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1. Introduction

Let T be a theory with a relational language L including a unary predicate
P. Let M be a model of T and N the L™-structure P¥ = {ae |M|: M | P(a)}
where L~ < L — {P}. The following question seems to be natural:

QuEesTION. Which properties of T- = Th(N) are also possessed by T
(under certain conditions)?

There are a few papers treating the question. In Hodges and Pillay
have shown that if 7T is minimal over P (definition 2.3) and every automorphism
of N can be extended to an automorphism of M (they call M is a symmetric
extension of N), then N is Nyp-categorical iff M is Ny-categorical. In Kikyo
and Tsuboi defined the @¥-reduction property, the reduction property, the strong
reduction property, and the uniform reduction property. These reduction
properties are model theoretical rephrasing of symmetry. They have shown
that if 7 is minimal over P and has the uniform reduction property (i.e.,
for each L-formula ¢(xy), there is an L~ -formula y(XzZ) such that
(V$)(3z € P)(VX € P)[p(%7) « y¥F(%2)] holds), then T~ is A-stable iff T is A-stable
and 7~ is unidimensional iff 7 is unidimensional.

In this paper, we mainly deal with the @F¥-reduction property (definition 2.1).
The ¥-reduction property together with the minimality condition ensures that T
is not far from T~ if T is stable. But the J-reduction property is not so
strong for an unstable theory. In fact there is a theory T such that 7 has the
J-reduction property over P, is minimal over P, and the number of models of
T is more than that of 7T~.

ExaMPLE. Let 4 be a model whose theory has uncountably many
countable models. Let
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(i) L= {P,R}Uthe language of 4,

(i) L~=L-{P},

(i) M = (M;PM RM the structure of 4),
(iv M=AUBUC,

(v PM=BUC,

(vi) C is the set of all bijections from A4 to B,

(vii) RM(x,y,f) iff xe Arnye BAfeCnh f(x)=y.

Since (Vxyz)—-R(x,y,z) holds in N,T = Th(M) has the J-reduction
property over P and T~ = Th(N) has a unique countable model. T is minimal
over P because each element of C is a bijection from 4 to B. But T has
uncountably many countable models since Th(A4) does.

When T is superstable, we can easily prove that if 7 has the J-reduction
property over P and is minimal over P, then the number of a-models of T is
equal to that of T~ (corollary 3.2). Furthermore, we prove the following:

THEOREM (4.1, 5.1). Let T be a superstable theory with the f-reduction
property over P. If T is minimal over P, then

(1) T has the DOP (dimensional order property) iff 7- has the DOP.

(2) T is deep iff T~ is deep.

For a stable theory, the @J-reduction property implies a reduction property
for formulas with parameters (in [KT], it was called the reduction property).
The key point of the proofs of the above theorems is that under this reduction
property, a type of an element in N is determined by its “L~-reduction’ of the
type (see lemma 2.4).

2. Preliminaries

Let T be a theory with a relational language L including a unary predicate
P. Let M be a model of T and N the L~ -structure PM = {ae |M|: M | P(a)}
where L~ < L — {P}. As usual, we work in the big model .# of T. We may
assume that a model of T~ = Th(N) is an L™ -elementary substructure of P¥.
The character M will denote an elementary submodel of .# in T and the
character N will denote the set PM which is a model of T-. M and N may have
subscript. For notational convenience, we usually assume that if M and N have
the same subscript then N is the restriction of M to P. For example, N; for PM:,

We write @,b,... for finite tuples of elements of .# and %,7,... for finite
tuples of variables. When ¢ is an L~ -formula, we write ¢ for the restriction of
@, that is, the formula obtained from ¢ by restricting all the variables to P. For
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example, if ¢(x) = (Vy)(3z)y(xyz) and ¢ is open, then ¢f(x) = (Vy)(P(y) —
(Az2)(Y(xyz) A P(x) A P(z))). We write (VX e P)p(Xy) to express the formula
(Vx1+ - - Vxu)[P(X1) A -+ - A P(x,) — @(Xy)] where X = xj - - X,.

DEerFINITION 2.1 ([KT, definition 1]). (1) We say that M has the -reduction
property over N if every L()-definable relation on N is L~ ()-definable in N,
ie., for any L(Q&)-formula ¢(x), there is an L~ (&)-formula y(x) such that
Mk (VZ € P)p(x) — v7 (D)

(2) We say that M has the reduction property over N if every L(M)-definable
relation on N is L™ (N)-definable in N.

If some model of T has the -reduction property over N, then every model of
T has the property. So we say that T has the J-reduction property over P if some
model of T has this property.

The following lemma was used in without proof. For the sake of
completeness, we prove it here.

LemMma 2.2 ([KT, pp. 902]). If T is stable and has the J-reduction property
over P, then every model M of T has the reduction property over N.

PrROOF. Let M be a model of 7, ¢(Xy) an L-formula, and ae M. We
want to find an L -formula (%) and a tuple beN such that
M |& (VX € P)[p(xa) « YF(Xb)]. For this, it is sufficient to show that
M E [p(¢a) — y* (b)) for every ¢ e N. By the stability, there are an L-formula
¢'(%2) and a tuple b€ N such that M [ ¢(éa) « ¢'(¢h) for every ¢e N. By
the (XF-reduction property, there is an L~ -formula (XZ) such that
M = (Vxze P)[¢'(%2) < yF(%2)]. O

DEerFINITION 2.3 ([KT, definition 1]). We say that T is minimal over P if
every model M of T is a minimal model over N.

We write tp~(a/B) for the L™-type of ae N over B< N.

LEMMA 2.4. Let a and b be tuples from P*.

(1) tp(a/M) does not fork over N.

(2) If M has the reduction property over N, then tp(a/M) = tp(b/M) iff
tp~(a/N) = p~(b/N).
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(3) If M has the reduction property over N, then tp(a/ Mb) does not fork over
M iff tp~(a@/Nb) does not fork over N in the sense of T~.

(4) If T has the J-reduction property over P, then tp(a/N) is stationary in
the sense of T.

(For only if part of (2) and (3), we don’t need the reduction property.)

Proor. (1) Let ¢(Xx) be a formula in tp(a/M). We show that ¢(X) has a
realization in N. Since M | (3x)(¢p(X) AX€ P), we can find a tuple be N
realizing ¢(x).

(2) (=) Clear.

(«=) Let p(x) be a formula in tp(a/M). By the reduction property, there
is an L~ (N) formula (%) such that M | (Vx e P)[p(X) < y*(X)]. Hence
Y(x)etp~(a/N). And (%) etp~(b/N) since tp~(@/N)=tp~(b/N). Hence
o(%) € tp(b/M). So 1p(a/M) = tp(b/M).

(3) (=) We show that tp~(a@/Nb) is an heir over N in the sense of 7T~. If
o(xb) € tp~(a/Nb) and ¢(xy) is an L~(N)-formula, then ¢F(%b) € tp(a/Mb).
Since ¢f(xy) is an L(M)-formula, we can find a tuple b €N such that
o (xb') € tp(a/ Mb). Hence o(xb’) € tp~(a/Nb).

(«<=) We show that tp(a/Mb) is an heir over M. If ¢(xb) e tp(a/Mb)
and ¢(xy) is an L(M)-formula, then, by the reduction property, there is
an L~ (N)-formula (%) such that M | (Vxy e P)[y7(%5) — ¢(%7)]. Since
W (xb) € tp~(@/Nb) and y(%y) is an L~ (N)-formula, we can find a tuple 5’ e N
such that y(xb) e tp~(a/Nb). Hence p(xb’) € tp(a/ Mb).

(4) If tp(a/N) is not stationary in the sense of 7, then we can find tuples
b,ée P* and a model M' > N of T such that tp(b/M’) and tp(¢c/M’) are
different non-forking extensions of the type tp(@/M). By (2) and (3), tp~(b/N")
and 7p~(¢/N’) are different non-forking extensions of the type tp~(a/N) in
the sense of 7~. This contradicts the stationarity of #p~(a@/N) in the sense
of T~. O

Note. We can see ,(T) > k,(T~) from (3).

3. a-models of T and T~

If M is an a-model of T, then N is an a-model of T~ because
k(T) = x,(T~). The following lemma shows that for any a-model N of T,
there is an a-model M such that PM = N.
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‘Lemma 3.1.  Assume that T is stable, has the (-reduction property over P,
and x,(T) = k,(T ™). Let N be an a-model of T~. If M' is an a-prime model over
N in the sense of T, then N' = N.

Proor. If N’ # N, we can choose an element ae N' — N. Since M’ is a-
prime over N, there is a subset 4 = N such that |4| < x,(T) and stp(a/A)
isolates tp(a/N) in the sense of T. Let {Ej(xa;b;):b;€ A,i < A} be an enu-
meration of stp(a/A) where each E;(xy;b;) is a finite equivalence relation over 4
in the sense of 7. By the J-reduction property, for each i < A, we can find an
L--formula E!(xy;Z) such that (Vxyz; € P)[E;(xy;Z;) < E!f(xy;Z)] holds in M.
E!(xy; b;) is a finite equivalence relation over 4 in the sense of T~ because so is
E;(xy;b;) in the sense of T. Hence {E!(xy;b;) : i < A} < stp~(a/A). If we choose
an element ce N as a realization of stp~(a/A4), c also realizes stp(a/A4), so ¢
realizes tp(a/N). Hence tp(a/N) = tp(c/N). But this is a contradiction since
a¢N. O

COROLLARY 3.2. Let T be stable, minimal over P, has the JS-reduction
property over P, and x,(T) = x,(T").

(1) For every a-model N of T, there is a unique a-model M of T such that
PM = N. Moreover, |M| = |N|.

(2) Every a-model M of T is a-prime over N = PM.

(3) The map which takes M to N = PM is a bijection between a-models of T
and a-models of T~ of the same cardinality.

When 7T is superstable, the number of a-models is classified by the
dimensional order property (definition 4.2) and the deepness (definition 5.4)
([Sh]). We consider these properties in following two sections.

4. Dimensional order property

In this section, we show:

THEOREM 4.1. If T is superstable, has the J-reduction property over P and
is minimal over P, then T has the DOP (dimensional order property) iff T~ has

the DOP. The minimality condition is not necessary for if part.

First, we recall the definition of the dimensional order property.
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DEFINITION 4.2 ([Sh, definition X.2.1]). let T be superstable. We say that T
has the dimensional order property (DOP) if there are a-models M;(i =0,1,2,3)
and a regular type p € S(M3) such that:

* My < M, M3,

e M, and M, are independent over M,,

e M; is a-prime over M\ M,,

® p is orthogonal to M, and M,.

To prove the theorem 4.1, we need the following three lemmas.

LEMMA 4.3. Assume that T is stable, has the (J-reduction property over P
and x,(T) = k,(T~). Let Ny, N1 be a-models, Ny < Ny, My a-prime over Ny, and
M, an a-prime model over MyN,. Then M, is a-prime over N and P> = Nj.

PrROOF. Let M; be an a-prime model over N;. By lemma 3.1, PMo = N,
and PM: = N;. We can find an elementary submodel M) < M; which is iso-
morphic to My over Ny since M, is a-prime over Ny. By lemma 2.4(1)(4),
tp(N1/Np) is stationary and tp(N1/M;) does not fork over Np. Hence
tp(M}/N1) = tp(My/N1). So we can embed M, into M; over N,. Hence M, is a-
prime over N; and PM: = N,. O

LeMMA 4.4. Assume that T is stable, has the J-reduction property over P
and k,(T) = x,(T~). Let a be a tuple from P*. Then tp(a/M) is regular in the
sense of T iff tp~(a/N) is regular in the sense of T~.

Proor. (=) If tp~(a/N) is not regular in the sense of 7™, then there is a
forking extension zp~(b/C) which is not orthogonal to tp~(a/N) in the sense of
T-. We may assume that

e tp~(a/C) does not fork over N in the sense of 7T,

e @ and b are dependent over C in the sense of T~.

Let N’ be an a-model of T~ such that C = N’ and tp~(a@b/N’) does not fork over
C. By lemma 3.1, there is an a-model M’ of T such that PM = N'. By lemma
2.4,

e tp(a/M’') does not fork over M,

e tp(b/M’) is a forking extension of tp(a/M),

e a and b are dependent over M.

Hence tp(a/M) is not regular.

(<=) If tp(a/ M) is not regular, there is a forking extension ¢p(b/C) which is

not orthogonal to tp(a/M). We may assume that:
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e tp(a/C) does not fork over M,

e d and b are dependent over C in the sense of 7.
Let M’ be a model of T such that C = M’ and tp(ab/M’) does not fork over C.
By lemma 2.4,

e tp~(a/N’) does not fork over N in the sense of T,

e tp~(b/N') is a forking extension of zp~(a/N) in the sense of T,

e @ and b are dependent over N’ in the sense of 7.
Hence tp~(a@/N) is not regular in the sense of T~. O

LemMMA 4.5. Assume that T is stable, has the J-reduction property over P.
Let a be a tuple from P* and My < M.

(1) If T is minimal over P, My and M, a-models, and tp(a/M,) orthogonal to
M, then tp~(a/Ny) is orthogonal to Ny in the sense of T~.

(2) If tp~(a@/Ny) is orthogonal to Ny in the sense of T, then tp(a/M,) is
orthogonal to M.

Proor. (1) If tp~(a/N;) is non-orthogonal to Ny in the sense of T'~, we
can choose a tuple b € P# such that:

e tp~(b/N;) does not fork over Ny in the sense of T,

e @ and b are dependent over N; in the sense of T~.
By lemma 4.3 and corollary 3.2(1)(2), M; is a-prime over MyN;. Hence, by
lemma 2.4(3),

e tp(b/M;) does not fork over Mj.

e g and b are dependent over M;.
This shows that #p(@/M,;) is non-orthogonal to M.

(2) We use the following fact.

FacT 4.6 ([Sh, V.3.4]). Suppose that A < B and p € S(B) is a stationary
type. Let f be an elementary mapping whose domain is B such that f|A is the
identity, stp(B/A) = stp(f(B)/A), and stp(f(B)/B) does not fork over A. Then p
is orthogonal to A iff p is orthogonal to f(p).

Let f be an elementary mapping whose domain is M) such that f|Mj is the
identity, stp(M;/My) = stp(f(M1)/M,), and stp(f(My)/M,) does not fork over
M, in the sense of T. Then, by lemma 2.4, f|N; is an elementary mapping
whose domain is Nj, f|No the identity, stp~(N1/No) = stp~ (f(N1)/No), and
stp~(f(N1)/N;) does not fork over Ny in the sense of T~. By fact 4.6, if.
tp(a/M,) is non-orthogonal to M,, then tp(a/M;) is non-orthogonal to
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tp(f(@)/f(M;)). We may assume that tp(a/M,) and tp(f(a)/M;) do not fork
over M, and f(M;) respectively, a and f(a) are dependent over M;, where M,
is a model containing M, and f(M;). By lemma 2.4, tp~(a/N,) and
tp~(f(a)/N2) do not fork over N; and f(N;) respectively, a and f(a) are
dependent over N, in the sense of 7~. Hence tp~(a/N;) is non-orthogonal to
tp~ (f(@)/f(N1)) in the sense of T~. By fact 4.6, tp~(a@/N;) is non-orthogonal to
Ny in the sense of T. O

The proof of theorem 4.1 will be completed by following two lemmas.

LEMMA 4.7. Let T be superstable, has the J-reduction property over P and
is minimal over P. If T has the DOP then T~ has the DOP.

PrOOF. Since T has the DOP, there are g-models M;(i=0,1,2,3) and
a regular type p = tp(a/M3) witnessing the conditions for the DOP. By the
minimality of T over P, we can choose an element b e PM3[d — N; such that
tp~(b/N3) is regular in the sense of 7~ where M3[a] denotes an ag-prime model
over M;a. We show that N;(i =0,1,2,3) and tp(b/N3) witness the DOP of T~.
By lemma 2.4(3), N1 and N, are independent over Ny. N3 is a-prime over N1 N,:
Let N4 be an a-model containing N; and N, in the sense of T~. Let M, be an
a-prime model over Nj in the sense of 7. By lemma 3.1, PM« = N,. By lemma
3.2(2), we can embed M, into My over Ny. By lemma 2.4, this embedding does
not change the type of NiN,M,. Hence we can assume that My < M,. Let
M| < M, be an a-prime model over MyN, then PMi = Nj. By the minimality of
T over P, M; = M|. Hence M, is an a-prime model over MyN;. Similarly, M,
is an a-prime model over MyN,. Hence we can embed M; and M, into M, over
MyN; and MyN; respectively. By lemma 2.4, this embedding does not change
the type of M| M,. Hence we may assume that MM, < M, and can embed M;
in M4 over MiM,. Then N; is embedded in N; over N1 N,.

tp~(b/N3) is orthogonal to N; and N, in the sense of T~: Since tp(a/Ms)
and tp(b/M3) are dependent, tp(b/Ms3) is orthogonal to M; and M,. By lemma
4.5, tp~(b/N3) is orthogonal to Ny and N, in the sense of T~.

Hence T~ has the DOP. O

LeEMMA 4.8. Let T be superstable, has the J-reduction property over P. If
T~ has the DOP then T has the DOP.
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Proor. Since T~ has the DOP, there are a-models N;(i =0,1,2,3) and a
regular type p = tp~(a/N3) witnessing the conditions for the DOP.

Let My be an a-prime model over Nj in the sense of 7. Let M; and M, be
a-prime models over MyN; and MyN, respectively. By lemma 2.4(3), M; and
M, are independent over My. By lemma 4.3, PM = N;(i =0,1,2). Let M4 be an
a-prime model over M M,. We may assume that N3 < N4 since N3 is a-prime
over N1 N,. Let tp~(b/N,) be a non-forking extension of p in the sense of T~.
Then tp~(b/ M) is orthogonal to N; and N, in the sense of 7~. By lemma 4.5,
q = tp(b/Ny) is orthogonal to M, and M,. Hence M;(i =0,1,2,4) and g witness
the conditions for the DOP. O

By lemmas 4.7 and 4.8, we completed the proof of theorem 4.1.

In lemma 4.7, we assumed the F-reduction property and the minimality.
In lemma 4.8, we assumed the J-reduction property. The following example
shows that we can not weaken these assumptions.

ExaMmPLE 4.9. (1) The following example shows that the minimality con-
dition is necessary for lemma 4.7. Let Ei(xy) and E)(xy) be crosscutting
equivalence relations where the number of E;-classes is infinite (i = 1,2) and each
E\-E,-class is infinite. Let L = {P, E1, E;} where P is contained in an E,-E-class.
Let L= =L — {P}. Since the structure of N is only equality, T has the -
reduction property and T~ does not have the DOP. Since each E:-E>-class may
have various infinite cardinality, T has the DOP and is not minimal over P.

(2) The following example shows that the J-reduction property is necessary
for lemma 4.7. Let E\(xy) and E;(xy) be crosscutting equivalence relations where
the number of E;-classes is infinite (i = 1,2) and each E:-Ej-class is infinite. Let
L= {P,E|,E;} where P= “x=x". Let L~ = . Then T is minimal over P
since PM = M. But T does not have the -reduction property over P and T~
does not have the DOP since the structure of N is only equality. T has the DOP
as in (1).

(3) The following example shows that the J-reduction property is necessary
for lemma 4.8. Let E\(xy), E>(xy) and Es(xy) be crosscutting equivalence
relations where the number of E;-classes is infinite (i = 1,2,3), each E:-E)-class is
infinite and each E\-E,-Es-class is a singleton. Let L = {P,E;, E,, E3} where P=
“x=x".let L~ = {E1, Ey}. Then T does not have the DOP and the J-reduction
property over P since the structure of M is restricted by Es. T is minimal over P
since PM = M. T~ has the DOP as in (1).
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5. Deepness
In this section, we show:

THEOREM 5.1. If T is superstable, has the J-reduction property over P and
is minimal over P, then T is deep iff T~ is deep. The minimality condition is not
necessary for if part.

The following definitions are from [Sh].

DEeFINITION 5.2 ([Sh, definition X.1.2]). For Ac B= C we say B<,4 C if
for every ¢ e C, tp(¢/B) is orthogonal to A.

DErFINITION 5.3 ([Sh, definition X.4.1]). Let K = {(M,M',a) : tp(a/M) is
reqular, M' is a-prime over Ma, and M is an a-model}.

For every member of K we define its depth, an ordinal (zero or successor but
not limit) or infinity oo, by:

(1) Dp(M,M',a) =0 iff (M,M',a) ek,

(2) Dp(M,M',a) > a+1 (a zero or successor) iff for some M", a:
(M',M",d)e K, M' <)y M" and Dp(M' ,M",d) > a,

(3) Dp(M,M',;a) > 6+ 1 (6 limit) iff Dp(M,M',a) > B for B <9,

(4) Dp(M,M',a) =00 iff for every ordinal f Dp(M,M' a)=>p,
Dp(M,M',a) = o iff Dp(M,M',;a) > o but not Dp(M,M’,a) > a + 1.

DEFINITION 5.4 ([Sh, definition X.4.2]). (1) The depth of the theory Dp(T)
is sup{Dp(M,M',a) : (M, M',a) € K} when this is finite and sup{Dp(M, M, a) :
(M,M',a) e K} + 1 when this is infinite.

(2) We say the theory T is deep if its depth is oo; otherwise it is shallow.

The proof of theorem 5.1 will be completed by following two lemmas.
LEMMA 5.5. Suppose that T is superstable, has the J-reduction property
over P and is minimal over P. If Dp(M,M’',a) > a, then there is an element

be N' such that (N,N',b) € K and Dp(N,N',b) > a.

Proor. We prove the lemma by the induction on «.
(x=0) If Dp(M,M’,a) >0 then
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e tp(a/M) is regular,

e M’ is a-prime over Ma,

e M is a-model.
N and N’ are a-models of T~. By the minimality of T over P, we can choose an
element b € N’ — N such that #p~(b/N) is regular in the sense of T~. tp(b/M) is
also regular by lemma 4.4. Hence M’ is a-prime over Mb. Hence N’ is ag-prime
over Nb in the sense of T"~: Assume that Nj is an a-model containing N and b.
Let My be an g-prime model over MN,. By lemma 4.3, PMo = N,. Since M’
is a-prime over Mb, we can embed M’ into M, over Mb. Hence N’ is
embedded in Ny over Nb.

(a=B+1) If Dp(M,M',a) > B+ 1, there are a model M” and a tuple
a € M such that

o Dp(M',M",d@) e K,

o M <y M,

e Dp(M',M",d) = B.
As in the case a = 0, there is an element b € N’ such that (N,N’,b) € K in the
sense of 7~. By the induction hypothesis, there is an element ' € M” such that
(N',N",b") € K and Dp(N,N",b') = B in the sense of T~. Hence it is sufficient to
show N’ <y N” in the sense of T~. If not, there are tuples ¢ € N” such that
tp~(¢/N’) is non-orthogonal to N in the sense of 7~. By lemma 4.5, tp(¢c/M’) is
non-orthogonal to M. This is a contradiction since M’ <) M".

(¢ =03+1 where ¢ is limit or a = oo0) Clear. O

LemMMA 5.6. Suppose that T is superstable, has the (J-reduction property
over P. If Dp(N,N’,a) > o in the sense of T, then there are a-models M and M’
of T such that PM = N, PM = N' and Dp(M,M',a) > o.

Proor. We prove the lemma by the induction on a. Let M be an a-prime
model over N, and M’ an ag-prime model over MN’. By lemma 3.1 and lemma
43, PM =N and PM =N'.

(a0 =0) If Dp(N,N’,a) >0 in the sense of T, then:

e tp~(a/N) is regular in the sense of T,

e N’ is a-prime over Na in the sense of 7T,

e N is an a-model in the sense of 7T~.
tp(a/M) is regular by lemma 4.4. Since M’ is a-prime over MN’, it is a-prime
over Ma: Assume that M, is an a-model containing M and a. We can embed N’
into Ny over Na. By lemma 2.4(4), we know that this embedding does not change
the type of MN’. Hence we can embed M’ into M, over MN'.
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(a=p+1) If Dp(N,N',a)> B+ 1, there are a model N” and a tuple
@ € P# such that:

e (N',N",@) e K in the sense of T,

e N' <y N” in the sense of T,

e Dp(N',N",@) > B in the sense of T~.
Let M" be an a-prime model over M’N”. By lemma 4.3, P = N”. As in the
case a =0, we can show that (M',M" a@)eK. Dp(M',M",3) > B by the
induction hypothesis. We show M’ <j; M". If not, there is a type over M which
is not orthogonal to tp(M"”/M’). Let tp(¢/M’) be a non-forking extension of the
type such that ¢ and M” are dependent over M’. Since M” is a-prime over
M'N", ¢ and N” are dependent over M'. Hence tp(N"/M’) is non-orthogonal to
M. By lemma 4.5, tp~(N”/N’) is non-orthogonal to N in the sense of T~. This is
a contradiction since N’ <y N”.

(x=06+1 where 6 is limit or a = oo) Clear. O

By lemma 5.5 and lemma 5.6, Dp(T) = Dp(T~). Hence the proof of
theorem 5.1 was completed.

6. Countable stable theories

In lemma 3.1, we showed that for any a-model N of T, there is an a-
model M of T such that PM = N. In this section, we sow that if T is countable
and stable then for any model N of T~ there is a model M of T with PM = N.

DEFINITION 6.1. Let A = B. We say that B is locally atomic over A if for
any ¢ € B and a formula ¢(Xy), there is a formula y(X) € p such that Y(X) isolates
pl, where p= tp(¢/4) and pl, = {p(%5) : p(s5) € p}.

The following fact is essential for theorem 6.3 below.

Fact 6.2 ([Sh, IV.3.1]). Let T be countable and stable. For any set A, there
is a locally atomic model over A.

THEOREM 6.3. Suppose that T is countable, stable and has the J-reduction
property. Let N be a model of T~ and M’ a locally atomic model over N. Then
N =N.

Proor. If N’ # N, then we can choose ae N' — N. Since M’ is locally
atomic over N, there is a formula ¢(xb) € p = tp(a/N) such that g(xb) isolates
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Ply , in the sense of T. By the (F-reduction property, there is an L~ -formula
Y(xy) such that (Vxj € P)[p(xy) < y*(x7)] holds. Since M’ |= p(ab), we can see
that N’ |= (3x)y(xb). Hence N | (Ix)y(xb). Let ce N be a witness of y(xb).
Then c realizes p|,,, by the choice of ¢ and . This is a contradiction since
X # CEP|yyy O

The following example shows that the countable condition is necessary for
theorem 6.3.

EXAMPLE 6.4. There is a stable uncountable theory T and a model N of T~
such that no model M of T satisfies PM = N.

Let L= {P,c(i<w),F,(ne2®),R,ne2<?)},L-=L—{P} and M=
(M;N,cM(i < ), FM(ne€2”), RM(ne2<°)) where

i) N={M:i<w}U{a},

(i) M=NU{b,:ne2°},

(iii) FM is a function from M — N to N,

(iv) FM(b,) =cM < nli =i and n(i) # v(i),

(v) Ff,"(bv) =a<n=yv,

(vi) Ri,” (by) <> n is an initial segment of v.

Then T is stable and has the -reduction property over P since any definable
set in N is definable by c;s. Let N' = {cM : i < w}, then N' is a model of T~. But
there is no model M' such that PM = N' because tp(a) does not have the
realization in N'.

The following example shows that the stability is necessary for theorem 6.3.

EXAMPLE 6.5. There is a countable unstable theory T and a model N of T~
such that no model M of T satisfies PM = N.

Let L={P,RU(i=1,23)}, L =L-P and M={M;N,R",
UM(i=1,2,3)> where

(i) M =UMUUMUUM where UM is the set of all functions from UM to
vy,

(ii) N = UMU UM,

(iii) RM(x,p,f) <> xe UM Aye UM Af e U¥ rf(x) =3,

(iv) UIM and Ué” are countable.

Then T is a countable theory with the S-reduction property over P since the
structure of M depends on UM. Let N' be a model of T~ such that |UN'| # |UY'|.
But there is no model M’ such that PM' = N' because |UM| = |UM| holds in every
model M of T.
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