = a_{0,j} q_{0,j+1} + q_{0,j}, \qquad j = 1, 2, \dots
\end{cases}$$
(6)

and

$$r_{0,j} = T_{0,1} + T_{0,2} - f_{0,j-2}, (7)$$

where:

$$\begin{cases}
T_{0,1} = (p_{0,j} - t_0 q_{0,j}) \sum_{\nu=1}^{j-3} f_{0,\nu} (-1)^{\nu} q_{0,\nu+1} \\
T_{0,2} = q_{0,j} \{ \gamma_{0,1} - \sum_{\nu=1}^{j-3} f_{0,\nu} (-1)^{\nu} (p_{0,\nu+1} - t_0 q_{0,\nu+1}) \},
\end{cases} (8)$$

$$\gamma_{0,1} = \sum_{\nu=1}^{\infty} f_{0,\nu}(-1)^{\nu} (p_{0,\nu+1} - t_0 q_{0,\nu+1})$$
(9)

$$t_0 = \sum_{j=2}^{\infty} (-1)^j / (q_{0,j} q_{0,j+1}) = \lim_{j \to \infty} (p_{0,j} / q_{0,j}).$$
 (10)

We can show that t_0 is a well defined non-zero number and, under conditions (1), $p_{0,j}$, $q_{0,j}$ and t_0 satisfy (as in [5]):

- (A_0) $p_{0,j+1}q_{0,j}-p_{0,j}q_{0,j+1}=(-1)^j, j=1,2,...$
- (B_0) $\exists K_0 > 1; |q_{0,j}| \ge K_0^{j-3}; |p_{0,j}| \ge K_0^{j-3}, \forall j \ge 4.$
- (C_0) $\exists C_1 > 0$, $\bar{j}_0 \ge 1$, independent of j, so that $|p_{0,j} t_0 q_{0,j}| \le C_1 |q_{0,j}|^{-1}$, $j \ge \bar{j}_0$.
 - (D_0) $t_0 \neq 0$.

We can verify that $T_{0,1}$, $T_{0,2}$ are rapidly decreasing as $j, |k'| \to \infty$ by the same arguments as in [5], and we conclude that $r_{0,j}$ is rapidly decreasing too. Since $u \in D'(T^n)$, $v_{0,j}$ has polynomial growth as $j \to \infty$. So, there exists C_2 , s > 0 such that:

$$\frac{v_{0,j}}{q_{0,j}} = \alpha_0 \frac{p_{0,j}}{q_{0,j}} + (\beta_0 - \gamma_{0,1}) + \frac{r_{0,j}}{q_{0,j}} \le \frac{C_2 j^s}{q_{0,j}}.$$

By letting $j \to \infty$, from (B_0) , (C_0) , we have:

$$\alpha_0 t_0 + \beta_0 - \gamma_{0,1} = 0. \tag{11}$$

Now we shall solve (4) for $j \le 0$ by changing $j \leftrightarrow -j$ in (4). Since p(0) = 0, we have $v_{0,0} = \beta_0 + f_{0,0}$ and we define: $w_{0,j} = (-1)^{2-j} v_{0,2-j}$. Then, equation (4) becomes:

$$w_{0,j+2} = a_{0,-j}w_{0,j+1} - w_{0,j} - g_{0,j}, \quad j = 1, 2, \dots,$$
 (12)

where $g_{0,j} = (-1)^{j+1} f_{0,-j}$, with $w_{0,1} = -\alpha_0$; $w_{0,2} = \beta_0 + f_{0,0}$. This last problem has its solution as in (5):

$$w_{0,j} = -\alpha_0 p_{0,j} + (\beta_0 + f_{0,0} + \gamma_{0,2}) q_{0,j} + \tilde{r}_{0,j},$$

where $\gamma_{0,2} = \sum_{\nu=1}^{\infty} f_{0,-\nu}(p_{0,\nu+1} - t_0 q_{0,\nu+1})$, and $r_{0,j}$ is defined in an analogous way to $r_{0,j}$ (see (7)). As before, we can show that $\tilde{r}_{0,j}$ is rapidly decreasing as $j, |k'| \to \infty$, and it follows that

$$-\alpha_0 t_0 + \beta_0 + f_{0,0} + \gamma_{0,2} = 0. {13}$$

From (11) and (13), we get:

$$\alpha_0 = \frac{(\gamma_{0,1} + \gamma_{0,2} + f_{0,0})}{2t_0}; \quad \beta_0 = \frac{(\gamma_{0,1} - \gamma_{0,2} - f_{0,0})}{2}. \tag{14}$$

We can prove that $\gamma_{0,1}$ and $\gamma_{0,2}$ are rapidly decreasing as $|k'| \to \infty$. Since $f_{0,0} = \hat{f}(0,k')$ has the same property, α_0 decreases rapidly when $|k'| \to \infty$. Taking (5) into account, it remains to prove that $M = [\alpha_0 p_{0,j} + (\beta_0 - \gamma_{0,1}) q_{0,j}]$ is also rapidly decreasing. In fact, we have:

$$\left|\alpha_0 \frac{p_{0,j}}{q_{0,j}} + \beta_0 - \gamma_{0,1}\right| \stackrel{(11)}{=} |\alpha_0| \left|\frac{p_{0,j}}{q_{0,j}} - t_0\right| \stackrel{(B_0)(C_0)}{\Rightarrow} |\alpha_0 p_{0,j} + (\beta_0 - \gamma_{0,1}) q_{0,j}| \leq |\alpha_0| \frac{C_1}{K_1^{j-3}},$$

if $j \ge \bar{j}_0 \ge 4$. Since α_0 is rapidly decreasing as $|k'| \to \infty$ and the same occurs with C_1/K_0^{j-3} as $j \to \infty$, it follows that M decreases rapidly as $j, |k'| \to \infty$, and the same is true for $v_{0,j}, j \ge 1$. By an analogous argument, we show that $w_{0,j} = (-1)^{2-j}v_{0,2-j}$, i.e. $v_{0,-j}$, is rapidly decreasing as $j, |k'| \to \infty$.

OTHER REGIONS: we fix $l \in \{1, 2, ..., m-1\}$; if $k_1 = mj + l$, $j \in \mathbb{Z}$, equation (3) corresponds to:

$$p((mj+l)^{2})\hat{u}(mj+l;k') + \hat{u}(m(j-1)+l;k') + a\hat{u}(m(j+1)+l;k')$$

$$= \hat{f}(mj+l;k'), \quad \forall j \in \mathbb{Z}, \quad \forall k' \in \mathbb{Z}^{n-1}.$$
(15)

We will solve (15) for $j \ge 1$ and denote:

$$a_{l,j} = p((mj+l)^2)/\sqrt{-a};$$
 $f_{l,j} = \hat{f}(mj+l;k')(\sqrt{-a})^j,$ $v_{l,j} = \hat{u}(m(j-1)+l;k')(\sqrt{-a})^j,$ $j = 1, 2, 3, ...$

Thus, (15) becomes:

$$v_{l,j+2} = a_{l,j}v_{l,j+1} + v_{l,j} - f_{l,j}, \qquad j = 1, 2, \dots$$
 (16)

We put $v_{l,1} = \alpha_l$; $v_{l,2} = \beta_l$ and we will have the solution:

$$v_{l,j} = \alpha_l p_{l,j} + (\beta_l - \gamma_{l,1}) q_{l,j} + r_{l,j}, \tag{17}$$

where $p_{l,j}$, $q_{l,j}$ are given as in (6), but now with new $a_{l,j}$ instead of $a_{0,j}$. The numbers $r_{l,j}$ have the same expression as before, with $f_{l,\nu} = \hat{f}(m\nu + l; k')(\sqrt{-a})^{\nu}$ and $\gamma_{l,1} = \sum_{\nu=1}^{\infty} f_{\nu,0}(-1)^{\nu}(p_{l,\nu+1} - t_l q_{l,\nu+1})$, where $t_l = \sum_{j=2}^{\infty} (-1)^j/(q_{l,j}q_{l,j+1}) = \lim_{j\to\infty} (p_{l,j}/q_{l,j})$. We can show that $T_{l,1}$, $T_{l,2}$ (defined as before) are rapidly decreasing as $j, |k'| \to \infty$. Since $u \in \mathcal{D}'(T^n)$, we get as in the first region:

$$\alpha_l t_l + \beta_l - \gamma_{l,1} = 0. \tag{18}$$

We have $v_{l,2} = a_{l,0}v_{l,1} + v_{l,0} - f_{l,0}$, where $a_{l,0} = p(l^2)/\sqrt{-a} \neq 0$ and $f_{l,0} = \hat{f}(l;k')$. This implies $v_{l,0} = \beta_l - a_{l,0}\alpha_l + f_{l,0}$. Now, if $j \leq 0$, by changing $j \leftrightarrow -j$ in

(16) and defining $w_{l,j} = (-1)^{2-j} v_{l,2-j}$, (16) becomes:

$$\begin{cases}
w_{l,j+2} = a_{l,-j} w_{l,j+1} + w_{l,j} - (-1)^{j+1} f_{l,-j}, & \text{with} \\
w_{l,1} = -\alpha_l; w_{l,2} = v_{l,0} = \beta_l - a_{l,0} \alpha_l + f_{l,0}.
\end{cases}$$
(19)

We define new $\tilde{p}_{l,j}$, $\tilde{q}_{l,j}$, as in (6), by putting $a_{l,-j}$ instead of $a_{0,j}$. The solution of (19) is given by:

$$w_{l,j} = -\alpha_l \tilde{p}_{l,j} + (\beta_l + f_{l,0} - a_{l,0}\alpha_l + \gamma_{l,2})\tilde{q}_{l,j} + \tilde{r}_{l,j}$$

where $\tilde{r}_{l,j}$ is the same as before, but considering now $\tilde{p}_{l,j}$, $\tilde{q}_{l,j}$ and $\tilde{t}_l = \lim_{j \to \infty} (\tilde{p}_{l,j}/\tilde{q}_{l,j})$, $\gamma_{l,2} = \sum_{\nu=l}^{\infty} f_{l,-\nu}(\tilde{p}_{l,\nu+1} - \tilde{t}_l\tilde{q}_{l,\nu+1})$.

Notice that:

$$\frac{p_{l,j}}{q_{l,j}} = \frac{1}{a_{l,1} + \frac{1}{a_{l,2} + \frac{1}{\vdots}}} \quad \text{and} \quad \frac{\tilde{p}_{l,j}}{\tilde{q}_{l,j}} = \frac{1}{\tilde{a}_{l,1} + \frac{1}{\tilde{a}_{l,2} + \frac{1}{\vdots}}} \cdot \frac{1}{\tilde{a}_{l,2} + \frac{1}{\tilde{a}_{l,j-2}}}.$$

 t_l and \tilde{t}_l can be written respectively as $K_{j=1}^{\infty}(1/a_{l,j})$ and $K_{j=1}^{\infty}(1/\tilde{a}_{l,j})$, which is in accordance with the statement of theorem 1.

Since $w_{l,i}$ has polynomial growth, it follows as before, that:

$$-\alpha_l(\tilde{t}_l + a_{l,0}) + \beta_l + \gamma_{l,2} + f_{l,0} = 0.$$
 (20)

Since we have the hypothesis $a_{l,0} + t_l + \tilde{t}_l \neq 0$, α_l and β_l are well determined and, from (18), (20), we get:

$$\alpha_{l} = \frac{f_{l,0} + \gamma_{l,2} + \gamma_{l,1}}{a_{l,0} + t_{l} + \tilde{t}_{l}}, \quad \beta_{l} = \gamma_{l,1} - \frac{(f_{l,0} + \gamma_{l,2} + \gamma_{l,1})t_{l}}{a_{l,0} + t_{l} + \tilde{t}_{l}}.$$
 (21)

With this expression we can show, like in the first region, that α_l is rapidly decreasing when $|k'| \to \infty$, and $v_{l,j}$, $v_{l,-j}$ are rapidly decreasing as $j, |k'| \to \infty$. From the results obtained in the first and in the other (m-1) regions, we conclude that $\hat{u}(j,k')$, $j \in \mathbb{Z}$, is rapidly decreasing as $|j|; |k'| \to \infty$, and $u \in C^{\infty}(T^n)$.

PROOF OF NECESSITY: Suppose that $g_{\bar{l}} = 0$ for some $\bar{l} \in \{1, 2, ..., m-1\}$. We will construct a solution $u \in \mathcal{D}'(T^n) \setminus C^{\infty}(T^n)$ to the equation Pu = 0, by describing its Fourier coefficients $\hat{u}(k)$.

We put $\hat{u}(mj+l;k')=0$, $\forall l \in \{0,1,\ldots,\overline{l}-1,\overline{l}+1,\ldots,m-1\}$, $\forall j \in \mathbb{Z}$, $k' \in \mathbb{Z}^{n-1}$. The others, $\hat{u}(mj+\overline{l};k')$, must satisfy:

$$p(mj + \overline{l}; k')\hat{u}(mj + \overline{l}; k') + \hat{u}(m(j-1) + \overline{l}; k') + a\hat{u}(m(j+1) + \overline{l}; k') = 0,$$

$$\forall j \in \mathbb{Z}, \quad k' \in \mathbb{Z}^{n-1}.$$
(22)

If we define $v_{\overline{l},j} = \hat{u}(m(j-1) + \overline{l}; k')(\sqrt{-a})^j$; $a_{\overline{l},j} = p((mj+\overline{l})^2)/\sqrt{-a}$, then (22) will be equivalent to:

$$v_{\overline{l},j+2} = a_{\overline{l},j}v_{\overline{l},j+1} + v_{\overline{l},j}, \quad j \in \mathbf{Z}.$$

$$(23)$$

We first solve (23) for $j \ge 1$, by putting the initial conditions: $v_{\overline{l},1} = -1/t_{\overline{l}} = \alpha_{\overline{l}}$ and $v_{\overline{l},2} = 1 = \beta_{\overline{l}}$, where $t_{\overline{l}} = \sum_{j=2}^{\infty} (-1)^j/(q_{\overline{l},j}q_{\overline{l},j+1})(p_{\overline{l},j},q_{\overline{l},j})$, given as in (6), depend only on the symbol p). Thus, the solution is

$$v_{\bar{l},j} = (-1/t_{\bar{l}})p_{\bar{l},j} + q_{\bar{l},j}, \quad \forall j \ge 1.$$
 (24)

We can see that $\alpha_{\overline{l}}$ and $\beta_{\overline{l}}$ satisfy:

$$\alpha_{\overline{I}}t_{\overline{I}} + \beta_{\overline{I}} = 0. \tag{25}$$

Notice that $v_{\bar{l},j}$ has polynomial growth as $j, |k'| \to \infty$; (indeed, p satisfies (1), $p_{\bar{l},j}, q_{\bar{l},j}$ still satisfy some conditions like in $(A_0), (B_0), (C_0)$, and we can write:

$$\frac{|v_{\overline{l},j}|}{|q_{\overline{l},j}|} \leq |\alpha_{\overline{l}}| \left| \frac{p_{\overline{l},j}}{q_{\overline{l},j}} - t_{\overline{l}} \right|.$$
 Thus, we conclude that, in fact, $v_{\overline{l},j}$ is bounded).

Now, solving (23) for $j \le 0$, by changing again $j \leftrightarrow -j$ and putting $w_{\overline{l},j} = (-1)^{2-j}v_{\overline{l},2-j}, \ j \ge 1$, equation (23) becomes:

$$w_{\bar{l},j+2} = a_{\bar{l},j} w_{\bar{l},j+1} + w_{\bar{l},j}, \quad j \ge 1, \tag{26}$$

and its solution is $w_{\overline{l},j} = (1/t_{\overline{l}})\tilde{p}_{\overline{l},j} + (1+a_{\overline{l},0}/t_{\overline{l}})\tilde{q}_{\overline{l},j}, \ \forall j \geq 1$ (recall that $\tilde{p}_{\overline{l},j}, \tilde{q}_{\overline{l},j}$ are defined as in (6) putting $a_{\overline{l},-j}$ instead of $a_{0,j}$).

Since $g_{\bar{l}} = 0$, using (25), we get:

$$-\alpha_{\bar{l}}(\tilde{t}_{\bar{l}} + a_{\bar{l},0}) + \beta_{\bar{l}} = 0. \tag{27}$$

By arguments analogous to the ones above for $\tilde{p}_{\overline{l},j}$, $\tilde{q}_{\overline{l},j}$ and using (27), we conclude that $w_{\overline{l},j}$ has polynomial growth as $j,|k'|\to\infty$ (in fact, they are bounded too).

So, we have found a solution $u \in \mathcal{D}'(T^n)$, given by $\hat{u}(mj + l, k') =$ $0, \forall l \in \{0, 1, ..., \overline{l} - 1, \overline{l} + 1, ..., m - 1\}, \forall j \in \mathbb{Z}, \text{ and by } \hat{u}(m(j - 1) + \overline{l}; k') = (\sqrt{-a})^{-j}[(-1/t_{\overline{l}})p_{\overline{l},j} + q_{\overline{l},j}] \text{ and } \hat{u}(m(1 - j) + \overline{l}; k') = (-1)^{j-2}(\sqrt{-a})^{j-2}[(1/t_{\overline{l}})\tilde{p}_{\overline{l},j} + q_{\overline{l},j}]$ $(1 + a_{\overline{l},0}/t_{\overline{l},j})\tilde{q}_{\overline{l},j}, \ \forall j \ge 1, k' \in \mathbb{Z}^{n-1}.$ Finally, we note that $\hat{u}(m + \overline{l}; k') = (\sqrt{-a})^{-2} \cdot v_{\overline{l},2} = (\sqrt{-a})^{-2}, \ \forall k'.$ Hence, \hat{u}

does not decrease rapidly, and so $u \notin C^{\infty}(T^n)$.

References

- Bergamasco, A. P. and Zani, S. L., Globally hypoelliptic second-order operators, Canadian Math. Bull. 37(3) (1994), 301-305.
- Bergamasco, A. P., Perturbations of globally hypoelliptic operators, J. Diff. Equations 114 (1994),
- Gramchev, T. and Yoshino, M., WKB analysis to global solvability and hypoellipticity, Publ. Res. [3] Inst. Math. Sci. 31 (1995), 443-464.
- [4] Greenfield, S. J. and Wallach, N. R., Global hypoellipticity and Liouville numbers, Proc. Amer. Math. Soc. 31 (1972). 112-114.
- Yoshino, M., A Class of globally hypoelliptic operators on the torus, Math. Z., 201 (1989), 1-11.
- Yoshino, M., Global hypoellipticity of a Mathieu operator, Proc. Amer. Math. Soc., 111 nº 3 [6] (1991), 717-720.
- Yoshino, M., Global hypoellipticity and continued fractions, Tsukuba J. Math., 15, nº 1 (1991), 193-203.

Adalberto P. Bergamasco* Dep. de Matemática

Univ. Federal de S. Carlos - Cx. Postal 676

13565-905 - S. Carlos - S.P. - Brasil

Edna M. Zuffi

Dep. de Matemática,

Inst. de Ciências Matem. de S. Carlos - USP - Cx. Postal 668

13560 - 970 - S. Carlos - S.P. - Brasil