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1. Introduction

Let $T$ be a theory with a relational language $L$ including a unary predicate
$P$ . Let $M$ be a model of $T$ and $N$ the $L^{-}$ -structure $P^{M}=\{a\in|M| : M\models P(a)\}$

where $L^{-}\subset L-\{P\}$ . The following question seems to be natural:

QUESTION. Which properties of $T^{-}=Th(N)$ are also possessed by $T$

(under certain conditions)?

There are a few papers treating the question. In [HP] Hodges and Pillay
have shown that if $T$ is minimal over $P$ (definition 2.3) and every automorphism
of $N$ can be extended to an automorphism of $M$ (they call $M$ is a symmetric
extension of $N$), then $N$ is $\aleph_{0}$-categorical iff $M$ is $\aleph_{0}$ -categorical. In [KT] Kikyo
and Tsuboi defined the $\emptyset$-reduction property, the reduction property, the strong
reduction property, and the uniform reduction property. These reduction
properties are model theoretical rephrasing of symmetry. They have shown
that if $T$ is minimal over $P$ and has the uniform reduction property (i.e.,

for each L-formula $\varphi(\overline{x}\overline{y})$ , there is an $L^{-}$ -formula $\psi(\overline{x}\overline{z})$ such that
$(\forall\overline{y})(\exists\overline{z}\in P)(\forall\overline{x}\in P)[\varphi(\overline{x}\overline{y})\leftrightarrow\psi^{P}(\overline{x}\overline{z})]$ holds), then $T^{-}$ is $\lambda$-stable iff $T$ is $\lambda$-stable
and $T^{-}$ is unidimensional iff $T$ is unidimensional.

In this paper, we mainly deal with the $\emptyset$-reduction property (definition 2.1).

The $\emptyset$-reduction property together with the minimality condition ensures that $T$

is not far from $T^{-}$ if $T$ is stable. But the $\emptyset$-reduction property is not so
strong for an unstable theory. In fact there is a theory $T$ such that $T$ has the
$\emptyset$-reduction property over $P$, is minimal over $P$ , and the number of models of
$T$ is more than that of $T^{-}$

EXAMPLE. Let $A$ be a model whose theory has uncountably many
countable models. Let
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(i) $L=\{P, R\}U$ the language of $A$ ,
(ii) $L^{-}=L-\{P\}$ ,
(iii) $M=$ \langle $M;P^{M},$ $R^{M}$ , the stmcture of $ A\rangle$ ,
(iv) $M=A\cup B\cup C$,
(v) $P^{M}=B\cup C$,
(vi) $C$ is the set of all bijections from $A$ to $B$,
(vii) $R^{M}(x,y, f)$ iff $x\in A\wedge y\in B\wedge f\in C\wedge f(x)=y$ .
Since $(\forall xyz)\neg R(x,y, z)$ holds in $N,$ $T=Th(M)$ has the $\emptyset$-reduction

property over $P$ and $T^{-}=Th(N)$ has a unique countable model. $T$ is minimal
over $P$ because each element of $C$ is a bijection from $A$ to $B$ . But $T$ has
uncountably many countable models since Th $(\Lambda)$ does.

When $T$ is superstable, we can easily prove that if $T$ has the $\emptyset$-reduction
property over $P$ and is minimal over $P$, then the number of a-models of $T$ is
equal to that of $T^{-}$ (corollary 3.2). Furthermore, we prove the following:

THEOREM (4.1, 5.1). Let $T$ be a superstable theory with the $\emptyset$-reduction
property over $P$ . If $T$ is minimal over $P$ , then

(1) $T$ has the DOP (dimensional order property) iff $T^{-}$ has the DOP.
(2) $T$ is deep iff $T^{-}$ is deep.
For a stable theory, the $\emptyset$-reduction property implies a reduction property

for formulas with parameters (in [KT], it was called the reduction property).

The key point of the proofs of the above theorems is that under this reduction
property, a type of an element in $N$ is determined by its $L^{-}$ -reduction” of the
type (see lemma 2.4).

2. Preliminaries

Let $T$ be a theory with a relational language $L$ including a unary predicate
$P$ . Let $M$ be a model of $T$ and $N$ the $L^{-}$ -structure $P^{M}=\{a\in|M| : M\models P(a)\}$

where $L^{-}\subset L-\{P\}$ . As usual, we work in the big model $\mathscr{M}$ of $T$ . We may
assume that a model of $T^{-}=Th(N)$ is an $L^{-}$ -elementary substructure of $P^{\chi}$ .
The character $M$ will denote an elementary submodel of $\mathscr{M}$ in $T$ and the
character $N$ will denote the set $P^{M}$ which is a model of $T^{-}$ . $M$ and $N$ may have
subscript. For notational convenience, we usually assume that if $M$ and $N$ have
the same subscript then $N$ is the restriction of $M$ to $P$ . For example, $N_{i}$ for $P^{M_{i}}$ .

We write $\overline{a},\overline{b},$

$\ldots$ for finite tuples of elements of $\mathscr{M}$ and $\overline{x},\overline{y},$

$\ldots$ for finite
tuples of variables. When $\varphi$ is an $L^{-}$ -formula, we write $\varphi^{P}$ for the restriction of
$\varphi$ , that is, the formula obtained from $\varphi$ by restricting all the variables to $P$ . For



Reduction property and dimensional order property 141

example, if $\varphi(x)=(\forall y)(\exists z)\psi(xyz)$ and $\phi$ is open, then $\varphi^{P}(x)\equiv(\forall y)(P(y)\rightarrow$

$(\exists z)(\psi(xyz)\wedge P(x)\wedge P(z)))$ . We write $(\forall\overline{x}\in P)\varphi(\overline{x}\overline{y})$ to express the formula
$(\forall x_{1}\cdots\forall x_{n})[P(x_{1})\wedge\cdots\wedge P(x_{n})\rightarrow\varphi(\overline{x}\overline{y})]$ where $\overline{x}=x_{1}\cdots x_{n}$ .

DEFINITION 2.1 ([KT, definition 1]). (1) We say that $M$ has the $\emptyset$-reduction
property over $N$ if every $L(\emptyset)$ -definable relation on $N$ is $L^{-}(\emptyset)$ -definable in $N$,
i.e., for any $L(\emptyset)$ -formula $\varphi(\overline{x})_{3}$ there is an $L^{-}(\emptyset)$ -formula $\psi(\overline{x})$ such that
$M\models(\forall\overline{x}\in P)[\varphi(\overline{x})\leftrightarrow\psi^{P}(\overline{x})]$ .

(2) We say that $M$ has the reduction property over $N\iota f$ every $L(M)$ -definable
relation on $N$ is $L^{-}(N)$ -definable in $N$.

If some model of $T$ has the $\emptyset$-reduction property over $N$, then every model of
$T$ has the property. So we say that $T$ has the $\emptyset$-reduction property over $P$ if some
model of $T$ has this property.

The following lemma was used in [KT] without proof. For the sake of
completeness, we prove it here.

LEMMA 2.2 ([KT, pp. 902]). If $T$ is stable and has the $\emptyset$-reduction property
over $P$, then every model $M$ of $T$ has the reduction property over $N$.

PROOF. Let $M$ be a model of $T,$ $\varphi(\overline{x}\overline{y})$ an L-formula, and $\overline{a}\in M$ . We
want to find an $L^{-}$ -formula $\psi(\overline{x}\overline{z})$ and a tuple $\overline{b}\in N$ such that
$M\models(\forall\overline{x}\in P)[\varphi(\overline{x}\overline{a})\leftrightarrow\psi^{P}(\overline{x}\overline{b})]$ . For this, it is sufficient to show that
$M\models[\varphi(\overline{c}\overline{a})\leftrightarrow\psi^{P}(\overline{c}\overline{b})]$ for every $\overline{c}\in N$ . By the stability, there are an L-formula
$\varphi^{\prime}(\overline{x}\overline{z})$ and a tuple $\overline{b}\in N$ such that $M\models\varphi(\overline{c}\overline{a})\leftrightarrow\varphi^{\prime}(\overline{c}\overline{b})$ for every $\overline{c}\in N$ . By
the $\emptyset$-reduction property, there is an $L^{-}$ -formula $\psi(\overline{x}\overline{z})$ such that
$M\models(\forall\overline{x}\overline{z}\in P)[\varphi^{\prime}(\overline{x}\overline{z})\leftrightarrow\psi^{P}(\overline{x}\overline{z})]$ . $\square $

DEFINITION 2.3 ([KT, definition 1]). We say that $T$ is minimal over $Plf$

every model $M$ of $T$ is a minimal model over $N$.

We write $tp^{-}(\overline{a}/B)$ for the $L^{-}$ -type of $\overline{a}\in N$ over $B\subset N$ .

LEMMA 2.4. Let $a$ and $\overline{b}$ be tuples from $P^{\chi}$ .
(1) $tp(\overline{a}/M)$ does not fork over $N$.
(2) If $M$ has the reduction property over $N$, then $tp(\overline{a}/M)=tp(\overline{b}/M)$ iff

$tp^{-}(\overline{a}/N)=tp^{-}(\overline{b}/N)$ .



142 Kentaro WAKAI

(3) If $M$ has the reduction property over $N$, then $tp(\overline{a}/M\overline{b})$ does not fork over
$M\iota fftp^{-}(\overline{a}/N\overline{b})$ does not fork over $N$ in the sense of $T^{-}$

(4) If $T$ has the $\emptyset$-reduction property over $P$ , then $tp(\overline{a}/N)$ is stationary in
the sense of $T$.

(For only if part of (2) and (3), we don’t need the reduction property.)

PROOF. (1) Let $\varphi(\overline{x})$ be a formula in $tp(\overline{a}/M)$ . We show that $\varphi(\overline{x})$ has a
realization in $N$. Since $M\models(\exists\overline{x})(\varphi(\overline{x})\wedge\overline{x}\in P)$ , we can find a tuple $\overline{b}\in N$

realizing $\varphi(\overline{x})$ .
(2) $(\Rightarrow)$ Clear.
$(\Leftarrow)$ Let $\varphi(\overline{x})$ be a formula in $tp(\overline{a}/M)$ . By the reduction property, there

is an $L^{-}(N)$ formula $\psi(\overline{x})$ such that $M\models(\forall\overline{x}\in P)[\varphi(\overline{x})\leftrightarrow\psi^{P}(\overline{x})]$ . Hence
$\psi(\overline{x})\in tp^{-}(\overline{a}/N)$ . And $\psi(\overline{x})\in tp^{-}(\overline{b}/N)$ since $tp^{-}(\overline{a}/N)=tp^{-}(\overline{b}/N)$ . Hence
$\varphi(\overline{x})\in tp(\overline{b}/M)$ . So $tp(\overline{a}/M)=tp(\overline{b}/M)$ .

(3) $(\Rightarrow)$ We show that $tp^{-}(\overline{a}/N\overline{b})$ is an heir over $N$ in the sense of $T^{-}$ . If
$\varphi(\overline{x}\overline{b})\in tp^{-}(\overline{a}/N\overline{b})$ and $\varphi(\overline{x}\overline{y})$ is an $L^{-}(N)$ -formula, then $\varphi^{P}(\overline{x}\overline{b})\in tp(\overline{a}/M\overline{b})$ .
Since $\varphi^{P}(\overline{x}\overline{y})$ is an $L(M)$ -formula, we can find a tuple $\overline{b}^{\prime}\in N$ such that
$\varphi^{P}(\overline{x}\overline{b}^{\prime})\in tp(\overline{a}/M\overline{b})$ . Hence $\varphi(\overline{x}\overline{b}^{\prime})\in tp^{-}(\overline{a}/N\overline{b})$ .

$(\Leftarrow)$ We show that $tp(\overline{a}/M\overline{b})$ is an heir over $M$. If $\varphi(\overline{x}\overline{b})\in tp(\overline{a}/M\overline{b})$

and $\varphi(\overline{x}\overline{y})$ is an $L(M)$ -formula, then, by the reduction property, there is
an $L^{-}(N)$ -formula $\psi(\overline{x}\overline{y})$ such that $M\models(\forall\overline{x}\overline{y}\in P)[\psi^{P}(\overline{x}\overline{y})\leftrightarrow\varphi(\overline{x}\overline{y})]$ . Since
$\psi(\overline{x}\overline{b})\in tp^{-}(\overline{a}/N\overline{b})$ and $\psi(\overline{x}\overline{y})$ is an $L^{-}(N)$ -formula, we can find a tuple $\overline{b}^{\prime}\in N$

such that $\psi(\overline{x}\overline{b}^{\prime})\in tp^{-}(\overline{a}/N\overline{b})$ . Hence $\varphi(\overline{x}\overline{b}^{\prime})\in tp(\overline{a}/M\overline{b})$ .
(4) If $tp(\overline{a}/N)$ is not stationary in the sense of $T$, then we can find tuples

$\overline{b},\overline{c}\in P^{\chi}$ and a model $M^{\prime}\supset N$ of $T$ such that $tp(\overline{b}/M^{\prime})$ and $tp(\overline{c}/M^{\prime})$ are
different non-forking extensions of the type $tp(\overline{a}/M)$ . By (2) and (3), $tp^{-}(\overline{b}/N^{\prime})$

and $tp^{-}(\overline{c}/N^{\prime})$ are different non-forking extensions of the type $tp^{-}(\overline{a}/N)$ in
the sense of $T^{-}$ This contradicts the stationarity of $tp^{-}(\overline{a}/N)$ in the sense
of $T^{-}$ $\square $

Note. We can see $\kappa_{r}(T)\geq\kappa_{r}(T^{-})$ from (3).

3. a-models of $T$ and $T^{-}$

If $M$ is an a-model of $T$, then $N$ is an a-model of $T^{-}$ because
$\kappa_{r}(T)\geq\kappa_{r}(T^{-})$ . The following lemma shows that for any a-model $N$ of $T^{-}$ ,
there is an a-model $M$ such that $P^{M}=N$ .



Reduction property and dimensional order property 143

LEMMA 3.1. Assume that $T$ is stable, has the $\emptyset$-reduction property over $P$ ,
and $\kappa_{r}(T)=\kappa_{r}(T^{-})$ . Let $N$ be an a-model of $T^{-}$ . If $M^{\prime}$ is an a-prime model over
$N$ in the sense of $T$, then $N^{\prime}=N$ .

PROOF. If $N^{\prime}\neq N$ , we can choose an element $a\in N^{\prime}-N$ . Since $M^{\prime}$ is a-
prime over $N$, there is a subset $A\subset N$ such that $|A|<\kappa_{r}(T)$ and $stp(a/A)$

isolates $tp(a/N)$ in the sense of $T$. Let $\{E_{l}(xa;\overline{b}_{i}) : \overline{b}_{l}\in A, i<\lambda\}$ be an enu-
meration of $stp(a/A)$ where each $E_{i}(xy;\overline{b}_{i})$ is a finite equivalence relation over $A$

in the sense of $T$. By the $\emptyset$-reduction property, for each $ i<\lambda$ , we can find an
$L^{-}$ -formula $E_{i}^{\prime}(xy;\overline{z}_{i})$ such that $(\forall xy\overline{z}_{i}\in P)[E_{i}(xy;\overline{z}_{i})\leftrightarrow E_{i}^{\prime P}(xy;\overline{z}_{i})]$ holds in $M$.
$E_{i}^{\prime}(xy;\overline{b}_{i})$ is a finite equivalence relation over $A$ in the sense of $T^{-}$ because so is
$E_{i}(xy;\overline{b}_{i})$ in the sense of $T$. Hence $\{E_{i}^{\prime}(xy;\overline{b}_{i}) : i<\lambda\}\subset stp^{-}(a/A)$ . If we choose
an element $c\in N$ as a realization of $stp^{-}(a/A),$ $c$ also realizes $stp(a/A)$ , so $c$

realizes $tp(a/N)$ . Hence $tp(a/N)=tp(c/N)$ . But this is a contradiction since
$a\not\in N$ . $\square $

COROLLARY 3.2. Let $T$ be stable, minimal over $P$ , has the $\emptyset$-reduction
property over $P$, and $\kappa_{r}(T)=\kappa_{r}(T^{-})$ .

(1) For every a-model $N$ of $T^{-}$ , there is a unique a-model $M$ of $T$ such that
$P^{M}=N$ . Moreover, $|M|=|N|$ .

(2) Every a-model $M$ of $T$ is a-prime over $N=P^{M}$ .
(3) The map which takes $M$ to $N=P^{M}$ is a bijection between a-models of $T$

and a-models of $T^{-}$ of the same cardinality.

When $T$ is superstable, the number of a-models is classified by the
dimensional order property (definition 4.2) and the deepness (definition 5.4)

([Sh]). We consider these properties in following two sections.

4. Dimensional order property

In this section, we show:

THEOREM 4.1. If $T$ is superstable, has the $\emptyset$-reduction property over $P$ and
is minimal over $P$, then $T$ has the $DOP$ (dimensional order property) iff $T^{-}$ has
the $DOP$ . The minimality condition is not necessary for $lf$ part.

First, we recall the definition of the dimensional order property.
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DEFINITION 4.2 ([Sh, definition X.2.1]). let $T$ be superstable. We say that $T$

has the dimensional order property $(DOP)\iota f$ there are a-models $M_{i}(i=0,1,2,3)$

and a regular type $p\in S(M_{3})$ such that:. $M_{0}\prec M_{1},$ $M_{2}$ ,. $M_{1}$ and $M_{2}$ are independent over $M_{0}$ ,. $M_{3}$ is a-prime over $M_{1}M_{2}$ ,. $p$ is orthogonal to $M_{1}$ and $M_{2}$ .
To prove the theorem 4.1, we need the following three lemmas.

LEMMA 4.3. Assume that $T$ is stable, has the $\emptyset$-reduction property over $P$

and $\kappa_{r}(T)=\kappa_{r}(T^{-})$ . Let $N_{0},$ $N_{1}$ be a-models, $N_{0}\prec N_{1},$ $M_{0}$ a-prime over $N_{0}$ , and
$M_{2}$ an a-prime model over $M_{0}N_{1}$ . Then $M_{2}$ is a-prime over $N_{1}$ and $P^{M_{2}}=N_{1}$ .

PROOF. Let $M_{1}$ be an a-prime model over $N_{1}$ . By lemma 3.1, $P^{M_{0}}=N_{0}$

and $P^{M_{1}}=N_{1}$ . We can find an elementary submodel $M_{0}^{\prime}\prec M_{1}$ which is iso-
morphic to $M_{0}$ over $N_{0}$ since $M_{0}$ is a-prime over $N_{0}$ . By lemma 2.4(1)(4),
$tp(N_{1}/N_{0})$ is stationary and $tp(N_{1}/M_{0}^{\prime})$ does not fork over $N_{0}$ . Hence
$tp(M_{0}^{\prime}/N_{1})=tp(M_{0}/N_{1})$ . So we can embed $M_{2}$ into $M_{1}$ over $N_{1}$ . Hence $M_{2}$ is a-
prime over $N_{1}$ and $P^{M_{2}}=N_{1}$ . $\square $

LEMMA 4.4. Assume that $T$ is stable, has the $\emptyset$-reduction property over $P$

and $\kappa_{r}(T)=\kappa_{r}(T^{-})$ . Let $a$ be a tuple from $P^{\chi}$ . Then $tp(\overline{a}/M)$ is regular in the
sense of $T$ iff $tp^{-}(\overline{a}/N)$ is regular in the sense of $T^{-}$

$PR\infty F$ . $(\Rightarrow)$ If $tp^{-}(\overline{a}/N)$ is not regular in the sense of $T^{-}$ , then there is a
forking extension $tp^{-}(\overline{b}/C)$ which is not orthogonal to $tp^{-}(\overline{a}/N)$ in the sense of
$T^{-}$ We may assume that. $tp^{-}(\overline{a}/C)$ does not fork over $N$ in the sense of $T^{-}$ ,. $\overline{a}$ and $\overline{b}$ are dependent over $C$ in the sense of $T^{-}$

Let $N^{\prime}$ be an a-model of $T^{-}$ such that $C\subset N^{\prime}$ and $tp^{-}(\overline{a}\overline{b}/N^{\prime})$ does not fork over
$C$. By lemma 3.1, there is an a-model $M^{\prime}$ of $T$ such that $P^{M^{\prime}}=N^{\prime}$ . By lemma
2.4, . $tp(\overline{a}/M^{\prime})$ does not fork over $M$,. $tp(\overline{b}/M^{\prime})$ is a forking extension of $tp(\overline{a}/M)$ ,. $\overline{a}$ and $\overline{b}$ are dependent over $M^{\prime}$ .
Hence $tp(\overline{a}/M)$ is not regular.

$(\Leftarrow)$ If $tp(\overline{a}/M)$ is not regular, there is a forking extension $tp(\overline{b}/C)$ which is
not orthogonal to $tp(\overline{a}/M)$ . We may assume that:



Reduction property and dimensional order property 145

. $tp(\overline{a}/C)$ does not fork over $M$,. $\overline{a}$ and $\overline{b}$ are dependent over $C$ in the sense of $T$.
Let $M^{\prime}$ be a model of $T$ such that $C\subset M^{\prime}$ and $tp(\overline{a}\overline{b}/M^{\prime})$ does not fork over $C$.
By lemma 2.4,

$\circ tp^{-}(\overline{a}/N^{\prime})$ does not fork over $N$ in the sense of $T^{-}$ ,. $tp^{-}(\overline{b}/N^{\prime})$ is a forking extension of $tp^{-}(\overline{a}/N)$ in the sense of $T^{-}$ ,. $\overline{a}$ and $\overline{b}$ are dependent over $N^{\prime}$ in the sense of $T^{-}$

Hence $tp^{-}(\overline{a}/N)$ is not regular in the sense of $T^{-}$ $\square $

LEMMA 4.5. Assume that $T$ is stable, has the $\emptyset$-reduction property over $P$ .
Let $a$ be a tuple from $P^{\ovalbox{\tt\small REJECT}}$ and $M_{0}\prec M_{1}$ .

(1) If $T$ is minimal over $P,$ $M_{0}$ and $M_{1}$ a-models, and $tp(\overline{a}/M_{1})$ orthogonal to
$M_{0}$ , then $tp^{-}(\overline{a}/N_{1})$ is orthogonal to $N_{0}$ in the sense of $T^{-}$

(2) If $tp^{-}(\overline{a}/N_{1})$ is orthogonal to $N_{0}$ in the sense of $T^{-}$ , then $tp(\overline{a}/M_{1})$ is
orthogonal to $M_{0}$ .

PROOF. (1) If $tp^{-}(\overline{a}/N_{1})$ is non-orthogonal to $N_{0}$ in the sense of $T^{-}$ , we
can choose a tuple $\overline{b}\in P^{\ovalbox{\tt\small REJECT}}$ such that:. $tp^{-}(\overline{b}/N_{1})$ does not fork over $N_{0}$ in the sense of $T^{-}$ ,. $\overline{a}$ and $\overline{b}$ are dependent over $N_{1}$ in the sense of $T^{-}$

By lemma 4.3 and corollary 3.2(1)(2), $M_{1}$ is a-prime over $M_{0}N_{1}$ . Hence, by
lemma 2.4(3),. $tp(\overline{b}/M_{1})$ does not fork over $M_{0}$ .. $\overline{a}$ and $\overline{b}$ are dependent over $M_{1}$ .
This shows that $tp(\overline{a}/M_{1})$ is non-orthogonal to $M_{0}$ .

(2) We use the following fact.

FACT 4.6 ([Sh, V.3.4]). Suppose that $A\subset B$ and $p\in S(B)$ is a stationary
type. Let $f$ be an elementary mapping whose domain is $B$ such that $f|A$ is the
identity, $stp(B/A)\equiv stp(f(B)/A)$ , and $stp(f(B)/B)$ does not fork over A. Then $p$

is orthogonal to A lff $p$ is orthogonal to $f(p)$ .

Let $f$ be an elementary mapping whose domain is $M_{1}$ such that $f|M_{0}$ is the
identity, $stp(M_{1}/M_{0})\equiv stp(f(M_{1})/M_{0})$ , and $stp(f(M_{1})/M_{1})$ does not fork over
$M_{0}$ in the sense of $T$. Then, by lemma 2.4, $f|N_{1}$ is an elementary mapping
whose domain is $N_{1},$ $f|N_{0}$ the identity, $stp^{-}(N_{1}/N_{0})\equiv stp^{-}(f(N_{1})/N_{0})$ , and
$stp^{-}(f(N_{1})/N_{1})$ does not fork over $N_{0}$ in the sense of $T^{-}$ By fact 4.6, if
$tp(\overline{a}/M_{1})$ is non-orthogonal to $M_{0}$ , then $tp(\overline{a}/M_{1})$ is non-orthogonal to



146 Kentaro WAKAI

$tp(f(\overline{a})/f(M_{1}))$ . We may assume that $tp(\overline{a}/M_{2})$ and $tp(f(\overline{a})/M_{2})$ do not fork
over $M_{1}$ and $f(M_{1})$ respectively, $\overline{a}$ and $f(\overline{a})$ are dependent over $M_{2}$ , where $M_{2}$

is a model containing $M_{1}$ and $f(M_{1})$ . By lemma 2.4, $tp^{-}(\overline{a}/N_{2})$ and
$tp^{-}(f(\overline{a})/N_{2})$ do not fork over $N_{1}$ and $f(N_{1})$ respectively, $\overline{a}$ and $f(\overline{a})$ are
dependent over $N_{2}$ in the sense of $T^{-}$ . Hence $tp^{-}(\overline{a}/N_{1})$ is non-orthogonal to
$tp^{-}(f(\overline{a})/f(N_{1}))$ in the sense of $T^{-}$ . By fact 4.6, $tp^{-}(\overline{a}/N_{1})$ is non-orthogonal to
$N_{0}$ in the sense of $T^{-}$ $\square $

The proof of theorem 4.1 will be completed by following two lemmas.

LEMMA 4.7. Let $T$ be superstable, has the $\emptyset$-reduction property over $P$ and
is minimal over P. If $T$ has the $DOP$ then $T^{-}$ has the $DOP$ .

PROOF. Since $T$ has the DOP, there are a-models $M_{i}(i=0,1,2,3)$ and
a regular type $p=tp(\overline{a}/M_{3})$ witnessing the conditions for the DOP. By the
minimality of $T$ over $P$, we can choose an element $b\in P^{M_{3}[a\neg}-N_{3}$ such that
$tp^{-}(b/N_{3})$ is regular in the sense of $T^{-}$ where $M_{3}[\overline{a}]$ denotes an a-prime model
over $M_{3}\overline{a}$ . We show that $N_{i}(i=0,1,2,3)$ and $tp(\overline{b}/N_{3})$ witness the DOP of $T^{-}$

By lemma 2.4(3), $N_{1}$ and $N_{2}$ are independent over $N_{0}$ . $N_{3}$ is a-prime over $N_{1}N_{2}$ :
Let $N_{4}$ be an a-model containing $N_{1}$ and $N_{2}$ in the sense of $T^{-}$ . Let $M_{4}$ be an
a-prime model over $N_{4}$ in the sense of $T$. By lemma 3.1, $P^{M_{4}}=N_{4}$ . By lemma
3.2(2), we can embed $M_{0}$ into $M_{4}$ over $N_{0}$ . By lemma 2.4, this embedding does
not change the type of $N_{1}N_{2}M_{0}$ . Hence we can assume that $M_{0}\prec M_{4}$ . Let
$M_{1}^{\prime}\prec M_{1}$ be an a-prime model over $M_{0}N_{1}$ , then $P^{M_{1}^{\prime}}=N_{1}$ . By the minimality of
$T$ over $P,$ $M_{1}=M_{1}^{\prime}$ . Hence $M_{1}$ is an a-prime model over $M_{0}N_{1}$ . Similarly, $M_{2}$

is an $a- p\dot{n}me$ model over $M_{0}N_{2}$ . Hence we can embed $M_{1}$ and $M_{2}$ into $M_{4}$ over
$M_{0}N_{1}$ and $M_{0}N_{2}$ respectively. By lemma 2.4, this embedding does not change
the type of $M_{1}M_{2}$ . Hence we may assume that $M_{1}M_{2}\subset M_{4}$ and can embed $M_{3}$

in $M_{4}$ over $M_{1}M_{2}$ . Then $N_{3}$ is embedded in $N_{4}$ over $N_{1}N_{2}$ .
$tp^{-}(b/N_{3})$ is orthogonal to $N_{1}$ and $N_{2}$ in the sense of $T^{-}:$ Since $\iota p(\overline{a}/M_{3})$

and $tp(b/M_{3})$ are dependent, $tp(b/M_{3})$ is orthogonal to $M_{1}$ and $M_{2}$ . By lemma
4.5, $tp^{-}(b/N_{3})$ is orthogonal to $N_{1}$ and $N_{2}$ in the sense of $T^{-}$

Hence $T^{-}$ has the DOP. $\square $

LEMMA 4.8. Let $T$ be superstable, has the $\emptyset$-reduction property over P. If
$T^{-}$ has the $DOP$ then $T$ has the $DOP$ .
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PROOF. Since $T^{-}$ has the DOP, there are a-models $N_{i}(i=0,1,2,3)$ and a
regular type $p=tp^{-}(\overline{a}/N_{3})$ witnessing the conditions for the DOP.

Let $M_{0}$ be an a-prime model over $N_{0}$ in the sense of $T$. Let $M_{1}$ and $M_{2}$ be
a-prime models over $M_{0}N_{1}$ and $M_{0}N_{2}$ respectively. By lemma 2.4(3), $M_{1}$ and
$M_{2}$ are independent over $M_{0}$ . By lemma 4.3, $P^{M_{i}}=N_{i}(i=0,1,2)$ . Let $M_{4}$ be an
a-prime model over $M_{1}M_{2}$ . We may assume that $N_{3}\prec N_{4}$ since $N_{3}$ is a-prime
over $N_{1}N_{2}$ . Let $tp^{-}(\overline{b}/N_{4})$ be a non-forking extension of $p$ in the sense of $T^{-}$ .
Then $tp^{-}(\overline{b}/M_{4})$ is orthogonal to $N_{1}$ and $N_{2}$ in the sense of $T^{-}$ . By lemma 4.5,
$q=tp(\overline{b}/N_{4})$ is orthogonal to $M_{1}$ and $M_{2}$ . Hence $M_{i}(i=0,1,2,4)$ and $q$ witness
the conditions for the DOP. $\square $

By lemmas 4.7 and 4.8, we completed the proof of theorem 4.1.
In lemma 4.7, we assumed the $\emptyset$-reduction property and the minimality.

In lemma 4.8, we assumed the $\emptyset$-reduction property. The following example
shows that we can not weaken these assumptions.

EXAMPLE 4.9. (1) The following example shows that the minimality con-
dition is necessary for lemma 4.7. Let $E_{1}(xy)$ and $E_{2}(xy)$ be crosscutting
equivalence relations where the number of $E_{i}$-classes is infinite $(i=1,2)$ and each
$E_{1^{-}}E_{2}$-class is infinite. Let $L=\{P, E_{1}, E_{2}\}$ where $P$ is contained in an $E_{1}- E_{2}$-class.
Let $L^{-}=L-\{P\}$ . Since the structure of $N$ is only equality, $T$ has the $\emptyset-$

reduction property and $T^{-}$ does not have the $DOP$ . Since each $E_{1^{-}}E_{2}$-class may
have various infinite cardinality, $T$ has the $DOP$ and is not minimal over $P$ .

(2) The following example shows that the $\emptyset$-reduction property is necessary

for lemma 4.7. Let $E_{1}(xy)$ and $E_{2}(xy)$ be crosscutting equivalence relations where
the number of $E_{i}$-classes is infinite $(i=1,2)$ and each $E_{1^{-}}E_{2}$-class is infinite. Let
$L=\{P, E_{1}, E_{2}\}$ where $P\equiv’\iota_{X}=x^{\prime}’$ . Let $ L^{-}=\emptyset$ . Then $T$ is minimal over $P$

since $P^{M}=M$ . But $T$ does not have the $\emptyset$-reduction property over $P$ and $T^{-}$

does not have the $DOP$ since the structure of $N$ is only equality. $T$ has the $DOP$

as in (1).
(3) The following example shows that the $\emptyset$-reduction property is necessary

for lemma 4.8. Let $E_{1}(xy),$ $E_{2}(xy)$ and $E_{3}(xy)$ be crosscutting equivalence
relations where the number of $E_{i}$-classes is infinite $(i=1,2,3)$ , each $E_{1}- E_{2}$-class is

infinite and each $E_{1}- E_{2^{-}}E_{3}$ -class is a singleton. Let $L=\{P, E_{1}, E_{2},E_{3}\}$ where $ P\equiv$

’
$x=x^{\prime\prime}$ . let $L^{-}=\{E_{1},E_{2}\}$ . Then $T$ does not have the $DOP$ and the $\emptyset$-reduction

property over $P$ since the structure of $M$ is restricted by $E_{3}$ . $T$ is minimal over $P$

since $P^{M}=M$ . $T^{-}$ has the $DOP$ as in (1).
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5. Deepness

In this section, we show:

THEOREM 5.1. If $T$ is superstable, has the $\emptyset$-reduction property over $P$ and
is minimal over $P$, then $T$ is deep iff $T^{-}$ is deep. The minimality condition is not
necessary for if part.

The following definitions are from [Sh].

DEFINITION 5.2 ([Sh, definition X.1.2]). For $A\subset B\subset C$ we say $B<AC$ if
for every $\overline{c}\in C,$ $tp(\overline{c}/B)$ is orthogonal to $A$ .

DEFINITION 5.3 ([Sh, definition X.4.1]). Let $K=\{(M, M^{\prime},\overline{a}):tp(\overline{a}/M)$ is
regular, $M^{\prime}$ is a-prime over Ma, and $M$ is an a-model}.

For every member of $K$ we define its depth, an ordinal (zero or successor but
not limit) or infinity $\infty$ , by:

(1) $Dp(M, M^{\prime},\overline{a})\geq 0$ iff $(M, M^{\prime},\overline{a})\in K$ ,
(2) $Dp(M, M^{\prime},\overline{a})\geq\alpha+1$ ( $\alpha$ zero or successor) $\iota ff$ for some $M^{\prime\prime}$, $\overline{a}^{\prime}.\cdot$

$(M^{\prime}, M^{J/},\overline{a}^{\prime})\in K,$ $M^{\prime}<MM^{\prime\prime}$ and $ Dp(M^{\prime}, M^{\prime\prime},\overline{a}^{\prime})\geq\alpha$ ,
(3) $Dp(M, M^{\prime},\overline{a})\geq\delta+1$ ( $\delta$ limit) iff $ Dp(M, M^{\prime},\overline{a})\geq\beta$ for $\beta<\delta$ ,
(4) $ Dp(M, M^{\prime},\overline{a})=\infty$ iff for every ordinal $\beta$ $ Dp(M, M^{\prime},\overline{a})\geq\beta$,

$ Dp(M, M^{\prime},\overline{a})=\alpha$ iff $ Dp(M, M^{\prime},\overline{a})\geq\alpha$ but not $Dp(M, M^{\prime},\overline{a})\geq\alpha+1$ .

DEFINITION 5.4 ([Sh, definition X.4.2]). (1) The depth of the theory $Dp(T)$

is $\sup\{Dp(M, M^{\prime},\overline{a}):(M, M^{\prime},\overline{a})\in K\}$ when this is finite and $\sup\{Dp(M, M^{\prime},\overline{a})$ :
$(M, M^{\prime},\overline{a})\in K\}+1$ when this is infinite.

(2) We say the theory $T$ is deep $lf$ its depth is $\infty$ ; otherwise it is shallow.

The proof of theorem 5.1 will be completed by following two lemmas.

LEMMA 5.5. Suppose that $T$ is superstable, has the $\emptyset$-reduction property
over $P$ and is minimal over P. If $ Dp(M, M^{\prime},\overline{a})\geq\alpha$, then there is an element
$b\in N^{\prime}$ such that $(N, N^{\prime}, b)\in K$ and $ Dp(N, N^{\prime}, b)\geq\alpha$ .

PROOF. We prove the lemma by the induction on $\alpha$ .
$(\alpha=0)$ If $Dp(M, M^{\prime},\overline{a})\geq 0$ then
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. $tp(\overline{a}/M)$ is regular,. $M^{\prime}$ is a-prime over $M\overline{a}$,. $M$ is a-model.
$N$ and $N^{\prime}$ are a-models of $T^{-}$ . By the minimality of $T$ over $P$ , we can choose an
element $b\in N^{\prime}-N$ such that $tp^{-}(b/N)$ is regular in the sense of $T^{-}$ . $tp(b/M)$ is
also regular by lemma 4.4. Hence $M^{\prime}$ is a-prime over $Mb$ . Hence $N^{\prime}$ is a-prime
over $Nb$ in the sense of $T^{-}:$ Assume that $N_{0}$ is an a-model containing $N$ and $b$ .
Let $M_{0}$ be an a-prime model over $MN_{0}$ . By lemma 4.3, $P^{M_{0}}=N_{0}$ . Since $M^{\prime}$

is a-prime over $Mb$ , we can embed $M^{\prime}$ into $M_{0}$ over $Mb$ . Hence $N^{\prime}$ is
embedded in $N_{0}$ over $Nb$ .

$(\alpha=\beta+1)$ If $Dp(M, M^{\prime},\overline{a})\geq\beta+1$ , there are a model $M^{\prime\prime}$ and a tuple
$\overline{a}^{\prime}\in \mathscr{M}$ such that. $Dp(M^{\prime}, M^{\prime\prime},\overline{a}^{\prime})\in K$,. $M^{\prime}<MM^{\prime\prime}$ ,. $ Dp(M^{\prime}, M^{\prime\prime},\overline{a}^{\prime})\geq\beta$ .
As in the case $\alpha=0$ , there is an element $b\in N^{\prime}$ such that $(N,N^{\prime},b)\in K$ in the
sense of $T^{-}$ . By the induction hypothesis, there is an element $b^{\prime}\in M^{\prime\prime}$ such that
$(N^{\prime},N^{\prime\prime}, b^{\prime})\in K$ and $ Dp(N,N^{\prime\prime}, b^{\prime})\geq\beta$ in the sense of $T^{-}$ . Hence it is sufficient to
show $N^{\prime}<NN^{\prime\prime}$ in the sense of $T^{-}$ If not, there are tuples $\overline{c}\in N^{\prime\prime}$ such that
$tp^{-}(\overline{c}/N^{\prime})$ is non-orthogonal to $N$ in the sense of $T^{-}$ . By lemma 4.5, $tp(\overline{c}/M^{\prime})$ is
non-orthogonal to $M$. This is a contradiction since $M^{\prime}<MM^{\prime\prime}$ .

( $\alpha=\delta+1$ where $\delta$ is limit or $\alpha=\infty$ ) Clear. $\square $

LEMMA 5.6. Suppose that $T$ is superstable, has the $\emptyset$-reduction property
over P. If $ Dp(N,N^{\prime},\overline{a})\geq\alpha$ in the sense of $T^{-}$ , then there are a-models $M$ and $M^{\prime}$

of $T$ such that $P^{M}=N,$ $P^{M^{\prime}}=N^{\prime}$ and $ Dp(M, M^{\prime},\overline{a})\geq\alpha$ .

PROOF. We prove the lemma by the induction on $\alpha$ . Let $M$ be an a-prime
model over $N$, and $M^{\prime}$ an a-prime model over $MN^{\prime}$ . By lemma 3.1 and lemma
4.3, $P^{M}=N$ and $P^{M^{\prime}}=N^{\prime}$ .

$(\alpha=0)$ If $Dp(N, N^{\prime},\overline{a})\geq 0$ in the sense of $T^{-}$ , then:. $tp^{-}(\overline{a}/N)$ is regular in the sense of $T^{-}$ ,. $N^{\prime}$ is a-prime over $N\overline{a}$ in the sense of $T^{-}$ ,. $N$ is an a-model in the sense of $T^{-}$

$tp(\overline{a}/M)$ is regular by lemma 4.4. Since $M^{\prime}$ is a-prime over $MN^{\prime}$ , it is a-prime
over $M\overline{a}$ : Assume that $M_{0}$ is an a-model containing $M$ and $a$ . We can embed $N^{\prime}$

into $N_{0}$ over $Na$ . By lemma 2.4(4), we know that this embedding does not change
the type of $MN^{\prime}$ . Hence we can embed $M^{\prime}$ into $M_{0}$ over $MN^{\prime}$ .
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$(\alpha=\beta+1)$ If $Dp(N,N^{\prime},\overline{a})\geq\beta+1$ , there are a model $N^{\prime\prime}$ and a tuple
$\overline{a}^{\prime}\in P^{}$ such that:. $(N^{\prime}, N^{\prime\prime},d)\in K$ in the sense of $T^{-}$ ,. $N^{\prime}<NN^{\prime\prime}$ in the sense of $T^{-}$ ,. $ Dp(N^{\prime},N^{\prime\prime}, d)\geq\beta$ in the sense of $T^{-}$

Let $M^{\prime\prime}$ be an a-prime model over $M^{\prime}N^{\prime\prime}$ . By lemma 4.3, $P^{M^{\prime\prime}}=N^{\prime\prime}$ . As in the
case $\alpha=0$ , we can show that $(M^{\prime}, M^{\prime\prime},\overline{a}^{\prime})\in K$ . $ Dp(M^{\prime}, M^{\prime\prime}, d)\geq\beta$ by the
induction hypothesis. We show $M^{\prime}<MM^{\prime\prime}$ . If not, there is a type over $M$ which
is not orthogonal to $tp(M^{\prime\prime}/M^{\prime})$ . Let $tp(\overline{c}/M^{\prime})$ be a non-forking extension of the
type such that $\overline{c}$ and $M^{\prime\prime}$ are dependent over $M^{\prime}$ . Since $M^{\prime\prime}$ is a-prime over
$M^{\prime}N^{\prime\prime},\overline{c}$ and $N^{\prime\prime}$ are dependent over $M^{\prime}$ . Henoe $tp(N^{\prime\prime}/M^{\prime})$ is non-orthogonal to
$M$. By lemma 4.5, $tp^{-}(N^{\prime\prime}/N‘)$ is non-orthogonal to $N$ in the sense of $T^{-}$ . This is
a contradiction since $N^{\prime}<NN^{\prime\prime}$ .

( $\alpha=\delta+1$ where $\delta$ is limit or $\alpha=\infty$ ) Clear.

By lemma 5.5 and lemma 5.6, $Dp(T)=Dp(T^{-})$ . Hence the proof of
theorem 5.1 was completed.

6. Countable stable theories

In lemma 3.1, we showed that for any a-model $N$ of $T^{-}$ , there is an a-
model $M$ of $T$ such that $P^{M}=N$ . In this section, we sow that if $T$ is countable
and stable then for any model $N$ of $T^{-}$ there is a model $M$ of $T$ with $P^{M}=N$ .

DEFINITION 6.1. Let $A\subset B$ . We say that $B$ is locally atomic over A $lf$for
any $\overline{c}\in B$ and a formula $\varphi(\overline{x}\overline{y})$ , there is a formula $\psi(\overline{x})\in p$ such that $\psi(\overline{x})$ isolates

$p|_{\varphi}$ where $p=tp(\overline{c}/A)$ and $p|_{\varphi}=\{\varphi(\overline{x}\overline{b}):\varphi(\overline{x}\overline{b})\in p\}$ .

The following fact is essential for theorem 6.3 below.

FACT 6.2 ([Sh, IV.3.1]). Let $T$ be countable and stable. For any set $A$ , there
is a locally atomic model over $A$ .

THEOREM 6.3. Suppose that $T$ is countable, stable and has the $\emptyset$-reduction
property. Let $N$ be a model of $T^{-}$ and $M^{\prime}$ a locally atomic model over N. Then
$N^{\prime}=N$ .

PROOF. If $N^{\prime}\neq N$, then we can choose $a\in N^{\prime}-N$ . Since $M^{\prime}$ is locally
atomic over $N$, there is a formula $\varphi(x\overline{b})\in p=tp(a/N)$ such that $\varphi(x\overline{b})$ isolates
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$p|_{x\neq y}$ in the sense of $T$. By the $\emptyset$-reduction property, there is an $L^{-}$ -formula
$\psi(x\overline{y})$ such that $(\forall x\overline{y}\in P)[\varphi(x\overline{y})\leftrightarrow\psi^{P}(x\overline{y})]$ holds. Since $M^{\prime}\models\varphi(a\overline{b})$ , we can see
that $N^{\prime}\models(\exists x)\psi(x\overline{b})$ . Hence $N\models(\exists x)\psi(x\overline{b})$ . Let $c\in N$ be a witness of $\psi(x\overline{b})$ .
Then $c$ realizes $p|_{x\neq y}$ by the choice of $\varphi$ and $\psi$ . This is a contradiction since
$x\neq c\in p|_{x\neq y}$ . $\square $

The following example shows that the countable condition is necessary for
theorem 6.3.

EXAMPLE 6.4. There is a stable uncountable theory $T$ and a model $N$ of $T^{-}$

such that no model $M$ of $T$ satisfies $P^{M}=N$ .
Let $L=\{P, c_{i}(i<\omega),F_{\eta}(\eta\in 2^{\omega}), R_{\eta}(\eta\in 2<\omega)\},L^{-}=L-\{P\}$ and $M=$

$\langle M;N, c_{i}^{M}(i<\omega),F_{\eta}^{M}(\eta\in 2^{\omega}), R_{\eta}^{M}(\eta\in 2^{<\omega})\rangle$ where
(i) $N=\{c_{i}^{M} : i<\omega\}\cup\{a\}$ ,
(ii) $M=N\cup\{b_{\eta} : \eta\in 2^{\omega}\}$ ,
(iii) $F_{\eta}^{M}$ is a function from $M-N$ to $N$,
(iv) $F_{\eta}^{M}(b_{v})=c_{i}^{M}\Leftrightarrow\eta|i=v|i$ and $\eta(i)\neq v(i)$ ,
(v) $F_{\eta}^{M}(b_{v})=a\Leftrightarrow\eta=v$ ,
(vi) $ R_{\eta}^{M}(b_{v})\Leftrightarrow\eta$ is an initial segment of $v$ .
Then $T$ is stable and has the $\emptyset$-reduction properly over $P$ since any definable

set in $N$ is definable by $c_{i}s$ . Let $N^{\prime}=\{c_{i}^{M} : i<\omega\}$ , then $N^{\prime}$ is a model of $T^{-}$ . But
$\iota here$ is no modef $M^{\prime}$ such thal $P^{M^{\prime}}=N^{\prime}$ because $tp(a)$ does not have the
realization in $N^{\prime}$ .

The following example shows that the stability is necessary for theorem 6.3.

EXAMPLE 6.5. There is a countable unstable theory $T$ and a model $N$ of $T^{-}$

such that no model $M$ of $T$ satisfies $P^{M}=N$ .
Let $L=\{P, R, U_{i}(i=1,2,3)\}$ , $L^{-}=L-P$ and $M=\langle M;N,$ $R^{M}$ ,

$ U_{i}^{M}(i=1,2,3)\rangle$ where
(i) $M=U_{1}^{M}\cup U_{2}^{M}\cup U_{3}^{M}$ where $U_{3}^{M}$ is the set of all functions from $U_{1}^{M}$ to

$U_{2}^{M}$ ,
(ii) $N=U_{1}^{M}\cup U_{2}^{M}$ ,
(iii) $R^{M}(x,y,f)\Leftrightarrow x\in U_{1}^{M}\wedge y\in U_{2}^{M}\wedge f\in U_{3}^{M}\wedge f(x)=y$ ,
(iv) $U_{1}^{M}$ and $U_{2}^{M}$ are countable.
Then $T$ is a countable theory with the $\emptyset$-reduction property over $P$ since the

structure of $M$ depends on $U_{3}^{M}$ . Let $N^{\prime}$ be a model of $T^{-}$ such that $|U_{1}^{N^{\prime}}|\neq|U_{2}^{N^{\prime}}|$ .
But there is no model $M^{\prime}$ such that $P^{M^{\prime}}=N^{\prime}$ because $|U_{1}^{M}|=|U_{2}^{M}|$ holds in every
model $M$ of $T$.
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