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ON GLOBAL HYPOELLIPTICITY ON THE TORUS

By

Adalberto P. BErgaMasco* and Edna M. Zurr1

Summary: We use Fourier series and continued fractions to study
the property of regularity of the global solutions of certain partial
(or pseudo-) differential equations on the torus.

1. Introduction

Our main purpose in this paper is to study global hypoellipticity for a class
of pseudo-differential operators on the n-Torus, 7", n > 2, of the form

P = p(D?) + €™ + ge™ ™1

where a = +1, me N, D; = (1/i)(é/0x;) and p is a classical symbol satisfying the
additional conditions:

p(0)=0; |p(1)|=1; |p()|>2, teN, t>2. (1)

We recall that an operator P is said to be globally hypoelliptic (GH) on 7"
if the properties u € 2'(T") and Pue C*(T") imply ue C*°(T").

Under hypothesis (1), we present a necessary and sufficient condition for the
operators in (1) to be (GH). Our examples show, in particular, that in the case
when p(f) = 42,1 < 1 < 2, the situation m > 1 is different from the case m =1,
(see [5]); namely, when m > 1, the operator may fail to be (GH).

Other related works dealing with global hypoellipticity are [6], [7], [1] In
the operators D? + 2 cos x; — 4,4 € C, are considered; in [7] this result is extended
to cover more general operators with the same perturbation of order zero. In
[1], the effect of perturbations by terms of order zero is considered only in the
case of constant coefficients. Further related recent works are [2], [3].
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2. The Main Theorem and Examples

We will use the notations: 7", the n-dimensional torus, n>2, (7"~
R"/ (2=Z™)); 2'(T"), the space of distributions on T";, C®(T"), the space of
C®, complex valued functions on T"; x = (x,...,X,), the variable in T"; if
k= (ki,....k,) € Z" |k| = |ki| +--- + |kn|; and the continued fractions:

(=1’
(_I)S )
(=1’

a+———=
-1
a3+( )

K2, ((-1)/aj) = wheregje C,s =0ors=1.

a +

THEOREM 1. Consider the pseudo-differential operator P = p(D?) + ™ +
ae”™ meN ={1,2,3,...}, acting on 2'(T") where a==+1 and p = p(t),
teZ, is a classical symbol satisfying

p0)=0; |p()|=1; |p(P)>2, 122, teN. (1)

Let aj;=p((mji+D*)/v=a a,;=p((mji—D*/vV-a, j=12,...; t=
K2 (1/d;), if 1=0,1,...,m—1, and & = K2,(1/a1;),91 = 1 + 11 + p(I*) //=a,
ifl=12....m—1.

Then P is globally hypoelliptic on T" if and only if

g192- - -gm-1 # 0. (2)

In view of this result a question appears: what kind of operators satisfy
condition (2)? In [5], the case m = 1 is dealt with: there, this condition is empty.
However, when m > 2 it may be valid or not, as the following examples show.

ExamMpPLE 1. Here we analyze some cases where we take a simple poly-
nomial, but we put the perturbations e + ge "™ m > 2,a = +1. If we take
p(?) = t and a = —1, we have the operators D? + 2i sin(mx;), m > 2. In this case,
t1+ % +ap >0, for each / =1,2,...,m— 1. By taking p(t) =¢ and a=1, we
have the operators D? +2cos(mx;), m>2, and it is easy to see that
t+t+ayp#0, for all I=1,2,...,m~ 1. Therefore, they are all (GH) on T".

ExaMpPLE 2. Now we take p = p(¢) a real symbol that satisfies (1) and the
additional condition: |p(1)] >2 or |p(1)|=1. (%)
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Then, we have the operators p(D?) + e** + ae~2* g = +1, which are (GH)
on T”; indeed, we can show that 0 < |tj| <1 and this implies £ + 2a10t; +
aio + 1 # 0, which, in turn, is shown to be equivalent to #; + 7 +ajp #0. (In
fact, when a = —1, condition (*) is not necessary, but it is quite sharp when
a=1, as will be seen later).

This last example implies, in particular, that D? + 2 cos(2x;) is (GH). In the
next one, we will analyze the polynomial p(¢) = Az, when Ae R, 1 < |[A| < 2. In
[3], it was shown that AD? + ™ +ae ™, a==+1,1<|A| <2, is a globally
hypoelliptic operator, but this is not always true for the operators AD?+
e?™ + ge %% when 1< |4 < 2.

ExAMPLE 3. There exist 41, ., e R, 1 < A1 <2, —2 < 4 < —1, such that the
operators Q; = D? + (2/4;) cos(2x1), j = 1,2, are not (GH) on T". To prove this,
we show that g;(4;) =0, for some 4; € (-2,-1),42 €(1,2).

This follows from the facts:

(a) () = ih(4), where hi(2) =1/{9A+ 3 2,((-1)/[A(2j +1)°])}, and
91(4) = il (2) + 1/(A = h1(4)) — 4);

(b) if we put H(i) = —ig1(4), since the polynomial p(f) =Ar,1 <A1 <2,
satisfies conditions (1), we can see that H(4) is a well defined and continuous
functions of the variable 4 on [-2,—1]U][1,2);

(c) we show that H(1) >0 and H(2) <0, and H(-2)=-H(2),H(-1) =
—H(1).

We remark that the result contained in Example 3 can be extended to
include pseudo-differential operators Ap(D?) + 2cos(2x;), provided the symbol
p(t) satisfies p(1) =1 and p(3%) > 0, in addition to (1). Note that here we have
M) = 1/{4p(3%) + K2,((~1)/[Ap((2i + D))}, while g1(4) is the same.

In fact g;(4) = 0 if and only if 4; (1) — A = £1. Setting G1(4) = I (A) — A+ 1,
one can see that Gj(1) >0 and G;(2) <0, hence there exists A; € (1,2) with
G1(41) =0, or g1(41) = 0. Similarly, set G2(4) = hi1(A) — 4 — 1, and get G»(—2) > 0
and G;(—1) < 0, and once again we are done.

3. Proof of the Theorem

PROOF OF SUFFICIENCY: Let ue 2'(T") and f € C®(T") satisfy Pu=f. We
take the Fourier series: u = 3, g it(k)ex; f = Yge znf (k)ex, where ey (x) = e**,
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x € T". By substituting then in the equation above, we have:
p(kD)a(k) + ik — mey) + an(k +me,) = f(k), keZ", (3)

where e¢; = (1,0,...,0) e Z". We separate Z” in m different regions defined by
k1 = Il(modm), for 1 =0,1,...,m—1.

FIRST REGION: if k) = myj, j e Z, equation (3) corresponds to:

p(m*?)a(mj; k') + a(m(j — 1); k') + ais(m(j + 1); k') = f(mj; k'),

1 (3)
VieZ, Vk'=(ky...,k,)e2Z".

We denote: ao; = p(m*?)/v/—=a; fo,; = f(mj;k').(V=a)’ and ;=
a(m(j —1);k').(v/=a)’, je Z. Then, (3') becomes:
vo,j+2 = @o,jv0,j+1 + vo,j — fo,j, JEZ. (4)

Solving (4) for j > 1, we put the initial conditions vy = ag, vo2 = B, (Which
will be determined later), and we have the solution:

vo,; = dopo,; + (Bo — ¥0.1)90,; + r0,j, (5)

where po j,qo,; are given (as in [5]) by:

{ Po1 = 1;po2 = 0;po j+2 = ao, jPo, j+1 + Po,j ()
go,1 = 0;902 = 1; q0,j+2 = ao,jq90,j+1 + 90, j, Jj=12,...
and
ro,j = To1 + To2 — fo,j-2, (7)
where:
To1 = (Po,; — t0d0,;) 303 fou(—1)"qout1 ®
To2 = qo,j{701 — SV for(=1)" (Po+1 — f0g0,11)},
o0
Yo1 = Zv=lﬁ>,v(—1)v(P0,v+l — 040,v+1) )

to =3 7, (=1Y/(do,190,5+1) = lim (po,;/40,)). (10)
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We can show that ¢, is a well defined non-zero number and, under
conditions (1), po j,q0,; and #, satisfy (as in [5]):

(o)  Po,j+190,; — Po,jq0,j+1 = (=1)7, j = .1,32, .

(Bo) 3Ko>1; |qo| = K572 |pojl = Ki°, Vj = 4.

(Co) 3C; >0, j, =1, independent of j, so that |po; — toqo, ;| < Cllqo,j|'1,
J ZJo-

(Do) to #0.

We can verify that Ty, Tp, are rapidly decreasing as j, |k'| — co by the
same arguments as in [5], and we conclude that ro ; is rapidly decreasing too.
Since u € D'(T"), vo,; has polynomial growth as j — co. So, there exists C,
s > 0 such that:

Yo, Po,j roj _ GJ
—L = a2 4 (By — yoy) + L < —.
qo,; " q0,5 (Bo = 01) qo.; 9o,
By letting j — oo, from (By), (Cp), we have:
aoto + Bo — Y01 = 0. (11)

Now we shall solve (4) for j < 0 by changing j — —j in (4). Since p(0) =0,
we have vgo = By + foo and we define: wy ; = (—1)2"’ vo2—;. Then, equation (4)
becomes:

Wo, j+2 = Qo,—jWo,j+1 — Wo,; — 40,/, ]: 172,"'7 (12)

where go ; = (—1)7"fy _j, with wp; = —ag; wo2 = By +foo. This last problem has
its solution as in (5):

wo,; = —aopo,j + (Bo + 0,0 + 70.2)90,5 + Fo,j,

where 7y, = > 02 fo,—v(Poy+1 — togoy+1), and rg ; is defined in an analogous way
to ro; (see (7)). As before, we can show that 7y ; is rapidly decreasing as
j,|k'| = oo, and it follows that

—aoto + By + foo + 702 = 0. (13)
From and [13), we get:

_ (Y01 + Y02 +Jo0) ) _ (Yo, — o2 — Jop)
% = 2t() ’ ﬁO - 2 )

(14)
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We can prove that y,; and y,, are rapidly decreasing as |k’| — co. Since
Joo = f (0,k") has the same property, ap decreases rapidly when |k’'| — oo.
Taking (5) into account, it remains to prove that M = [agpo ; + () — Y0,1)90,] 18
also rapidly decreasing. In fact, we have:

Po,j

an
a0 =L +
20, Bo —

Po,j
0,j

(Bo)(Co)
1))

|ato | ®%opo,; + (Bo — Yo, 1)4o, 1| s |°‘0l

K~
if j > j, = 4. Since ap is rapidly decreasing as |k’| — co and the same occurs with
C /K({_3 as j — oo, it follows that M decreases rapidly as j, |k’| — oo, and the
same is true for v ;, j = 1. By an analogous argument, we show that wyp; =
(-1)*= voz_j, i.e. vg;, is rapidly decreasing as j, |k’'| — co.

OTHER REGIONS: we fix /€ {1,2,...,m—1}; if ky =mj+ 1, je Z, equation
(3) corresponds to:

p((mj + DP)a(mj + LK) + a(m(j — 1) + LK) + ai(m(j + 1) + L k')

\ (15)
=f(mj+Lk"), VieZ, VK ezZ"!
We will solve (15) for j > 1 and denote:
a,; =p((mj+ D2 /V=a; fij=Ff(mj+ LK) (V=a),
oy =a(m(j— 1) + LK) (V=a)’, j=1,2,3,...
Thus, (15) becomes:
v j+2 = Qv Yo —fi5, 0 j=12,... (16)
We put v = ay; v2 = f;, and we will have the solution:
v,j = oupr; + (Br — v1,1)91,; + 11,5, (17)

where p;;, q;; are given as in (6), but now with new a;; instead of ao ;. The
numbers r;; have the same expression as before, with f;, = f(mv + I;k')(v/=a)"
and y; =322 fo(=1)"(Prar1 — tigip1), where o =32, (=1)7 /(i q1,541) =
lim (p; ;/q1,;). We can show that T;;, T}, (defined as before) are rapidly decreasing
Ja_s'o;', |k'| — co. Since ue 2'(T"), we get as in the first region:

ati+p;— v, =0. (18)

We have V12 = apovr1 + vio —ﬁ,o, where ao =p(12)/\/ —a #0 and ﬁ,o =
f(I;k'). This implies vi0 = P; — arpoy + f10. Now, if j < 0, by changing j < —j in
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(16) and defining w;; = (-1)*7 12—/, becomes:

Wil = —o;wia = v = Py — arpou + f1p.

We define new p;;, q;;, as in (6), by putting a;_; instead of ay,;.
The solution of (19) is given by:

wij = —up;;+ (B +fi0 — aroou +12)q1; + 1,

where 7, ; is the same as before, but considering now p, ;, §; ; and #; = ,llglo (P1;/41)

V12 = Doyt S1—v(Prys1 — 01 yi1)-
Notice that:

pLj _ 1 Py _ 1

qa; 1 G ]
q1,j aj, + q,j

ap +

1 1
+=
al)j_z al)j_z

-+

t; and #; can be written respectively as K2 (1/ai;) and K®,(1/ay;), which is in
accordance with the statement of theorem 1.
Since w;; has polynomial growth, it follows as before, that:

—oy () + ar) + B+ y12 + f10 = 0. (20)

Since we have the hypothesis a;o + #; + #; # 0, o; and S, are well determined
and, from (18), (20), we get:

_Jio+via v
o =

(f10 + 712+ yi0)ti
apg+t+14 '

ajo+ t + 1

s Bir=vi1— (21)

With this expression we can show, like in the first region, that o; is rapidly
decreasing when |k'| — oo, and v;;, v;_; are rapidly decreasing as j, |k'| — co.
From the results obtained in the first and in the other (m — 1) regions, we
conclude that a(j,k’), je Z, is rapidly decreasing as |j|;|k’| — oo, and
ue C®(T").

PROOF OF NECESSITY: Suppose that g; =0 for some le{1,2,...,m—1}.
We will construct a solution ue 2'(T")\ C*(T") to the equation Pu =0, by
describing its Fourier coefficients #(k).
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We put a(mj+15k'y=0, vie{0,1,....]1-1,1+1,....m—1}, VjieZ,
k' € Z"!. The others, ii(mj + I; k'), must satisfy:

pmj + LK a(mj + LK) +am(j — 1) + LK) + aa(m(j+ 1) + Lk') =0,

22
VieZ, k'eZ"!. (22)

If we define vy, = a(m(j— 1)+ Lk (v/=aY; ay; = p((mj +1%)/v/=a, then
(22) will be equivalent to:

U2 = A1V t 0 JEZ. (23)

We first solve for j > 1, by putting the initial conditions: v;, = —1/t; =

ar and vy, = 1= f;, where f;= 2,22(—1)j/(qi,jQT,j+1)(PT,ja‘17,,-> given as in (6),
depend only on the symbol p). Thus, the solution is

Ui = (—1/[7)])7’1. +qua Vi > 1. (24)

We can see that a7 and f; satisfy:

“7’7 + ﬂf =0. (25)

Notice that vy ; has polynomial growth as j, |k’| — oo; (indeed, p satisfies (1),
p;j» 45 ; still satisfy some conditions like in (4o), (Bo), (Co), and we can write:

o7 | D
!—IL]—I < |og| N t7|- Thus, we conclude that, in fact, v7 ; is bounded).
Lj Ij ’

Now, solving for j <0, by changing again j & —j and putting wi; =
(—1)2_’012_j, J =1, equation becomes:

Wijr2 = G Wi TWip S 21, (26)
and its solution is w;; = (1/#)p7; + (1 + a7y/#)d7;, Vj = 1 (recall that p; ;, g7 ; are
defined as in (6) putting a;_; instead of ap ;).

Since gy =0, using (25), we get:
—di(if + azo) + ﬂ'I‘ =0. (27)

By arguments analogous to the ones above for p; , §;; and using (27), we
conclude that wr; has polynomial growth as j, |k’| = oo (in fact, they are
bounded too).
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So, we have found a solution ue Z'(T"), given by a(mj+1,k') =

o,vie{0,1,....7—1,1+1,... m—1},VjeZ, and by a(m(j—1)+5k')=

(V=a)7[(—1/t)pr; + q;,) and a(m(1 —j) + LK) = (1) > (v=a) *[(1/ )by +
(1 +ago/1;)37,], Vi = 1,k'e Z"".

Finally, we note that ii(m + L; k') = (v/—a) > - v, = (v/=a) "2, Vk'. Hence, il

does not decrease rapidly, and so u ¢ C®(T").

(1]
(2]

(4]

(5]
(6]

(7]
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