ARCWISE CONNECTEDNESS OF THE COMPLEMENT IN A HYPERSPACE

By

Hiroshi HOSOKAWA

Abstract. The hyperspace C(X) of a continuum X is always arcwise connected. In [6], S. B. Nadler Jr. and J. Quinn show that if $C(X) - \{A_i\}$ is arcwise connected for each i = 1, 2, then $C(X) - \{A_1, A_2\}$ is also arcwise connected. Nadler raised questions in his book [5]: Is it still true with the two sets A_1 and A_2 replaced by n sets, n finite? What about countably many? What about a collection $\{A_{\lambda} : \lambda \in \Lambda\}$ which is a compact zero-dimensional subset of the hyperspace? In this paper we prove that if $\mathcal{A} \subset C(X)$ is a closed countable subset, \mathcal{U} is an arc component of an open set of C(X) and $C(X) - \{A\}$ is arcwise connected for each $A \in \mathcal{A}$, then $\mathcal{U} - \mathcal{A}$ is arcwise connected.

Key words and phrasses: continuum, hyperspace, order arc, Whitney map, arcwise connectedness, indecomposable continuum, decomposable continuum.

AMS subject classifications (1980): 54B20, 54C05.

1. Notation and Preliminary Lemmas

A continuum is a nonempty compact connected metric space. The letter X will always denotes a nondegenerate continuum with a metric function d. Let Y be a subcontinuum of X and ε a positive number. The set $N(Y;\varepsilon)$ denotes the ε -neighborhood of Y in X, *i.e.*, $N(Y;\varepsilon) = \{x \in X : d(x,y) < \varepsilon \text{ for some } y \in Y\}$ and Y_{ε} denotes the component of the closure of $N(Y;\varepsilon)$ containing Y. The hyperspace C(X) of X is the space of all subcontinuum of X with the Hausdorff metric H_d defined by

$$H_d(A, B) = \inf\{\varepsilon > 0 : A \subset N(B; \varepsilon) \text{ and } B \subset N(A; \varepsilon)\}.$$

With this metric, C(X) becomes a continuum. If Y is a subcontinuum of X, then Received November 8, 1994.

Revised April 5, 1995.

we consider C(Y) as a subspace of C(X). For two subsets \mathcal{A} and \mathcal{B} of C(X), let $H_d(\mathcal{A}, \mathcal{B}) = \inf \{H_d(\mathcal{A}, \mathcal{B}) : \mathcal{A} \in \mathcal{A} \text{ and } \mathcal{B} \in \mathcal{B}\}$. A map is a continuous function. Any map $\mu : C(X) \to [0,1]$ satisfying

(1) if $A \subset B$ and $A \neq B$, then $\mu(A) < \mu(B)$,

(2) $\mu({x}) = 0$ for each $x \in X$ and $\mu(X) = 1$

is called a Whitney map for C(X). Such a map always exists (see [7]). An order arc is a map $\sigma:[a,b] \to C(X)$ such that if $a \le t_0 < t_1 \le b$, then $\sigma(t_0) \subset \sigma(t_1)$ and $\sigma(t_0) \ne \sigma(t_1)$. It is also called an order arc from $\sigma(a)$ to $\sigma(b)$.

If A, B are distinct elements of C(X), then there is an order arc from A to B if and only if $A \subset B$ (see [1]).

We often use the following lemmas which are easy to prove hence we omit their proofs.

LEMMA 1. Let Y be a proper subcontinuum of X. If there is a subcontinuum M of X such that $M \cap Y \neq \phi \neq M - Y$, then for any $\varepsilon > 0$ and $y \in M \cap Y$, there is a subcontinuum N of $M \cap Y_{\varepsilon}$ such that $N \cap Y \neq \phi \neq N - Y$ and $y \in N$.

The diameter of a subset A of X is denoted by $\delta(A)$, *i.e.*, $\delta(A) = \sup\{d(x, y): x, y \in A\}$.

REMARK. If \mathcal{A} is a connected subset of C(X) such that $Y \in \mathcal{A}$ and $\delta(\mathcal{A}) \leq \varepsilon$, then $\mathcal{A} \subset C(Y_{\varepsilon})$.

LEMMA 2. If a subset $\{A, B, C, D\} \subset C(X)$ satisfies $A \subset B \cap C \subset B \cup C \subset D$, then $H_d(B,C) \leq H_d(A,D)$. In particular, if σ is an order arc, then $\delta(\sigma([a,b])) = H_d(\sigma(a),\sigma(b))$.

Furthermore we need the following Krasinkiewiz-Nadler's Theorem (Theorem 3.1 of [2]).

PROPOSITION 3. Let $\mu: C(X) \to [0,1]$ be a Whitney map and $A_1, A_2 \in \mu^{-1}(t_0)$, where $t_0 \in [0,1]$. Let K be a subcontinuum of $A_1 \cap A_2$. Then there is a map $\alpha: [0,1] \to \mu^{-1}(t_0) \cap C(A_1 \cup A_2)$ such that $\alpha(0) = A_1$, $\alpha(1) = A_2$ and $K \subset \alpha(t)$ for all $t \in [0,1]$. If $A_1 \neq A_2$, then α can be taken to be an emmbedding.

In fact Theorem 3.1 of [2] is much more general, and from its proof we obtain the following lemma.

LEMMA 4. Let $\mu: C(X) \rightarrow [0,1]$ be a Whitney map and let A, B, C be

480

subcontinua of X such that $A \cap B \supset C$. Then there is a map $\alpha : [0,1] \rightarrow \mu^{-1}(\mu(A))$ $\cap C(A \cup B)$ such that $\alpha(0) = A, \alpha(t) \supset C$ for each $t \in [0,1]$, and if $\mu(A) \leq \mu(B)$ then $\alpha(1) \subset B$,

if $\mu(A) > \mu(B)$ then $\alpha(1) \supset B$.

In the same paper they proved (Theorem 3.5 in [2]) that:

PROPOSITION 5. Let X be decomposable and $\mu: C(X) \to [0,1]$ a Whitney map. Then there is $s_0 \in [0,1)$ such that if $s \in [s_0,1]$, then $\mu^{-1}(s)$ is arcwise connected.

The following proposition is Theorem 4.6 of [4].

PROPOSITION 6. If Y is a non-degenerate proper subcontinuum of X, then the following two statements are equivalent:

(1) $C(X) - \{Y\}$ is not arcwise connected.

(2) There is a dense subset D of Y such that if M is a subcontinuum of X satisfying $M \cap D \neq \phi \neq M - Y$, then $M \supset Y$.

2. Bypass Lemma

Let $K, L \in C(X)$ and $\mathcal{A} \subset C(X)$. An arc from K to L in \mathcal{A} is a map $\alpha : [a,b] \to \mathcal{A}$ such that $\alpha(a) = K$ and $\alpha(b) = L$. If α is an embedding, then we call it an embedding arc. Following is a key lemma.

LEMMA 7. Let Y be a nondegenerate proper subcontinuum of a continuum X such that $C(X) - \{Y\}$ is arcwise connected. Let $\alpha : [0,1] \to C(X)$ be a map such that $\alpha(1) = Y$ and $\alpha(t) \in C(Y) - \{Y\}$ for each $t \in [0,1)$. Then for a given $\varepsilon > 0$, there is a map $\beta : [0,1] \to C(X) - \{Y\}$ such that $\alpha(0) = \beta(0)$, $H_d(\alpha(t), \beta(t)) < \varepsilon$ for each $t \in [0,1]$ and $\beta(1) - Y \neq \phi$.

PROOF. First suppose that Y is indecomposable. Put $\varepsilon_1 = \varepsilon/3$. Since α is continuous, there is $t_0 \in [0,1)$ such that $\delta(\alpha([t_0,1])) < \varepsilon_1$. Let λ be the composant of Y such that $\alpha(t_0) \subset \lambda$. By Lemma 1 and Proposition 6, there is a subcontinuum M of Y_{ε_1} such that $M - Y \neq \phi \neq Y - M$ and $M \cap \lambda \neq \phi$. We may assume that $M \cap \alpha(t_0) \neq \phi$. (Because let λ' be a composant of Y different from λ . Since M is compact and $Y - M \neq \phi, \lambda' - M \neq \phi$. Thus we can replace M by $M \cup N$, where N is a continuum contained in λ such that $M \cap N \neq \phi \neq N \cap \alpha(t_0)$.). Let $\sigma:[t_0,1] \rightarrow C(X)$ be an order arc from $\alpha(t_0)$ to $M \cup \alpha(t_0)$. Then

Hiroshi HOSOKAWA

$$\delta(\sigma([t_0, 1])) = H_d(\alpha(t_0), M \cup \alpha(t_0)) \le H_d(\alpha(t_0), Y_{\varepsilon_1})$$
$$\le H_d(\alpha(t_0), Y) + H_d(Y, Y_{\varepsilon_1}) < 2\varepsilon_1.$$

Define an arc β in C(X) by

$$\beta(t) = \begin{cases} \alpha(t) & \text{if } t \in [0, t_0], \\ \sigma(t) & \text{if } t \in (t_0, 1]. \end{cases}$$

Clearly β is continuous and its image does not contain Y. If $t \in [0, t_0]$, then $H_d(\alpha(t), \beta(t)) = 0$. Suppose that $t \in (t_0, 1]$. Then since $\alpha(t_0) = \beta(t_0)$,

$$H_{d}(\alpha(t),\beta(t)) \leq H_{d}(\alpha(t),\alpha(t_{0})) + H_{d}(\beta(t_{0}),\beta(t))$$
$$\leq \delta(\alpha([t_{0},1])) + \delta(\sigma([t_{0},1])) < 3\varepsilon_{1} = \varepsilon.$$

For the second case, suppose that Y is decomposable. Put $\varepsilon_1 = \varepsilon/5$ and let μ be a Whitney map for C(X). By Proposition 5, there is $s_0 < \mu(Y)$ such that if $s \in [s_0, \mu(Y)]$, then $\mu^{-1}(s) \cap C(Y)$ is arcwise connected. Moreover s_0 can be taken so that $\delta(\mu^{-1}([s_0, 1]) \cap C(Y)) < \varepsilon_1$. Since α is continuous, there is $t_0 \in [0, 1)$ such that $\mu(\sigma([t_0, 1])) \subset [s_0, 1]$. For simplicity, put $s_1 = \mu(\alpha(t_0))$. By Proposition 6 and Lemma 1, there is a subcontinuum M of Y_{ε_1} , such that $M - Y \neq \phi \neq Y - M$ and $M \cap Y \neq \phi$. There are two cases.

(i) Suppose there is $A \in \mu^{-1}(s_1) \cap C(Y)$ such that $A \cap M \neq \phi \neq Y - (A \cup M)$. Put $t_1 = (t_0 + 1)/2$ and let $\sigma_1 : [t_0, t_1] \rightarrow \mu^{-1}(s_1) \cap C(Y)$ be an arc from $\alpha(t_0)$ to A (such an arc exists since $s_0 \leq s_1 < \mu(Y)$) and $\sigma_2 : [t_1, 1] \rightarrow C(X)$ an order arc from A to $A \cup M$. Note that $\delta(\sigma_2([t_1, 1])) < 2\varepsilon_1$. Define an arc β in C(X) by

$$\beta(t) = \begin{cases} \alpha(t) & \text{if } t \in [0, t_0], \\ \sigma_1(t) & \text{if } t \in (t_0, t_1], \\ \sigma_2(t) & \text{if } t \in (t_1, 1]. \end{cases}$$

Clearly β is continuous and $\beta(t) \neq Y$ for each $t \in [0,1]$. If $t \in [0,t_0]$, then $H_d(\alpha(t), \beta(t)) = 0$. Suppose $t \in [t_0, t_1]$. Then since $\beta([t_0, t]) \subset \mu^{-1}(s_1) \cap C(Y)$,

$$H_{d}(\alpha(t),\beta(t)) \leq H_{d}(\alpha(t),\alpha(t_{0})) + H_{d}(\beta(t_{0}),\beta(t))$$
$$\leq \delta(\alpha[t_{0},1])) + \delta(\mu^{-1}(s_{1}) \cap C(Y)) < 2\varepsilon_{1} < \varepsilon.$$

Finally suppose $t \in [t_1, 1]$. Then

$$\begin{split} H_d(\alpha(t),\beta(t)) &\leq H_d(\alpha(t),\alpha(t_1)) + H_d(\alpha(t_1),\beta(t_1)) + H_d(\beta(t_1),\beta(t)) \\ &< \delta(\alpha([t_1,1])) + 2\varepsilon_1 + \delta(\sigma_2([t_1,1])) < \varepsilon_1 + 2\varepsilon_1 + 2\varepsilon_1 = 5\varepsilon_1 = \varepsilon. \end{split}$$

(ii) Suppose that for each $A \in \mu^{-1}(s_1) \cap C(Y)$, $A \cap M \neq \phi$ implies $Y \subset A \cup M$. In this case, each element of $\mu^{-1}(s_1) \cap C(Y)$ intersects M. In particular, $\alpha(t_0) \cap M \neq \phi$. Considering an order arc from M to $M \cup Y$, we can enlarge Mand hence we can assume $\mu(M) > s_1$. By Lemma 4, there is a map $\sigma_1:[t_0,t_1] \rightarrow \mu^{-1}(s_1) \cap C(Y \cup M)$ from $\alpha(t_0)$ to $\sigma_1(t_1) \subset M$, where $t_1 = (t_0 + 1)/2$. Let $\sigma_2:[t_1,1] \rightarrow C(X)$ be an order arc from $\sigma_1(t_1)$ to M. Define an arc β in C(X) by

$$\beta(t) = \begin{cases} \alpha(t) & \text{if } t \in [0, t_0], \\ \sigma_1(t) & \text{if } t \in (t_0, t_1], \\ \sigma_2(t) & \text{if } t \in (t_1, 1]. \end{cases}$$

As in case (i), β satisfies all the required conditions.

Now we prove the main lemma.

BYPASS LEMMA 8. Let Y be a subcontinuum of X such that $C(X) - \{Y\}$ is arcwise connected and let $\alpha : [0,1] \rightarrow C(X)$ be an arc such that $\alpha(t) = Y$ if and only if t = 1/2. Then for each $\varepsilon > 0$ and each a, b, where $0 \le a < 1/2 < b \le 1$, there is a map $\beta : [0,1] \rightarrow C(X) - \{Y\}$ such that $\alpha(t) = \beta(t)$ for all $t \in [0,a] \cup [b,1]$ and $H_d(\alpha(t), \beta(t)) < \varepsilon$ for all $t \in [0,1]$.

PROOF. If Y = X, then X is decomposable (by Theorem 11.4 and Corollary 11.8 of [5]). Let μ be a Whitney map for C(X). By Proposition 5, there is $s_0 \in [0,1)$ such that $\mu^{-1}(s)$ is arcwise connected for each $s \in [s_0,1]$. Moreover s_0 can be chosen so that $\delta(\mu^{-1}[s_0,1])) < \varepsilon/2$. Since α is continuous, there exist two numbers t_0, t_1 such that $a \le t_0 < 1/2 < t_1 \le b, \mu(\alpha(t_0)) = \mu(\alpha(t_1)) \in [s_0,1]$ and $\delta(\alpha([t_0, t_1])) < \varepsilon/2$. Put $\mu(\alpha(t_0)) = s_1$. Then since $s_1 \in [s_0,1]$, there is a map $\sigma: [t_0, t_1] \rightarrow \mu^{-1}(s_1)$ from $\alpha(t_0)$ to $\alpha(t_1)$. Define an arc β in $C(X) - \{Y\}$ by

$$\beta(t) = \begin{cases} \alpha(t) & \text{if } t \in [0, t_0] \cup [t_1, 1], \\ \sigma(t) & \text{if } t \in (t_0, t_1). \end{cases}$$

If $t \in (t_0, t_1)$, then

$$H_{d}(\alpha(t),\beta(t)) \leq H_{d}(\alpha(t),\alpha(t_{0})) + H_{d}(\sigma(t_{0}),\sigma(t))$$
$$\leq \delta(\alpha([t_{0},t_{1}])) + \delta(\mu^{-1}(s_{1})) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Therefore β satisfies the required conditions.

Next suppose that Y is a proper subcontinuum of X. Put $\varepsilon_1 = \varepsilon/4$. There exist two numbers t_0, t_1 such that $a \le t_0 < 1/2 < t_1 \le b$ and $\delta(\alpha([t_0, t_1])) < \varepsilon_1$. Note that $\alpha([t_0, t_1]) \subset C(Y_{\varepsilon_1})$. If $\alpha([t_0, 1/2]) \subset C(Y)$, then by Lemma 7, there is a map $\sigma : [t_0, 1/2] \rightarrow C(Y_{\varepsilon_1}) - \{Y\}$ such that $\sigma(t_0) = \alpha(t_0), \sigma(1/2) - Y \neq \phi$ and $H_d(\alpha(t), \sigma(t)) < \varepsilon_1$ for each $t \in [t_0, 1/2]$. If $\alpha([t_0, 1/2]) - C(Y) \neq \phi$, then put $\sigma = \alpha | [t_0, 1/2]$. There is $r \in (t_0, 1/2)$ such that $\sigma(r) - Y \neq \phi \neq Y_{\varepsilon_1} - \sigma(r)$. Let $\tau : [r, 1/2] \rightarrow C(X)$ be Hiroshi HOSOKAWA

an order arc from $\sigma(r)$ to Y_{ε_1} . Define $\beta_0:[t_0,1/2] \to C(X)$ by

$$\beta_0(t) = \begin{cases} \sigma(t) & \text{if } t \in [t_0, r], \\ \tau(t) & \text{if } t \in (r, 1/2]. \end{cases}$$

It is easy to see that $H_d(\alpha(t), \beta_0(t)) < 4\varepsilon_1$ for each $t \in [t_0, 1/2]$.

As in the same way, we can find a map $\beta_1 : [1/2, t_1] \to C(X)$ such that $\beta_1(1/2) = Y_{\varepsilon_1}, \beta_1(t_1) = \alpha(t_1)$ and $H_d(\alpha(t), \beta_1(t)) < 4\varepsilon_1$ for each $t \in [1/2, t_1]$. Then the arc β defined by

$$\beta(t) = \begin{cases} \alpha(t) & \text{if } t \in [0, t_0] \cup [t_1, 1], \\ \beta_0(t) & \text{if } t \in [t_0, 1/2], \\ \beta_1(t) & \text{if } t \in [1/2, t_1] \end{cases}$$

satisfies the required conditions.

3. Arcwise Connectedness of the Complement

Let \mathcal{Y} be a closed subset of C(X) such that $C(X) - \{Y\}$ is arcwise connected for each $Y \in \mathcal{Y}$. We will show that if \mathcal{Y} is a finite set, then its complement is also arcwise connected. Using this, we show that the same is fold if \mathcal{Y} is a closed countable set. If $\mathcal{A} \subset \mathscr{E}(X)$ and $\varepsilon > 0$, then we wright the ε -neighborhood of \mathcal{A} in C(X) by $N(\mathcal{A};\varepsilon)$.

THEOREM 9. Let \mathfrak{Y} be a finite subset of C(X) such that $C(X) - \{Y\}$ is arcwise connected for each $Y \in \mathfrak{Y}$ and let $\alpha : [0,1] \to C(X)$ be an arc from K to L, where $K, L \in C(X) - \mathfrak{Y}$. Then for each $\varepsilon > 0$, there is a map $\beta : [0,1] \to C(X) - \mathfrak{Y}$ from K to L such that $\beta([0,1]) \subset N(\alpha([0,1]);\varepsilon)$.

PROOF. If K = L, then we can take β to be a constant map. Hence let us suppose $K \neq L$. There is an embedding $\alpha':[0,1] \rightarrow \alpha([0,1])$ such that $\alpha(t) = \alpha'(t)$ for t = 0,1. Therefore we can assume that α is an embedding arc and hence $\alpha^{-1}(\mathfrak{Y})$ is a finite set. Let $\alpha^{-1}(\mathfrak{Y}) = \{t_1, t_2, \dots, t_n\}$, where $0 < t_i < t_{i+1} < 1$ for $i = 1, 2, \dots, n-1$.

(i) Suppose n = 1 and without loss of generality, assume $t_1 = 1/2$. Put $\alpha(1/2) = Y$. Then $\alpha([0,1])$ and $\mathfrak{Y}_1 = \mathfrak{Y} - \{Y\}$ are closed and disjoint. Put $\delta = H_d(\alpha([0,1]), \mathfrak{Y}_1)$ and $\varepsilon_1 = \min\{\varepsilon, \delta\}$. Then $\varepsilon_1 > 0$. Applying Bypass Lemma, there is a map $\beta: [0,1] \rightarrow C(X) - \{Y\}$ from K to L such that $H_d(\alpha(t), \beta(t)) < \varepsilon_1$. By the choice of ε_1, β satisfies the required conditions.

(ii) Suppose $k \ge 2$ and the Theorem holds for n = k - 1. Let $\alpha^{-1}(\mathfrak{Y}) = \{t_1, t_2, \dots, t_k\}$ where $0 < t_i < t_{i+1} < 1$ for $i - 1, 2, \dots, k - 1$. Put $\delta = H_d(\alpha[t_0, 1]), \mathfrak{Y} - \{\alpha(t_k)\}$ and

484

 $\varepsilon_1 = \min \{\varepsilon/2, \delta\}$, where $t_0 = (t_{k-1} + t_k)/2$. Then partially applying Bypass Lemma, there is a map $\beta_1 : [0,1] \to C(X)$ such that $\alpha | [0,t_0] = \beta_1 | [0,t_0], \alpha(1) = \beta_1(1),$ $H_d(\alpha(t), \beta_1(t)) < \varepsilon_1$ and $\beta_1([0,1])$ does not contain $\alpha(t_k)$. Let α_1 be an embedding arc from K to L such that $\alpha_1([0,1]) \subset \beta_1([0,1])$. Then it is easy to see that the image of α_1 intersects at most n - 1 elements of \mathfrak{P} . Therefore by the inductive hypothesis, there is an arc β from K to L in $C(X) - \mathfrak{P}$ such that $\beta([0,1]) \subset N(\alpha_1([0,1]); \varepsilon/2)$. Hence β is a required arc.

COROLLARY 10. Let \mathcal{F} be a closed subset of C(X) and let \mathcal{A} be an arc component of $C(X) - \mathcal{F}$. If \mathfrak{Y} is a finite subset of C(X) such that $C(X) - \{Y\}$ is arcwise connected for each $Y \in \mathfrak{Y}$, then $\mathcal{A} - \mathfrak{Y}$ is arcwise connected.

PROOF. Let K, L be arbitrary elements of $\mathcal{A} - \mathcal{Y}$. There is a map $\alpha : [0,1] \to \mathcal{A}$ from K to L. Put $\varepsilon = (1/2)H_d(\alpha([0,1]), \mathcal{F})$. Then $\varepsilon > 0$ and hence by Theorem 9, there is a map $\beta : [0,1] \to C(X) - \mathcal{Y}$ from K to L such that $\beta([0,1]) \subset N(\alpha([0,1]);\varepsilon)$. By the definition of $\varepsilon, N(\alpha([0,1]);\varepsilon) \cap \mathcal{F} = \phi$. Therefore β is an arc in $\mathcal{A} - \mathcal{Y}$ from K to L.

Let A' denote the derived set of the space A. The derived set of A of order λ is defined by

$$A^{(1)} = A', A^{(n+1)} = (A^{(n)})' \text{ and } A^{(\lambda)} = \bigcap_{n \le \lambda} A^{(n)}$$

if λ is a limit ordinal (see [3]).

We say that a triple $\{\mathcal{F}, \mathcal{A}, \mathcal{Y}\}$ is *admissible* if \mathcal{F} is a closed subset of $C(X), \mathcal{A}$ is an arc component of $C(X)-\mathcal{F}, \mathcal{Y}$ is a closed countable subset of C(X) such that $C(X) - \{Y\}$ is arcwise connected for each $Y \in \mathcal{Y}$.

THEOREM 11. If $\{\mathcal{F}, \mathcal{A}, \mathcal{Y}\}$ is admissible, then $\mathcal{A} - \mathcal{Y}$ is arcwise connected.

PROOF. First observe that the least ordinal ν such that $\mathfrak{Y}^{(\nu)} = \phi$ (such an ordinal ν exists since \mathfrak{Y} does not contain perfect sets) is not a limit ordinal. Therefore there is the least ordinal λ such that $\mathfrak{Y}^{(\lambda)} = \phi$. Denote such the ordinal λ by $\Lambda(\mathfrak{Y})$. To prove the Theorem, we shall proceed by transfinite induction on $\Lambda(\mathfrak{Y})$.

If $\Lambda(\mathfrak{Y}) = 0$, then \mathfrak{Y} is a finite set. Hence Theorem follows from Corollary 10.

Suppose that the Theorem holds for any admissible triple $\{\mathcal{F}, \mathcal{A}, \mathcal{Y}\}$ such that $\Lambda(\mathcal{Y}) < \lambda$. Let $\{\mathcal{F}, \mathcal{A}, \mathcal{Y}\}$ be an admissible triple such that $\Lambda(\mathcal{Y}) = \lambda$ and let K, L be arbitrary elements of $\mathcal{A} - \mathcal{Y}$. It is sufficient to show that there is an arc from K to L in $\mathcal{A} - \mathcal{Y}$. Since $\mathcal{Y}^{(\lambda+1)} = \phi, \mathcal{Y}^{(\lambda)}$ is a finite set. Therefore by Corollary 10,

Hiroshi HOSOKAWA

there is a map $\alpha:[0,1] \to \mathcal{A} - \mathcal{Y}^{(\lambda)}$ from K to L. Put $\varepsilon = (1/2)H_d(\alpha([0, 1]), \mathcal{Y}^{(\lambda)}), \mathcal{Y}_1 = \mathcal{Y} - N(\mathcal{Y}^{(\lambda)}; \varepsilon), \mathcal{F}_1 = \mathcal{F} \cup N(\mathcal{Y}^{(\lambda)}; \varepsilon)$, where $N(\mathcal{Y}^{(\lambda)}; \varepsilon)$ is the closure of $N(\mathcal{Y}^{(\lambda)}; \varepsilon)$ in C(X), and let \mathcal{A}_1 be the arc component of $C(X) - \mathcal{F}_1$ containing K (and hence L). Note that $\mathcal{A}_1 \subset \mathcal{A}$. The triple $\{\mathcal{F}_1, \mathcal{A}_1, \mathcal{Y}_1\}$ is admissible and $\Lambda(\mathcal{Y}_1) < \lambda$. Hence by inductive hypothesis, there is an arc from K to L in $\mathcal{A}_1 - \mathcal{Y}_1$. Since $\mathcal{A}_1 - \mathcal{Y}_1 \subset \mathcal{A} - \mathcal{Y}$ and K, L are arbitrary elements of $\mathcal{A} - \mathcal{Y}, \mathcal{A} - \mathcal{Y}$ is arcwise connected.

COROLLARY 12. If \mathfrak{Y} is a countable closed subset of C(X) such that $C(X) - \{Y\}$ is arcwise connected for each $Y \in \mathfrak{Y}$, then $C(X) - \mathfrak{Y}$ is arcwise connected.

References

- [1] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22–36.
- [2] J. Krasinkiewicz and S. B. Nadler, Jr., Whitney properties, Fund. Math. 98 (1978), 165-180.
- [3] K. Kuratowski, Topology, vol. I, New York-London-Warszawa, 1966.
- [4] S. B. Nadler, Jr., Arcwise accessibility in hyperspaces, Dissertationes Math. 138 (1976).
- [5] S. B. Nadler, Jr., Hyperspaces of sets, Marcel Dekker, Inc., New York, (1978).
- [6] S. B. Nadler, Jr. and J. Quinn, Continua whose hyperspace and suspension are homeomorphic, Gen. Top. and Its Applications 8 (1978), 119-126.
- [7] H. Whitney, Regular families of curves, Annals of Math. 34 (1933), 244–270.

Department of Mathematics, Tokyo Gakugei Univ. Nukuikita-machi, koganei-shi, Tokyo, 184, Japan

486