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MORPHISMS OF INVERSE SYSTEMS
REQUIRE MESHES

By

S. MARDE I and N. UGLE I

Abstract. Resolutions of spaces can be viewed as special inverse
systems, which behave very much like inverse systems behave in the
compact case. T. Watanabe defined a category of polyhedral
resolutions and showed that the limit functor defines a natural
equivalence between this category and the category of topologically
complete spaces. In order to develop his theory he had to consider
gauged inverse systems, i.e., inverse systems whose terms are
endowed with certain coverings, called meshes. This paper is
devoted to the question if one can develop an analogous theory for
usual (nongauged) inverse systems. An example is exhibited, which
suggests a negative answer. i

1. Introduction

In this paper we consider inverse systems $X=(X_{\ell l}, p_{\Omega tI},,A)$ , indexed by
directed sets $A$ . Each term is a topological space X. and $p_{/a}$ , : $X.,$ $\rightarrow X_{a}$ is a
mapping, defined whenever $a\leq a^{\prime}$ If $a\leq a^{\prime}\leq a^{\prime\prime}$ , then $p_{ll\mathcal{O}},p_{cl\mathcal{O}},,$ $=p,,$, and
$p_{aa}=id$ . We say that $X$ is cofinite if $A$ is cofinite, i.e., every element of $A$ has
only finitely many predecessors. $X$ is polyhedral if every term $X_{a}$ is a polyhedron
endowed with the CW-topology. With every system $X$ is associated its limit
space $X=\lim X$ , as well as a collection $p=(p_{a})$ of canonical mappings
$p_{tl}$ : $X\rightarrow X_{l}$ , satisfying condition

$p_{aa^{\prime}}p_{a^{\prime}}=p_{a},a\leq a^{\prime}$ .

We write $p:X\rightarrow X$ .
The notion of resolution was introduced and studied by several authors (P.

Bacon [1], K. Morita [9], [10], [11], S. Marde\v{S}i\v{C} [2], [3]. Also see [4], [6]). In
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order to recall it, we need some notation. If $\circ\psi$ is a covering of $Y$ and
$f,g:X\rightarrow Y$ are mappings, then $(f,g)\prec^{o}\psi$ means that, every $x\in X$ admits a
$ V\in\circ\psi$ such that $f(x),g(x)\in V$ . For coverings $01l^{0}\mathfrak{U}^{\prime}$ of $X$ , we write $0|l^{\prime}\prec 0|l$ , if
$\sigma \mathfrak{U}^{\prime}$ refines $0|l$ . By Cov(X) we denote the set of all normal coverings of the space
X. For paracompact spaces, normal coverings coincide with open coverings. In
particular, this is the case for polyhedra endowed with the CW-topology. If
$A\subseteq X$ and $0|l\in Cov(X)$ , then the star of $A$ with respect to $0|A$ is the set
$st(A,Ql)=u\{U\in ou|A\cap U\neq\emptyset\}\subseteq X$ . We also define $st(ql)=\{st(U^{\prime},ql)|U^{\prime}\in ql\}\in$

$Cov(X)$ .
A resolution of a space $X$ consists of an inverse system $X$ and of a collection

of (canonical) mappings $p=(p, ):X\rightarrow X$ , satisfying (1). Moreover, for any
polyhedron $P$ and any $\circ\gamma\in Cov(P)$ , the following two condition must be satisfied:

(R1) $(\forall f:X\rightarrow P)(\exists a\in A)(\exists g;X_{l}\rightarrow P)$

$(gp_{\ell\iota},f)\prec\gamma^{\rho}$ .

(R2) $(\exists\psi^{\prime}\in Cov(P))(\forall a\in A)(\forall g,g^{\prime} : X, \rightarrow P)$

$(gp_{tl},g^{\prime}p_{t/})\prec^{o}\psi^{\prime}\Rightarrow(\exists a^{\prime}\geq a)(gp_{ltl^{\prime}},g^{\prime}p_{a\ell l^{\prime}})\prec Y$.

If $X$ is an inverse system formed by compact Hausdorff spaces $X_{a}$ , then its
limit $X$ is also a Hausdorff compact space and the canonical mappings
$p_{a}$ : $X\rightarrow X_{a}$ satisfy conditions (R1) and (R2), i.e., $p=(p_{a}):X\rightarrow X$ is a
resolution. On the other hand, if $p:X\rightarrow X$ is a resolution consisting of
completely regular spaces $X_{a}$ and the space $X$ is topologically complete (e.g.,

paracompact), then $p$ is a limit of $X$ . Therefore, resolutions can be viewed as
special cases of inverse limits.

If $X$ and $Y=(Y_{b},q_{bb},, B)$ are inverse systems of spaces, indexed by directed
sets $A$ , $B$ respectively, then a mapping of systems $f$ : $X\rightarrow Y$ consists of a
function $f:B\rightarrow A$ and of mappings $f_{b}$ : $X_{\int(b)}\rightarrow Y_{b},$ $b\in B$ , having the property that,

whenver $b\leq b^{\prime}$ , there exists an $a\geq f(b),f(b^{\prime})$ , such that

$f_{b}p_{f(b)a}=q_{bb^{\prime}}f_{b^{\prime}}p_{f(b^{\prime})a}$ . (2)

A mapping of systems $f$ induces a unique limit mapping $f=\lim f:X\rightarrow Y$ ,

satisfying the condition

$f_{b}p_{f(b)}=q_{b}f,b\in B$. (3)

(Using the same letter $f$ for $f:B\rightarrow A$ and $f:X\rightarrow Yshould$ cause no confusion.)

A resolution of a mapping $f:X\rightarrow Y$ consists of resolutions of spaces
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$p:X\rightarrow X$ and $q:Y\rightarrow Y$ and of a mapping of systems $f:X\rightarrow Y$ such that (3)

holds. The resolution $(p,q,f)$ is polyhedral if $p$ and $q$ are polyhedral
resolutions.

Every topological space $X$ and every mapping $f:X\rightarrow Y$ admit polyhedral
resolutions ([1], Theorem 3.2, [3], Theorem 11). However, there are simple
examples of mappings $f:X\rightarrow Y$ and of polyhedral resolutions $ p:X\rightarrow$

$X,$ $q:Y\rightarrow Y$ , such that there exists no mapping of systems $f:X\rightarrow Y$ , satisfying
condition (3) (see, e.g., [12]).

The only way out of this difficulty is to consider approximate mappings
instead of mappings of systems. In order to define this notion, T. Watanabe [13]

enriched the structure of an inverse system by requiring that each term $X_{a}$ of the
system $X$ is endowed with a normal covering $0\mathfrak{U}_{a}$ , called the mesh at $a$ . Meshes
are subject to the following requirement.

(A) $(\forall a\in A)(\forall^{0}\mathfrak{U}\in Cov(X_{a}))(\exists a^{\prime}\geq a)(\forall a^{\prime\prime}\geq a^{\prime})$

$\sigma 0$ .

We refer to such systems $\mathfrak{X}=(X_{a},0\mathfrak{U}_{a},p_{aa},,A)$ as gauged systems and we denote
them by script characters (continuing to use bold characters for usual inverse
systems). By definition, the limit of a gauged system $\mathfrak{X}=(X_{a},q\iota_{a},p_{aa},,A)$ is the
limit $X$ of the associated system $X=(X_{a},p_{aa},,A)$ . Similarly, $p=(p_{a}):X\rightarrow \mathfrak{X}$ is a
gauged resolution of $X$ if $p=(p_{a}):X\rightarrow X$ is a resolution of $X$ , and
$f=(f,f_{a}):\mathfrak{X}\rightarrow W$ is a mapping of gauged systems if $f=(f,f_{a}):X\rightarrow Y$ is a
mapping of systems.

An inverse system $X=(X_{a},p_{c/},A)$ is said to admit meshes provided there
exists a family of coverings $\{^{0}\mathfrak{U}_{tl}|a\in A\},0\mathfrak{U}_{a}\in Cov(X_{a})$ , such that $\mathfrak{X}=(X_{a},\sigma 1l_{a}$ ,

$p_{a},A)$ is a gauged system. Such a family of coverings is called admissible. There
exist usual inverse systems, which do not admit meshes. Necessary and sufficient
conditions for the existence of admissible meshes have been studied in [7]. A
simple example of a system which does not admit meshes is the system
$X=(X_{n},p_{nn},,N)$ , where $X_{n}=R$ , for each $n\in N$ , and all the bonding mappings
$p_{n\prime\iota}$ , are identity mappings ([7], Example 5).

A gauged approximate mapping $f:\mathfrak{X}\rightarrow(\mathfrak{Y}=(Y_{b},\circ\psi_{b},q_{bb},, B)$ is a collection
$f=\{f,f_{b}|b\in B\}$ consisting of a function $f:B\rightarrow A$ and of mappings
$f_{b}$ : $X_{f(b)}\rightarrow Y_{b},b\in B$ , such that the following condition holds:

(AM) $(\forall b\leq b^{\prime})(\exists a\geq f(b),f(b^{\prime}))(\forall a^{\prime}\geq a)$ ,

$(q_{bb^{\prime}}f_{b^{\prime}}p_{f(b^{\prime})a^{\prime}},f_{b}p_{f(b)a^{\prime}})\prec st(\gamma r_{b})$ .
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Note that this definition, due to Watanabe [13 \S 2] uses meshes of $oy$ to

measure the discrepancy from commutativity of the diagrams formed by the

mappings $f_{b},f_{b},,b\leq b^{\prime}$ , and the relevant bonding mappings. In fact, this is the
primary reason for introducing meshes.

Watanabe showed ([13], Lemma 7.3, also see [8], Theorem 5.8) that, for

topologically complete spaces $Y_{b}$ , every approximate mapping $f:\mathfrak{X}\rightarrow W$ admits
unique mapping $f:X\rightarrow Y$ between the limit spaces, which satisfies the following
condition

(LAM) $(\forall b\leq B)(\forall^{O}|\Gamma\in Cov(Y_{b}))(\exists b^{\prime}\geq b)(\forall b^{\nu}\geq b^{\prime})$ ,

$(q_{bb^{\prime\prime}}f_{b^{\prime\prime}}p_{jtb^{\prime\prime})}, q_{b}f)\prec^{o}\iota^{r}$ .

The mapping $f$ is called the limit of $f$ . If $f:X\rightarrow Y$ is a mapping
$p:X\rightarrow \mathfrak{X},q:Y\rightarrow(\mathfrak{Y}$ are resolutions and $f:.f\rightarrow(\mathfrak{Y}$ is a gauged approximate
mapping satisfying (LAM), we say that $f$ is a gauged approximate resolution of
$f$ .

One of the main results of Watanabe’s theory is his approximate expansion
theorem ([13], Theorem (4.3)), which asserts that, for an arbitrary gauged
resolution $p:X\rightarrow \mathfrak{X}$ and a cofinite polyhedral gauged resolution $q:Y\rightarrow(\mathfrak{Y}$ , every
mapping $f:X\rightarrow Y$ admits a gauged approximate mapping $f:\mathfrak{X}\rightarrow(\mathfrak{Y}$ , which
satisfies condition (LAM).

The main purpose of this paper is to show that, for usual (nongauged) inverse
systems, an analogous result does not exist. In order to state our result precisely,
we introduce the following definition.

DEFINITI0N 1. Let $f:X\rightarrow Y$ be a mapping and let $p:X\rightarrow X$ and $q:Y\rightarrow Y$

be resolutions. A collection $f=(f,f_{b})$ , consisting of a function $f:B\rightarrow A$ and of
mappings $f_{b}$ : $X_{\int tb)}\rightarrow Y_{b},b\in B$ , is said to be an approximate expansion of $f$ with
respect to $p$ and $q$ , providied the condition (LAM) is satisfied.

THEOREM 1. There exists a mapping $f:X\rightarrow Y$ and there exist polyhedral
resolutions $p:X\rightarrow X$ and $q:Y\rightarrow Y$ , such that $Y$ is cofinite and there does not
exist an approximate expansion $f=(f,f_{b})$ of$f$ with respect to $p$ and $q$ .

We see in this theorem a proof for our claim that, in order to develop a
satisfactory theory of morphisms between inverse systems, meshes are
indispensable.



Morphisms of inverse systems require meshes 361

2. Counterexample to the nongauged expansion theorem

In this section we exhibit an example, which proves the above theorem. For
this purpose we need a simple lemma.

LEMMA 1. Let $C$ be the Cantor set, let $I=[0,1]$ be the unit interval and let
$h:C\rightarrow I$ be a mapping onto I. There exists an inverse sequence $C=(C_{\iota}, r_{\iota/\iota},,N)$ ,

consisting offinite discrete spaces $C_{\iota}$ and of surjective mappings $r_{nn},$ , and there
exist surjective mappings $r_{n}$ : $C\rightarrow C_{ll},n\in N$ , such that $r=(r_{n}):C\rightarrow C$ is the
inverse limit of C. Moreover, for any $n\in N$ and any mapping $g:C_{n}\rightarrow I$ , there
exist an open covering $\circ W$ of I and a point $z\in C$ such that, for each $W\in\circ W$ , either
$h(z)\not\in W$ or $gr_{\iota}(z)\not\in W$ .

PROOF. The first assertion is well-known and we omit its proof. To prove the
second assertion, note that $g(C_{n})$ is a finite set. Hence, there exists a point
$t\in I\backslash (g(C_{n})\cup\{0,1\})$ and there exists an $\epsilon>0$ such that $(t-\mathcal{E},t+\epsilon)\subseteq I$ and
$(t-\mathcal{E},t+\mathcal{E})\cap g(C_{ll})=\emptyset$ . Put $\circ W=\{[0,t),(t-\mathcal{E},t+\epsilon),(t, 1]\}$ and choose as $z$ any point
from $C$ such that $h(z)=t$ . Clearly, $\circ W$ and $z$ have the desired properties.

Construction of the example. For each $m\in N$ , let $C^{m}=C\times\{m\},I^{m}=I\times\{m\}$ ,
$h^{m}=h\times 1:C^{m}\rightarrow I^{m},C^{m}=(C_{n}^{m}, r_{nn}^{m},,N)$ and $r^{m}=(r_{n}^{m}):C^{m}\rightarrow C^{m}$ be copies of $C,$ $I,h$ ,
$C$ and $r$ , respectively (see Lemma 1). We define $X,$ $Y$ and $f$ as disjoint sums

$X=\prod_{m\in N}C^{ln},$ $Y=1II^{ln},f=1Ih^{m}\iota n\in N\prime n\in N$ (4)

We define $q=(q_{m}):Y\rightarrow Y=(Y_{m},q_{mm},,N)$ , by putting $Y_{m}=Y,q_{mm},$ $=id,$ $q_{m}=id$ .
Clearly, $q$ is a cofinite polyhedral resolution of Y. We define $p=(p_{a}):X\rightarrow X=$

$(X_{a},p_{aa},,A)$ as follows. $A=N^{N}$ is the set of all sequences in $N$ , ordered by
putting $a=(a_{1},a_{2},\cdots)\leq a^{\prime}=(a_{1}^{\prime},a_{2}^{\prime},\cdots)$ , provided $a_{j}\leq a$[, for all $i\in N$ .

$x_{tl}=1IC_{a_{m}}^{m}m\in N$
(5)

$p_{cw^{\prime}}|C_{a_{m}^{\prime}}^{m}=r_{a_{m}a_{m}^{\prime}}^{m}$ : $C_{a_{n}^{\prime}}^{m}\rightarrow C_{a_{n\prime}}^{m}\subseteq X_{a}$ , (6)

$p_{a}|C^{m}=r_{a_{n}}^{m}$ : $C^{m}\rightarrow C_{a_{m}}^{m}\subseteq X_{a}$ . (7)

That $p$ is indeed a resolution of $X$ is easily seen by verifying conditions (B1) and
(B2) of [6, $I$ , \S 6, Theorem 5], which are equivalent to conditions (R1) and (R2).

This verification was performed in [5, Theorem 6]. Note that each $X_{a}$ is a
countable discrete space, hence, it is a polyhedron.

Now consider any function $f$ : $N\rightarrow A$ and any collection of mappings
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$f_{m}$ : $X_{r(m)}\rightarrow Y,m\in N$ . We must prove that condition (LAM) is not satisfied. Since
all $q_{m},,q,,$

}
are identity mappings, (LAM) assumes the following simpler form

$(\forall m\in N)(\forall^{o}\psi\in Cov(Y))(\exists m^{\prime}\geq m)(\forall m^{\prime\prime}\geq m^{\prime})$

$(f_{m^{\prime\prime}}p_{f(\prime n^{\prime\prime})},f)\prec V$ . (8)

Consequently, it suffices to show that, there exists an open covering $\circ\psi$ of $Y$ such
that $(f_{m}p_{f(’’ l)},f)\prec V$ fails, for each $m\in N$ , or equivalently, there exists a
$V\in Cov(Y)$ and there exist points $x^{m}\in X,m\in N$ , such that, for each $m\in N$ , the
following condition holds:

$(\alpha)$ For each $ V\in\circ\psi$ , either $f(x^{m})\not\in V$ or $f_{m}p_{f_{|}}(x^{m})\not\in V$ .

In order to achieve this, it suffices to define, for each $m\in N$ , an open
covering $\circ\psi^{m}$ of $I^{m}$ and a point $x^{m}\in C^{m}\subseteq X$ having the following property:

$(\beta)$ For each $V\in^{o}\psi^{m}$ either $h^{\prime\prime l}(x^{\prime\prime\prime})\not\in V$ or $f_{m}r_{\int(}^{lll}(x^{\prime\prime\prime})\not\in V$ .
Indeed, one can then define $\circ\psi$ as the union of all collections $\circ\psi^{m},m\in N$ . Since
the sets $I^{m}$ are open in $Y,$ $\gamma$

. is an open covering of Y. Moreover, condition $(\alpha)$

is satisfied. To see this, consider a $V\in^{o}1^{\Gamma}$ . If $V$ belongs to $\circ\psi^{m}$ , then by $(\beta)$ ,

either $h(x^{m})=h^{\prime\prime 1}(x^{\prime\prime\prime})\not\in V$ or $f,p_{jt/\prime l)}(x^{\prime\prime l})=f_{l}r_{jt^{\iota_{l)}}}^{\prime\prime},,(x^{\prime\prime\prime})\not\in V$ . If $V\not\in^{\circ}r^{m}$ , then $V\subseteq I^{\prime n^{\prime}}$

$m^{\prime}\neq m$ , and since $ I^{\prime 1I}\cap J^{\prime\prime t^{\prime}}=\emptyset$ and $h(x^{\prime\prime\prime})=h^{\prime\prime\prime}(x^{\prime\prime\prime})\in I^{\prime\prime t}$ we conclude that
$h(x^{m})\not\in V$ .

In defining the covering $\circ\psi^{l\dagger l}$ and the point $x^{m}\in C^{\prime\prime l}$ , for a given $m\in N$ , we
distinguish two cases. $(i)f,(C_{/(}^{\prime\prime t})\subseteq I^{m}$ In this case we apply Lemma 1 to
$h=h^{m}:C^{\prime\prime\prime}\rightarrow I^{\prime\prime 1},r^{m}:C^{\prime\prime\prime}\rightarrow C^{\prime\prime t},n=f(m)\in N$ and $g=f_{t}|C_{\int(m)}^{\prime n}:C_{f(m)}^{\prime\prime t}\rightarrow J^{\prime\prime l}$ We
obtain a covering $\circ\psi^{\prime\prime t}$ of $I^{\prime\prime l}$ and a point $x^{\prime lI}\in C^{ll1}$ such that, for each $V\in\gamma r^{ln}$

either $h^{\prime n}(x^{\prime\prime\prime})\not\in V$ or $f,r_{\int(\prime ll)}^{\prime\prime\prime}(x^{lll})\not\in V$ . $(ii)$ There exists a point $y\in C_{f(m)}^{\prime\prime\prime}$ such that
$f_{m}(y)\not\in I^{m}$ . In this case we take for $\circ\psi^{\prime\prime\prime}$ the covering which consists of the set
$V=I^{m}$ alone and we choose for $x^{m}\in C^{m}$ a point such that $r_{f\langle m)}^{m}(x^{m})=y$ . Then
$f_{m}r_{f(m)}^{m}(x^{m})\not\in I^{m}=V$ . Hence, in both cases $\circ\psi^{m}$ and $x^{m}$ satisfy $(\beta)$ .

REMARK 1. It is a consequence of Watanabe’s approximate expansion
theorem for gauged systems, that in the above example the system $Y$ does not
admit admissible meshes.
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