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ON A SPECTRAL PROPERTY OF ANALYTIC
OPERATORS

By

In Ho JEON*, Jin Chun KIM** and Woo Young LEE*

Abstract. If $T\in X(X)$ then $T$ is analytic if and only if $(\lambda-T)^{-1}$

has a pole for at least a $\lambda\in\sigma(T)$ . Furthermore, every analytic
operator has a non-trivial invariant subspace.

1. Introduction

An operator $T$ is called algebraic if there exists a non-zero polynomial $p$ such
that $p(T)=0(cf.[1],[2])$ . As a natural extension of algebraicity, Halmos ([5]

Problem 97) introduced the concept of analyticity (only for a quasinilpotent
operator). In this paper we formulate the definition of analyticity of bounded
linear operators and then give a spectral property of analytic operators.

Throughout this paper suppose $X$ is a Banach space and write $X(X)$ for the
set of all bounded linear operators on $X$ . If $T\in X(X)$ , write $\rho(T)$ and $\sigma(T)$ for
the resolvent set and the spectrum of $T$ , respectively. If $K$ is a subset of $C$ , write

$\overline{K}$ $\partial K$ , $accK$ and for the closure, the topological boundary, the accumulation
points and the isolated points of $K$ , respectively. If there exists an integer $k$ such
that $(T^{k})^{-1}(0)=(T^{k+1})^{-1}(0)$ , we say that $T$ has finite ascent. In that case the
smallest such integer $k$ is denoted by $a(\Gamma)$ . If there exists an integer $k$ such that
$T^{k}(X)=T^{k+l^{\backslash }}(X)$ , we say that $T$ has finite descent. In that case the smallest such
integer $k$ is denoted by $d(T)$ . It is known ([1], [4]) that for every compact $K\subset C$

and open $\Omega\supset K$ there exists an open set $\Delta$ such that
(i) $ K\subset\Delta\subset$ A $\subset\Omega$ ;
(ii) $\Delta$ has at most a finite number of components $\{\Phi,\cdot\}_{i-\dashv}^{n};$

(iii) every component $\Phi$, has a boundary formed by a finite number of simple
rectifiable Jordan curves $\Gamma_{ij}$ ;
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(iv) $ K\cap\Gamma_{ij}=\emptyset$ for all $i,j$ .
Then

$\Gamma=\bigcup_{i.j^{r_{ij}}}$

is called a Cauchy (or an admissible) contour contained in $\Omega\backslash K$ and surrounding
$K$ . We recall that if $T\in X(X)$ and if $f$ is analytic on an open neighborhood $\Omega$ of
$\sigma(T)$ then we define

$ f(T)=\frac{1}{2\pi i}\int_{\Gamma}f(\lambda)(\lambda-T)^{-1}d\lambda$ ,

where $\Gamma$ is a Cauchy contour contained in $\Omega\backslash \sigma(T)$ and surrounding $\sigma(T)$ .

2. Analytic operators

We begin with:

DEFINITION 1. An operator $T\in X(X)$ will be called analytic if there exists a
non-zero function $f$ analytic on an open neighborhood $\Omega$ of $\sigma(T)$ such that
$f(T)=0$ .

Evidently, we have

(2.1) $T$ is $algebraic\Rightarrow T$ is analytic.

However the converse of (2.1) is not true in general: for example, consider a
Riesz operator whose spectrum is infinite (see below Corollary 4).

Analyticity gaurantees the existence of an isolated point of the spectrum.

LEMMA 2. If $T\in X(X)$ is analytic then $\sigma(T)$ has an isolated point.

PROOF. Suppose $T$ is analytic. Thus there exists a non-zero function $f$

analytic on an open neighborhood of $\sigma(T)$ such that $f(T)=0$ . Then the spectral
mapping theorem implies that all spectral values of $T$ are zeros of $f$. Thus, if all
spectral values of $T$ are accumulation points of $\sigma(T)$ then it follows from the
Identity Theorem in the elementary complex analysis that $f\equiv 0$ on $\sigma(T)$ , which
leads a contradiction.

The converse of Lemma 2 is not true in general. We however have:

THEOREM 3. If $T\in X(X)$ , then $T$ is analytic if and only if $(\lambda-T)^{-1}$ has a
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pole for at least a $\lambda\in\sigma(T)$ .

PROOF. $(\Leftarrow)$ : Without loss of generality, suppose that $\lambda=0$ is a pole of
$(\lambda-T)^{-1}$ of order $n\neq 0$ . Thus $a(T)=d(T)=n\neq 0$ and hence $X$ can be written by
([3], [4])

$X=T^{n}(X)\oplus(T^{n})^{-1}(0)$ .

In this case we can find a Riesz projection $P_{0}$ corresponding to $0$ : namely,

$ P_{0}=\frac{1}{2\dot{m}}\int_{\partial B_{0}}(\lambda-T)^{-1}d\lambda$ ,

where $B_{0}$ is an open disk of center $0$ which contains no other points of $\sigma(T)$ . We
also have

$TP_{0}=P_{0}T,$ $P_{0}^{-1}(0)=T^{n}(X)$ , and $P_{0}(X)=(T^{n})^{-1}(0)$ .

Thus we see that $T^{n}P_{0}=0$ . In particular, the Riesz projection $P_{0}$ is equal to
$f(T)$ , where $f$ is a function which takes the value 1 on $B_{0}$ and the value $0$ on an
open neighborhood $\Omega\backslash B_{0}$ of the complement $\sigma(T)\backslash \{0\}$ such that $\overline{B_{0}}\cap$

$\overline{\Omega\backslash B_{0}}=\emptyset$ . If we define $\tilde{f}:\Omega\rightarrow C$ by setting

$\tilde{f}(\lambda)=\lambda^{n}f(\lambda)$

then $\tilde{f}$ is analytic on $\Omega$ and does not vanish on $B_{0}$ , and $\tilde{f}(T)=0$ . This says that
$T$ is analytic.,

$(\Rightarrow)$ : Suppose $T$ is analytic. Thus there exists a non-zero function $g$ analytic
on an open neighborhood $\Omega$ of $\sigma(T)$ such that $g(T)=0$ . In view of Lemma 2, we
may assume without loss of generality that $0\in iso\sigma(T)$ . Then there is an open
disk $B_{0}$ of center $0$ which contains no other points of $\sigma(T)$ and $g$ does not vanish
on $B_{0}$ . Also, we may assume that $\overline{B_{0}}\cap\overline{\Omega\backslash B_{0}}=\emptyset$ . If $P_{0}$ is the corresponding
Riesz projection as above, then the spectral mapping theorem implies that $TP_{0}$ is
quasinilpotent. Since $TP_{0}=P_{0}T$ , it follows that $T$ is reduced by the decomposition
$P_{0}(X)\oplus P_{0}^{-1}(0)$ . Thus $P_{0}(X)$ is invariant under $(\lambda-T)^{-1}$ for $\lambda\in\rho(T)$ and hence
under $g(T)$ . Therefore, by the functional calculus,

$0=g(T)|_{P_{()}(X)}=g(T|_{P_{()}(X)})=g(TP_{0})$ .

This says that $TP_{0}$ is analytic because $\sigma(TP_{0})=\{0\}$ and $g$ is non-zero on $B_{0}$ . But,
since the only analytic quasinilpotent operator is nilpotent (cf. [5] Problem 97), it
follows that $T^{n}P_{0}=0$ for some $n\in N$ . If we define $h:\Omega\rightarrow C$ by setting
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$h(\lambda)=\left\{\begin{array}{l}l\backslash \lambda if \lambda\in\Omega\backslash B_{0}\\0 if \lambda\in B_{0}\end{array}\right.$

then $h$ is analytic on $\Omega$ and the functional calculus gives

$1-P_{0}=Th(T)=h(T)T$ .

We thus have

$T^{n}=T^{n}(1-P_{0})=T^{n+1}h(T)=h(T)T^{n+1}$

which implies
$T^{n}(X)=T^{n+1}h(T)(X)\subseteq T^{n+1}(X)\subseteq T^{n}(X)$

and
$(T^{n})^{-1}(0)=(h(T)T^{n+1})^{-1}(0)\supseteq(T^{n+1})^{-1}(0)\supseteq(T^{n})^{-1}(0)$ ,

which says that $a(T)=d(T)=n\neq 0$ . Thus $\lambda=0$ is a pole of $(\lambda-T)^{-1}$ of order
$n\neq 0$ .

COROLLARY 4. Every Riesz operator having non-zero spectral values is
analytic.

PROOF. If $T\in X(X)$ is a Riesz operator then $ T-\lambda$ has finite ascent and
finite descent for every non-zero $\lambda$ (cf. [3] (3.1)). Thus the result follows from
Theorem 3.

COROLLARY 5. If $T\in X(X)$ is analytic then $aT+b$ is analytic for any
$a(\neq 0),$ $b\in C$ .

PROOF. This follows from the fact that if $(\lambda-T)^{-1}$ has a pole then so does
$\{(b+a\lambda)-(aT+b)\}^{-1}$

COROLLARY 6. Every analytic operator has a non-trivial invariant subspace.

PROOF. Suppose $T$ is analytic. If $\sigma(T)=\{\lambda\}$ , then it follows from Theorem
3 that $ T-\lambda$ is nilpotent, so that $T$ has a non-trivial invariant subspace. If $\sigma(T)$ is
not a singleton set the range of the Riesz projection for an isolated point of $\sigma(T)$

is a non-trivial invariant subspace for $T$ .

THEOREM 7. If $T\in X(X)$ is analytic and $N\in \mathscr{L}(X)$ is nilpotent commuting
with $T$ , then $T+N$ is also analytic.
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PROOF. Without loss of generality suppose that $\lambda=0$ is a pole of $(\lambda-T)^{-1}$

of order $n\neq 0$ . Thus we can write $T$ as a $2\times 2$ operator matrix:

$T=\left\{\begin{array}{ll}T_{1} & 0\\0 & T_{2}\end{array}\right\}:T^{n}(X)\oplus T^{-}‘‘$ $(O)\rightarrow T^{i1}(X)\oplus T^{-n}(0)$ ,

where $T_{1}$ is invertible and $T_{2}$ is nilpotent. Since $NT=TN,$ $N$ can be also written
as the following operator matrix:

$N=\left\{\begin{array}{ll}N_{2} & 0\\0 & N_{2}\end{array}\right\}:T^{n}(X)\oplus T^{-n}(0)\rightarrow T^{n}(X)\oplus T^{-n}(0)$ .

We note that $N_{1}$ and $N_{2}$ are both nilpotent, $T_{1}N_{1}=N_{1}T_{1}$ and $T_{2}N_{2}=N_{2}T_{2}$ . It thus
follows $T_{1}+N_{1}$ is invertible and $T_{2}+N_{2}$ is nilpotent. Therefore we can conclude
that $T+N$ has finite ascent and finite descent, and hence by Theorem 3, $T+N$ is
analytic.

It is well known that similarity preserves algebraicity. We can prove more:

THEOREM 8. Similarity preserves analyticity.

PROOF. Let $S,$ $T\in X(X)$ be similar; thus there is an invertible operator
$U\in X(X)$ such that $S=U^{-1}$ TU. Suppose $T$ is analytic, say, $f(T)=0$ for a non-
zero function $f$ analytic on an open neighborhood $\Omega$ of $\sigma(T)$ . If $\Gamma$ is a Cauchy
contour contained in $\Omega\backslash \sigma(T)$ and surrounding $\sigma(T)$ then it follows from the
functional calculus and the fact that $\sigma(S)=\sigma(T)$ that

$f(S)=f(U^{-1}TU)=U^{-1}f(T)U=0$ ,

which says that $S$ is analytic.

3. Concluding remarks

(a) Let $T_{i}\in X(X_{j}),i=1,2$ . Even if $T_{1}$ and $T_{2}$ are both analytic, $T_{1}\oplus T_{2}$ may
not be analytic. For example, if $N$ is nilpotent on $\ell_{2}$ and $U$ is the unilateral shift
on $\ell_{2}$ , then $T_{1}:=N\oplus(2+U)$ and $T_{2}:=(2+N)\oplus U$ are both analytic. But
$\sigma(T_{1}\oplus T_{2})$ has no isolated points and therefore $T_{1}\oplus T_{2}$ is not analytic. Of course,

if $\sigma(T_{1})\cap\sigma(T_{2})=\emptyset$ then $T_{1}\oplus T_{2}$ is analytic whenever the one of them is analytic.
(b) It is known ([4] Theorem $II.4.1$ ) that if $T\in X(X)$ and if $\Omega$ is a

neigborhood of $\sigma(T)$ then there exists $\epsilon>0$ such that $\sigma(S)\subset\Omega$ for any operator
$S$ in $\mathscr{L}(X)$ with $\Vert T-S\Vert<\epsilon$ (This property is called the “upper semicontinuity of
spectra”). Thus we might conjecture that the set of all analytic operators on $X$ is
an open subset of $X(X)$ . But this is not true in general. For example, let
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$W:p_{2}\rightarrow\ell_{2}$ be defined by setting

(3.1) $W(\xi_{1},\xi_{2},\xi_{3},\cdots)=(0,\xi_{1},\xi_{2}/2,\xi_{3}/3,\cdots,\xi_{l}/n,\cdots)$ .

Then $W$ is quasinilpotent but not nilpotent. Now consider the operators

$T_{t}=W^{n}$ : $\ell_{2}\rightarrow p_{2}$ for each $n\in N$ .

Then each $T_{n}$ is not analytic and $T_{n}\rightarrow 0$ , while $0$ is analytic.
(c) The topological boundary of the set of algebraic operators may not be

analytic operators. For example, consider the operators $S_{n}$ : $\ell_{2}\rightarrow\ell_{2}$ defined by
setting

$S_{ll}(\xi_{1},\xi_{\underline{7}},\xi_{\urcorner},\cdots)=(0,\xi_{1},\xi_{2}/2,\cdots,\xi_{l}/n,0,0,\cdots)$ for each $n\in N$ .

Then each $S_{n}$ is nilpotent and hence algebraic. However observe that $S_{n}\rightarrow W$ ,

where $W$ is defined as in (3.1).

(d) From the punctured neighborhood theorem ([4], [8]), we can see that if
$T\in \mathscr{L}(X)$ then

(3.2) $\partial\sigma(T)\backslash \sigma_{e}(T)\neq\emptyset\Rightarrow T$ is analytic,

where $\sigma_{e}(T)$ denotes the essential spectrum of $T$ . We tried to extend (3.2) to the
absence of index:

(3.3) iso $\sigma(T)\cap\Omega(T)\neq\emptyset\Rightarrow T$ is analytic,

where $\Omega(T)$ denotes the set of all $\lambda\in C$ such that $ T-\lambda$ is ‘decomposably
regular’, in the sense ([6], [7]) that there is $T_{\lambda^{\prime}}\in X(X)$ for which
$T-\lambda=(T-\lambda)T_{\lambda^{\prime}}(T-\lambda)$ and $T_{\lambda^{\prime}}$ is invertible. However, unfortunately, (3.3) fails.
For example, consider the operator

$T=\left\{\begin{array}{ll}W & 0\\I & 0\end{array}\right\}:\ell_{2}\oplus\ell_{2}\rightarrow\ell_{2}\oplus\ell_{2}$ ,

where $W$ is defined as in (3.1). Then $T$ is decomposably regular with the
invertible operator

$T_{0^{\prime}}=\left\{\begin{array}{ll}0 & I\\I & 0\end{array}\right\}$ ,

and $0$ is the isolated point of $\sigma(T)$ . However $T$ is quasinilpotent, and hence it is
not analytic.

(e) The obvious extension of polynomials in an operator seems to be ”infinite
polynomials”, more precisely, power seies; that is, if $f$ is a non-zero analytic
function on a simply connected domain (or an open disk) containing $\sigma(T)$ , then
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we would like to call $T$ an analytic operator when $f(T)=0$ . However, this
definition does not make sense (If we concern with only quasinilpotent then the
argument of Halmos ([5] Problem 97) make sense.): in that case, in fact,

analyticity is equivalent to algebraicity. To see this, appeal to Theorem 3. If $T$ is
analytic in the above sense then by Theorem 3, $T$ has a finite spectrum, for whose
elements, $(\lambda-T)^{-1}$ has poles. Thus, via an argument of Riesz projection, $T$ may
be expressed as

$T=T_{1}\oplus\cdots\oplus T_{n}$ ,

where if $\sigma(T_{j})=\{\lambda_{j}\}$ , then $T_{j}-\lambda_{j}$ is nilpotent for each $i=1,\cdots,n$ . Then $T_{j}$ is
algebraic and hence $T$ is algebraic. (Perhaps Aupetit ([1] P.67) would assert this
fact in the above viewpoint.)
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