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ARCWISE CONNECTEDNESS OF THE COMPLEMENT
IN A HYPERSPACE

By

Hiroshi HOSOKAWA

Abstract. The hyperspace $C(X)$ of a continuum $X$ is always
arcwise connected. In [6], S. B. Nadler Jr. and J. Quinn show that if
$C(X)-\{A_{j}\}$ is arcwise connected for each $i=1,2$ , then $C(X)-$

$\{A_{1},A_{2}\}$ is also arcwise connected. Nadler raised questions in his
book [5]: Is it still true with the two sets $A_{1}$ and $A_{2}$ replaced by $n$

sets, $n$ finite? What about countably many? What about a collection
$\{A_{\lambda}:\lambda\in\Lambda\}$ which is a compact zero-dimensional subset of the
hyperspace? In this paper we prove that if $si\subset C(X)$ is a closed
countable subset, $0|l$ is an arc component of an open set of $C(X)$ and
$C(X)-\{A\}$ is arcwise connected for each $A\in d$ , then $\mathfrak{q}1-d$ is
arcwise connected.
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1. Notation and Preliminary Lemmas

A continuum is a nonempty compact connected metric space. The letter $X$

will always denotes a nondegenerate continuum with a metric function $d$ . Let $Y$

be a subcontinuum of $X$ and $\epsilon$ a positive number. The set $N(Y;\epsilon)$ denotes the $\epsilon-$

neighborhood of $Y$ in $X$ , i.e., $N(Y;\epsilon)=$ { $ x\in X:d(x,y)<\epsilon$ for some $y\in Y$ } and $Y_{\epsilon}$

denotes the component of the closure of $N(Y;\epsilon)$ containing $Y$ . The hyperspace
$C(X)$ of $X$ is the space of all subcontinuum of $X$ with the Hausdorff metric $H_{d}$

defined by

$ H_{d}(A, B)=\inf$ { $\epsilon>0:A\subset N(B;\epsilon)$ and $B\subset N(A;\epsilon)$ }.

With this metric, $C(X)$ becomes a continuum. If $Y$ is a subcontinuum of $X$ , then
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we consider $C(Y)$ as a subspace of $C(X)$ . For two subsets $d$ and $\Re$ of $C(X)$ ,

let $ H_{d}(s4, \Re)=\inf$ { $H_{d}(A,$ $B);A\in d$ and $ B\in\Re$ }. A map is a continuous function.
Any map $\mu:C(X)\rightarrow[0,1]$ satisfying

(1) if $A\subset B$ and $A\neq B$ , then $\mu(A)<\mu(B)$ ,

(2) $\mu(\{x\})=0$ for each $x\in X$ and $\mu(X)=1$

is called a Whitney map for $C(X)$ . Such a map always exists (see [7]). An order
arc is a map $\sigma:[a,b]\rightarrow C(X)$ such that if $a\leq t_{0}<t_{1}\leq b$ , then $\sigma(r_{0})\subset\sigma(t_{1})$ and
$\sigma(r_{0})\neq\sigma(t_{1})$ . It is also called an order arc from $\sigma(a)$ to $\sigma(b)$ .

If $A,$ $B$ are distinct elements of $C(X)$ , then there is an order arc from $A$ to $B$

if and only if $A\subset B$ (see [1]).

We often use the following lemmas which are easy to prove hence we omit
their proofs.

LEMMA 1. Let $Y$ be a proper subcontinuum of X. If there is a subcontinuum
$M$ of $X$ such that $M\cap Y\neq\phi\neq M-Y$ , then for any $\epsilon>0$ and $y\in M\cap Y$ , there is a
subcontinuum $N$ of $M\cap Y_{\epsilon}$ such that $N\cap Y\neq\phi\neq N-Y$ and $y\in N$ .

The diameter of a subset $A$ of $X$ is denoted by $\delta(A)$ , i.e., $\delta(A)=\sup\{d(x,y)$ :
$x,y\in A\}$ .

REMARK. If $d$ is a connected subset of $C(X)$ such that $Y\in A$ and $\delta(d)\leq\epsilon$ ,

then $si\subset C(Y_{\epsilon})$ .

LEMMA 2. If a subset $\{A, B, C, D\}\subset C(X)$ satisfies $A\subset B\cap C\subset B\cup C\subset D$ ,

then $H_{d}(B, C)\leq H_{d}(A, D)$ . In particular, if $\sigma$ is an order arc, then $\delta(\sigma([a,b]))=$

$H_{d}(\sigma(a),\sigma(b))$ .

Furthermore we need the following Krasinkiewiz-Nadler’s Theorem
(Theorem 3.1 of [2]).

PROPOSITION 3. Let $\mu:C(X)\rightarrow[0,1]$ be a Whitney map and $A_{1},A_{2}\in\mu^{-1}(t_{0})$ ,

where $t_{0}\in[0,1]$ . Let $K$ be a subcontinuum of $A_{1}\cap A_{2}$ . Then there is a map
$\alpha:[0,1]\rightarrow\mu^{-1}(t_{0})\cap C(A_{1}\cup A_{2})$ such that $\alpha(0)=A_{1},$ $\alpha(1)=A_{2}$ and $K\subset\alpha(r)$ for
all $t\in[0,1]$ . If $A_{1}\neq A_{2}$ , then $\alpha$ can be taken to be an emmbedding.

In fact Theorem 3.1 of [2] is much more general, and from its proof we
obtain the following lemma.

LEMMA 4. Let $\mu:C(X)\rightarrow[0,1]$ be a Whitney map and let $A,$ $B,$ $C$ be
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subcontinua of $X$ such that $A\cap B\supset C$ . Then there is a map $\alpha:[0, I]\rightarrow\mu^{-1}(\mu(A))$

$\cap C(A\cup B)snch$ that $\alpha(0)=A,\alpha(t)\supset C$ for each $t\in[0,1]$ , and

if $\mu(A)\leq\mu(B)$ then $\alpha(1)\subset B$ ,

if $\mu(A)>\mu(B)$ then $\alpha(1)\supset B$ .

In the same paper they proved (Theorem 3.5 in [2]) that:

$PROPOSlT10N5$ . Let $X$ be decomposable and $\mu:C(X)\rightarrow[0,1]$ a Whitney
map. Then there is $s_{0}\in[0,1$ ) such that if $s\in[s_{0},1]$ , then $\mu^{-1}(s)$ is arcwise
connected.

The following proposition is Theorem 4.6 of [4].

$PROPOSIT10N6$ . If $Y$ is a non-degenera $te$ proper subcontinuum of $X$ , then
the following two statements are equivalent:

(1) $C(X)-\{Y\}$ is not arcwise connected.
(2) There is a dense subset $D$ of $Y$ such that if $M$ is a subcontinuum of $X$

satisfying $M\cap D\neq\phi\neq M-Y$ , then $M\supset Y$ .

2. Bypass Lemma
Let $K,$ $L\in C(X)$ and $d\subset C(X)$ . An arc from $K$ to $L$ in $s4$ is a map

$\alpha:[a,b]\rightarrow d$ such that $\alpha(a)=K$ and $\alpha(b)=L$ . If $\alpha$ is an embedding, then we
call it an embedding arc. Following is a key lemma.

LEMMA 7. Let $Y$ be a nondegenera $te$ proper subcontinuum of a continuum
$X$ such that $C(X)-\{Y\}$ is arcwise connected. Let $\alpha:[0,1]\rightarrow C(X)$ be a map such
that $\alpha(1)=Y$ and $\alpha(r)\in C(Y)-\{Y\}$ for each $t\in[0,1$ ). Then for a given $\epsilon>0$ ,

there is a map $\beta:[0,1]\rightarrow C(X)-\{Y\}$ such that $\alpha(0)=\beta(0),$ $ H_{d}(\alpha(t),\beta(t))<\epsilon$ for
each $ t\in[0,1]and\beta(1)-Y\neq\phi$ .

PROOF. First suppose that $Y$ is indecomposable. Put $\epsilon_{1}=\epsilon/3$ . Since $\alpha$ is
continuous, there is $t_{0}\in[0,1$ ) such that $\delta(\alpha([r_{0},1]))<\epsilon_{1}$ . Let $\lambda$ be the composant
of $Y$ such that $\alpha(\prime_{0})\subset\lambda$ . By Lemma 1 and Proposition 6, there is a subcontinuum
$M$ of $Y_{\epsilon_{1}}$ such that $M-Y\neq\phi\neq Y-M$ and $ M\cap\lambda\neq\phi$ . We may assume that
$ M\cap\alpha(t_{0})\neq\phi$ . (Because let $\lambda^{\prime}$ be a composant of $Y$ different from $\lambda$ . Since $M$

is compact and $ Y-M\neq\phi,\lambda^{\prime}-M\neq\phi$ . Thus we can replace $M$ by $M\cup N$ , where
$N$ is a continuum contained in $\lambda$ such that $M\cap N\neq\phi\neq N\cap\alpha(r_{0}).)$ . Let
$\sigma:[t_{0},1]\rightarrow C(X)$ be an order arc from $\alpha(t_{0})$ to $M\cup\alpha(t_{0})$ . Then
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$\delta(\sigma(|t_{()}, 1]))=H_{/}(\alpha(t_{()}), M\cup\alpha(t_{()}))\leq H_{/}(\alpha(t_{()}), Y_{\epsilon_{1}})$

$\leq H_{/}(\alpha(t_{()}), Y)+H,(Y, Y_{\mathcal{E}_{1}})<2\epsilon_{1}$ .

Define an arc $\beta$ in $C(X)$ by

$\beta(t)=\left\{\begin{array}{l}\alpha(t)ift\in[0,t_{0}],\\\sigma(t)ift\in(t_{0},l].\end{array}\right.$

Clearly $\beta$ is continuous and its image does not contain $Y$ . If $t\in[0,t_{0}]$ , then
$H_{d}(\alpha(t),\beta(r))=0$ . Suppose that $t\in(t_{0},1$ ]. Then since $\alpha(t_{0})=\beta(t_{0})$ ,

$H_{d}(\alpha(t),\beta(r))\leq H_{d}(\alpha(t),\alpha(r_{0}))+H_{d}(\beta(t_{0}),\beta(t))$

$\leq\delta(\alpha([r_{0},1]))+\delta(\sigma([t_{0},1]))<3\epsilon_{1}=\epsilon$ .

For the second case, suppose that $Y$ is decomposable. Put $\epsilon_{1}=\epsilon/5$ and let $\mu$

be a Whitney map for $C(X)$ . By Proposition 5, there is $s_{0}<\mu(Y)$ such that if
$s\in[s_{0},\mu(Y)]$ , then $\mu^{-1}(s)\cap C(Y)$ is arcwise connected. Moreover $s_{0}$ can be taken
so that $\delta(\mu^{-1}([s_{0},1])\cap C(Y))<\epsilon_{1}$ . Since $\alpha$ is continuous, there is $t_{0}\in[0,1$ ) such
that $\mu(\sigma([t_{()}, 1]))\subset[s_{0},1]$ . For simplicity, put $s_{1}=\mu(\alpha(r_{0}))$ . By Proposition 6 and
Lemma 1, there is a subcontinuum $M$ of $Y_{\epsilon_{1}}$ , such that $M-Y\neq\phi\neq Y-M$ and
$ M\cap Y\neq\phi$ . There are two cases.

(i) Suppose there is $A\in\mu^{-1}(s_{1})\cap C(Y)$ such that $A\cap M\neq\phi\neq Y-(A\cup M)$ .
Put $t_{1}=(t_{()}+1)/2$ and let $\sigma_{1}$ : $[t_{()},t_{1}]\rightarrow\mu^{-1}(s_{1})\cap C(Y)$ be an arc from $\alpha(t_{0})$ to $A$

(such an arc exists since $s_{0}\leq s_{1}<\mu(Y)$ ) and $\sigma_{2}$ : $[t_{1},1]\rightarrow C(X)$ an order arc from
$A$ to $A\cup M$ . Note that $\delta(\sigma_{2}([t_{1},1]))<2\epsilon_{1}$ . Define an arc $\beta$ in $C(X)$ by

$\beta(t)=\left\{\begin{array}{l}\alpha(r)ift\in[0,t_{()}],\\\sigma_{|(t)}ift\in(t_{0},t_{l}],\\\sigma_{-},(t)ift\in(t_{l},l].\end{array}\right.$

Clearly $\beta$ is continuous and $\beta(t)\neq Y$ for each $t\in[0,1]$ . If $t\in[0,t_{0}]$ , then
$H_{d}(\alpha(r),\beta(t))=0$ . Suppose $f\in[t_{0},t_{1}]$ . Then since $\beta([t_{()},t])\subset\mu^{-1}(s_{1})\cap C(Y)$ ,

$H_{d}(\alpha(r),\beta(t))\leq H_{d}(\alpha(r),\alpha(t_{()}))+H_{d}(\beta(t_{()}),\beta(r))$

$\leq\delta(\alpha[r_{0},1]))+\delta(\mu^{-1}(s_{1})\cap C(Y))<2\epsilon_{1}<\epsilon$ .

Finally suppose $f\in[t_{1},1]$ . Then
$H_{d}(\alpha(f),\beta(t))\leq H_{d}(\alpha(r),\alpha(t_{1}))+H_{d}(\alpha(t_{1}),\beta(t_{1}))+H_{d}(\beta(f_{1}),\beta(t))$

$<\delta(\alpha([t_{1},1]))+2\epsilon_{1}+\delta(\sigma_{2}([t_{1},1]))<\epsilon_{1}+2\epsilon_{1}+2\epsilon_{1}=5\epsilon_{1}=\epsilon$ .

(ii) Suppose that for each $A\in\mu^{-1}(s_{1})\cap C(Y),$ $ A\cap M\neq\phi$ implies $Y\subset A\cup M$ .
In this case, each element of $\mu^{-1}(s_{1})\cap C(Y)$ intersects $M$ . In particular,



Arcwise connectedness of the complement in a hyperspace 483

$\alpha(t_{()})\cap M\neq\phi$ . Considering an order arc from $M$ to $M\cup Y$ , we can enlarge $M$

and hence we can assume $\mu(M)>s_{1}$ . By Lemma 4, there is a map
$\sigma_{1}:[t_{()},t_{1}]\rightarrow\mu^{-1}(s_{1})\cap C(YuM)$ from $\alpha(\prime_{()})$ to $\sigma_{1}(t_{1})\subset M$ , where $t_{1}=(t_{()}+1)/2$ .
Let $\sigma_{2}:[t_{1},1]\rightarrow C(X)$ be an order arc from $\sigma_{1}(t_{1})$ to $M$ . Define an arc $\beta$ in
$C(X)$ by

$\beta(t)=\left\{\begin{array}{l}\alpha(t)ift\in[0,t_{0}],\\\sigma_{l}(t)ifl\in(l_{0},t_{l}],\\\sigma_{2}(r)ift\in(t_{|},1].\end{array}\right.$

As in case (i), $\beta$ satisfies all the required conditions.
Now we prove the main lemma.

BYPASS LEMMA 8. Let $Y$ be a subcontinuum of $X$ such that $C(X)-\{Y\}$ is
arcwise connected and let $\alpha:[0,1]\rightarrow C(X)$ be an arc such that $\alpha(t)=Y$ if and
only if $t=1/2$ . Then for each $\epsilon>0$ and each $a,$ $b$ , where $0\leq a<1/2<b\leq 1$ , there
is a map $\beta:[0,1]\rightarrow C(X)-\{Y\}$ such that $\alpha(t)=\beta(r)$ for all $t\in[0, a]\cup[b, 1]$ and
$ H_{d}(\alpha(t),\beta(t))<\epsilon$ for all $t\in[0,1]$ .

PROOF. If $Y=X$ , then $X$ is decomposable (by Theorem 11.4 and Corollary
11.8 of [5]). Let $\mu$ be a Whitney map for $C(X)$ . By Proposition 5, there is
$s_{0}\in[0,1)$ such that $\mu^{-1}(s)$ is arcwise connected for each $s\in[s_{0},1]$ . Moreover $s_{0}$

can be chosen so that $\delta(\mu^{-1}[s_{0},1]))<\epsilon/2$ . Since $\alpha$ is continuous, there exist two
numbers $t_{0},t_{1}$ such that $a\leq t_{0}<1/2<t_{1}\leq b,\mu(\alpha(t_{0}))=\mu(\alpha(t_{1}))\in[s_{0},1]$ and
$\delta(\alpha([t_{0}, t_{1}]))<\epsilon/2$ . Put $\mu(\alpha(t_{()}))=s_{1}$ . Then since $s_{1}\in[s_{0},1]$ , there is a map
$\sigma:[t_{0},t_{1}]\rightarrow\mu^{-1}(s_{1})$ from $\alpha(t_{0})$ to $\alpha(t_{1})$ . Define an arc $\beta$ in $C(X)-\{Y\}by$

$\beta(t)=\left\{\begin{array}{l}\alpha(r)ift\in[0,t_{0}]\cup[t_{|},1],\\\sigma(r)ift\in(t_{0},t_{|}).\end{array}\right.$

If $t\in(t_{0},t_{1})$ , then

$H_{d}(\alpha(t),\beta(t))\leq H_{d}(\alpha(t),\alpha(t_{0}))+H_{d}(\sigma(t_{0}),\sigma(t))$

$\leq\delta(\alpha([t_{0},t_{1}]))+\delta(\mu^{-1}(s_{1}))<\epsilon/2+\epsilon/2=\epsilon$ .

Therefore $\beta$ satisfies the required conditions.
Next suppose that $Y$ is a proper subcontinuum of $X$ . Put $\epsilon_{1}=\epsilon/4$ . There exist

two numbers $f_{0}f_{1}$ such that $a\leq I_{0}<1/2<I_{1}\leq b$ and $\delta(\alpha([t_{0},t_{1}]))<\epsilon_{1}$ . Note that
$\alpha([t_{0},t_{1}])\subset C(Y_{\epsilon_{1}})$ . If $\alpha([t_{0},1/2])\subset C(Y)$ , then by Lemma 7, there is a map
$\sigma:[t_{0},1/2]\rightarrow C(Y_{\epsilon_{1}})-\{Y\}$ such that $\sigma(r_{0})=\alpha(t_{0}),\sigma(1/2)-Y\neq\phi$ and $H_{d}(\alpha(r)$ ,
$\sigma(r))<\epsilon_{1}$ for each $t\in[t_{0},1/2]$ . If $\alpha([r_{0},1/2])-C(Y)\neq\phi$ , then put $\sigma=\alpha|[r_{0},1/2]$ .
There is $r\in(t_{0},1/2)$ such that $\sigma(r)-Y\neq\phi\neq Y_{\epsilon_{1}}-\sigma(r)$ . Let $\tau:[r, 1/2]\rightarrow C(X)$ be
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an order arc from $\sigma(r)$ to $Y_{\mathcal{E}_{1}}$ . Define $\beta_{()}$ : $[t_{()}, 1/2]\rightarrow C(X)$ by

$\beta_{t)}(f)=\left\{\begin{array}{l}\sigma(t)ift\in[t_{()},r],\\T(t)ift\in(r,l/2].\end{array}\right.$

It is easy to see that $H_{d}(\alpha(r),\beta_{()}(t))<4\epsilon_{1}$ for each $t\in[t_{()}, 1/2]$ .
As in the same way, we can find a map $\beta_{1}:[1/2,t_{1}]\rightarrow C(X)$ such that

$\beta_{1}(1/2)=Y_{\epsilon_{1}},\beta_{1}(t_{1})=\alpha(\prime_{1})$ and $H_{p/}(\alpha(t),\beta_{1}(t))<4\epsilon_{1}$ for each $t\in[1/2,t_{1}]$ . Then the
arc $\beta$ defined by

$\beta(r)=\left\{\begin{array}{l}\alpha(t) ift\in[0,t_{0}]\cup[t_{|},1],\\\beta_{0}(t)ifl\in[t_{0},l/2],\\\beta_{|(t)}ift\in[l/2,t_{|}]\end{array}\right.$

satisfies the required conditions.

3. Arcwise Connectedness of the Complement

Let $\sigma y$ be a closed subset of $C(X)$ such that $C(X)-\{Y\}$ is arcwise connected
for each $Y\in(\mathfrak{Y}$ . We will show that if $oy$ is a finite set, then its complement is also
arcwise connected. Using this, we show that the same is fold if cIY is a closed
countable set. If $d\subset \mathfrak{B}(X)$ and $\epsilon>0$ , then we wright the $\mathcal{E}$ -neighborhood of
$d$ in $C(X)$ by $N(d;\epsilon)$ .

THEOREM 9. Let $\zeta \mathfrak{Y}$ be a finite subset of $C(X)$ such that $C(X)-\{Y\}$ is arcwise
connected for each $Y\in(\mathfrak{Y}$ and let $\alpha:[0,1]\rightarrow C(X)$ be an arc from $K$ to $L$ , where
$K,$ $L\in C(X)-(\mathfrak{Y}$ . Then for each $\epsilon>0$ , there is a map $\beta:[0,1]\rightarrow C(X)-W$ from $K$

to $L$ such that $\beta([0,1])\subset N(\alpha([0,1]);\epsilon)$ .

PROOF. If $K=L$ , then we can take $\beta$ to be a constant map. Hence let us
suppose $K\neq L$ . There is an embedding $\alpha^{\prime}:[0,1]\rightarrow\alpha([0,1])$ such that $\alpha(t)$

$=\alpha^{\prime}(t)$ for $t=0,1$ . Therefore we can assume that $\alpha$ is an embedding arc and
hence $\alpha^{-1}(^{(}\mathfrak{Y})$ is a finite set. Let $\alpha^{-1}(^{(}\mathfrak{Y})=\{t_{1},t_{2},\cdots,t_{n}\}$ , where $0<t_{j}<t_{j+1}<1$ for
$i=1,2,\cdots,n-1$ .

(i) Suppose $n=1$ and without loss of generality, assume $t_{1}=1/2$ . Put
$\alpha(1/2)=Y$ . Then $\alpha([0,1])$ and $\sigma y_{1}=^{(}\mathfrak{Y}-\{Y\}$ are closed and disjoint. Put
$\delta=H_{d}(\alpha([0,1])^{(}\mathfrak{Y}_{1})$ and $\mathcal{E}_{1}=\min\{\epsilon,\delta\}$ . Then $\epsilon_{1}>0$ . Applying Bypass Lemma,

there is a map $\beta:[0,1]\rightarrow C(X)-\{Y\}$ from $K$ to $L$ such that $H_{d}(\alpha(t),\beta(r))<\epsilon_{1}$ . By
the choice of $\epsilon_{1},\beta$ satisfies the required conditions.

(ii) Suppose $k\geq 2and$ the Theorem holds for $n=k-1$ . Let $\alpha^{-1}(^{(}\mathfrak{Y})=\{t_{1},t_{2}$ ,

..., $t_{k}$ } where $0<r_{j}<t_{i+1}<1$ for $i-1,2,\cdots,k-1$ . Put $\delta=H_{d}(\alpha[r_{0},1]),W-\{\alpha(t_{k})\}$ and
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$\epsilon_{1}=\min\{\epsilon/2,\delta\}$ , where $t_{0}=(t_{k-1}+r_{k})/2$ . Then partially applying Bypass
Lemma, there is a map $\beta_{1}$ : $[0,1]\rightarrow C(X)$ such that $\alpha|[0,t_{()}]=\beta_{1}|[0,t_{0}],\alpha(1)=\beta_{1}(1)$ ,

$H_{d}(\alpha(t),\beta_{1}(t))<\epsilon_{1}$ and $\beta_{1}([0,1])$ does not contain $\alpha(t_{k})$ . Let $\alpha_{1}$ be an embedding

arc from $K$ to $L$ such that $\alpha_{1}([0,1])\subset\beta_{1}([0,1])$ . Then it is easy to see that the

image of $\alpha_{1}$ intersects at most $n-1$ elements of (
$\mathfrak{Y}$ . Therefore by the inductive

hypothesis, there is an arc $\beta$ from $K$ to $L$ in $C(X)-(\mathfrak{Y}$ such that
$\beta([0,1])\subset N(\alpha_{1}([0,1]);\epsilon/2)$ . Hence $\beta$ is a required arc.

COROLLARY 10. Let 5 be a closed subset of $C(X)$ and let $d$ be an arc
component of $ C(X)-\wp$ . If $oy$ is a finite subset of $C(X)$ such that $C(X)-\{Y\}$ is
arcwise connected for each $Y\in\zeta \mathfrak{Y}$ , then $d-\zeta \mathfrak{Y}$ is arcwise connected.

PROOF. Let $K,$ $L$ be arbitrary elements of $d-(\mathfrak{Y}$ . There is a map
$\alpha:[0,1]\rightarrow d$ from $K$ to $L$ . Put $\epsilon=(1/2)H_{d}(\alpha([0,1]),\wp)$ . Then $\epsilon>0$ and hence

by Theorem 9, there is a map $\beta:[0,1]\rightarrow C(X)-(\mathfrak{Y}$ from $K$ to $L$ such $that\beta([0,1])$

$\subset N(\alpha([0,1]);\epsilon)$ . By the definition of $\epsilon,N(\alpha([0,1]);\epsilon)\cap\overline{J}^{o}=\phi$ . Therefore $\beta$ is an
arc in $d-(\mathfrak{Y}$ from $K$ to $L$ .

Let $A^{\prime}$ denote the derived set of the space $A4$ . The derived set of $A$ of order
$\lambda$ is defined by

$A^{(1)}=A^{\prime}$ , $A^{(n+1)}=(A^{(l1)})^{\prime}$ and $A^{(\lambda)}=\bigcap_{\iota<\lambda}A^{(n)}$

if $\lambda$ is a limit ordinal (see [3]).

We say that a triple $\{0\overline{d^{P}},d,W\}$ is admissible if $\sigma\overline{J}$ is a closed subset of
$C(X),d$ is an arc component of $C(X)-\overline{d^{P}}$ , is a closed countable subset of $C(X)$

such that $C(X)-\{Y\}$ is arcwise connected for each $Y\in W$ .

THEOREM 11. If $\{\wp,d,(\mathfrak{Y}\}$ is admissible, then $d-(\mathfrak{Y}$ is arcwise connected.

PROOF. First observe that the least ordinal $v$ such that (
$\mathfrak{Y}^{(\nu)}=\phi$ (such an

ordinal $v$ exists since $oy$ does not contain perfect sets) is not a limit ordinal.
Therefore there is the least ordinal $\lambda$ such that ($\mathfrak{Y}^{(\lambda)}=\phi$ . Denote such the ordinal

$\lambda$ by $\Lambda((\mathfrak{Y})$ . To prove the Theorem, we shall proceed by transfinite induction on
$\Lambda(W)$ .

If $\Lambda((\mathfrak{Y})=0$ , then $oy$ is a finite set. Hence Theorem follows from Corollary
10.

Suppose that the Theorem holds for any admissible triple $t^{c}\overline{J},s4,(\mathfrak{Y}$ } such that
$\Lambda(\mathfrak{B})<\lambda$ . Let $t^{0}\overline{J},d,(\mathfrak{Y}$ } be an admissible triple such that $\Lambda(W)=\lambda$ and let $K,$ $L$

be arbitrary elements of $d-(\mathfrak{Y}$ . It is sufficient to show that there is an arc from
$K$ to $L$ in $d-(\mathfrak{Y}$ . Since $W^{(\lambda+1)}=\phi,W^{(\lambda)}$ is a finite set. Therefore by Corollary 10,
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there is a map $\alpha:[0,1]\rightarrow d-(iy^{|\lambda)}$ from $K$ to $L$ . Put $\epsilon=(1/2)H_{d}(\alpha([0$ ,

1] $)^{(}\mathfrak{Y}^{(\lambda)})^{\zeta}\mathfrak{Y}_{1}=^{(}\mathfrak{Y}-N((\mathfrak{Y}^{(\lambda)};\epsilon),\wp=\wp_{UN(}|(\mathfrak{Y}^{(\lambda)};\epsilon),whereN(W^{(\lambda)};\epsilon)$ is the closure of
$N((\mathfrak{Y}^{(\lambda)};\epsilon)$ in $C(X)$ , and let $d_{1}$ be the arc component of $C(X)-J_{1}$ containing $K$

(and hence $L$ ). Note that $d_{1}\subset d$ . The triple $\{0\overline{J}_{1},d_{1}, (\mathfrak{Y}_{1}\}$ is admissible and
$\Lambda((\mathfrak{Y}_{1})<\lambda$ . Hence by inductive hypothesis, there is an arc from $K$ to $L$ in
$d_{1}-W_{1}$ . Since $d_{1}-W_{1}\subset d-W$ and $K,$ $L$ are arbitrary elements of $d-W,d-W$

is arcwise connected.

COROLLARY 12. If $W$ is a countable closed subset of $C(X)$ such that
$C(X)-\{Y\}$ is arcwise connected for each $Y\in W$ , then $C(X)-W$ is arcwise
connected.
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