THE MODULI SPACE OF ANTI-SELF-DUAL CONNECTIONS OVER HERMITIAN SURFACES

By
Shiho Satoh
The Doctoral Research in Human Culture, Ochanomizu University

1 Introduction

Let (M, g) be a compact Hermitian surface with an orintation induced by the complex structure of M, and P a principal bundle over M with structure group $S U(n)$. Then a canonical representation ρ of $S U(n)$ induces a smooth complex vector bundle $E=P \times{ }_{\rho} \mathbf{C}^{n}$. A necessary and sufficient condition for a $S U(n)$ connection D on E to be an anti-self-dual connection is that the curvature of D is a differential 2 -form of type (1,1), and is orthogonal to the fundamental form $\boldsymbol{\Phi}$ of (M, g). Hence, a holomorphic structure is induced on E and hence on $E^{\circ}{ }^{0} E$ (the subbundle of End E consisting of endomorphisms with trace 0) by an anti-self-dual connection D. Itoh ([4]) showed that the moduli space of anti-self-dual connections over Kähler surfaces is a complex manifold. We will extend this result over Kähler surfaces to over Hermitian surfaces, which are not necessarily Kählerian.

Let K_{M} be a canonical line bundle over M. We define $\tilde{H}_{D}=$ $H_{D}^{0}\left(M ; O\left(\operatorname{End}^{0} E \otimes K_{M}\right)\right.$ as the space of holomorphic sections, where $\operatorname{End}^{0} E$ is endowed with the holomorphic structure induced from the irreducible anti-selfdual connection D. We denote by, \mathcal{M} the moduli space of irreducible anti-selfdual connections (the quotient space of irreducible anti-self-dual connections by the gauge transformation group $S U(E)$), and set.M_{0} as follows: $\mu_{0}=$ $\left\{[D] \in \cdot M \tilde{H}_{D}=(0)\right\}$. Then we obtain the following

Theorem 1. Let M be a compact Hermitian surface. If μ_{0} is not empty, then μ_{0} is a complex manifold.

We can make H_{D} vanish under a certain condition. On a Hermitian manifold
$(M, g), \operatorname{Scal}(g)$ denotes the scalar curvature of the Hermitian connection with respect to g. Then we have the following vanishing theorem.

Proposition 1. Let (M, g) be a compact Hermitian surface with fundamental form Φ which satisfies $\partial \bar{\partial} \Phi=0$. If $\int_{M} \operatorname{Scal}(g) d v \geq 0$, then $\tilde{H}_{D}=(0)$.

With this proposition, Theorem 1 implies the following.

THEOREM 2. Let (M, g) be a compact Hermitian surface which satisfies the same condition as proposition 1 . If ./I is not empty, then. II is a complex manifold.

2. Two moduli spaces

In this section we will recall the moduli spaces of anti-self-dual connections and holomorphic semi-connections following [1], [4], and [5].

Let (M, g) be a compact oriented Hermitian surface with fundamental form $\Phi=\sqrt{-1} \sum g_{\alpha \beta} d z^{\alpha} \wedge d \bar{z}^{\beta}$. We will denote by $A^{p}\left(\right.$ resp. $\left.A^{p, q}\right)$ the space of real valued smooth p-forms (resp. (p, q)-forms) on M. Then we have the decomposition of the space of 2 -forms,

$$
\begin{equation*}
A^{2} \otimes \mathbf{C}=A^{2,0} \oplus A^{1,1} \oplus A^{0,2} \tag{2.1}
\end{equation*}
$$

The fundamental form Φ decomposes $A^{1,1}$ further:

$$
\begin{equation*}
A^{1,1}=A_{\Phi}^{1,1} \oplus\left(A_{\Phi}^{1,1}\right)^{\perp} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{\Phi}^{1,1}=\left\{f \Phi: f \in C^{\infty}(M ; \mathbf{C})\right\}, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(A_{\Phi}^{1,1}\right)^{\perp}=\left\{\psi=\sum \psi_{\alpha \bar{\beta}} d z^{\alpha} \wedge \bar{z}^{\beta}: \sum g^{\alpha \bar{\beta}} \psi_{\alpha \bar{\beta}}=0\right\} \tag{2.4}
\end{equation*}
$$

$\left(A_{\Phi}^{1,1}\right)^{\perp}$ is the space of all primitive $(1,1)$-forms in (M, g). We put

$$
\begin{equation*}
A_{+}^{2}=\left(A^{2,0}+A_{\Phi}^{1,1}+A^{0,2}\right) \cap A^{2}, \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{-}^{2}=\left(A_{\Phi}^{1,1}\right)^{\perp} \cap A^{2} . \tag{2.6}
\end{equation*}
$$

Then A_{+}^{2} (resp. / A_{-}^{2}) is the self-dual part (resp. the anti-self-dual part) of A^{2} ([1]). Then projection from A^{2} onto A_{-}^{2} is denoted by p_{+}.

Let P be a principal bundle over M with structure group $S U(n)$. Then the canonical representation ρ of $S U(n)$ induces a smooth complex vector bundle $E=P \times{ }_{\rho} \mathbf{C}^{n}$. We denote by h and ω, the Hermitian structure and the n-form on E defined by the $S U(n)$-structure of P, respectively. Let $G L(E)$ denote the group of C^{∞}-bundle automorphisms of E (inducing the identity transformations on the base manifold M). Let $S L(E)$ (resp. $S U(E)$) denote the subgroup of $G L(E)$ consisting of bundle automorphisms of E (resp. unitary automorphisms of (E, h)) with determinant 1. They are called the gauge transformation groups of E. Let End ${ }^{0}$ (resp. End ${ }^{0}(E, h)$) the subbundle of the endomorphism bundle EndE consisting of endomorphisms (resp. skew-Hermitian endomorphisms) with trace 0. End ${ }^{0}$ (E, h) is the real subbundle of $E n d{ }^{0} E$ and we have

$$
\begin{equation*}
\operatorname{End}^{0} E=\operatorname{End}^{0}(E, h) \oplus \sqrt{-1} \operatorname{End}^{0}(E, h) \tag{2.7}
\end{equation*}
$$

For $\psi=\psi_{0}+\sqrt{-1} \psi_{1}, \psi_{0}-\sqrt{-1} \psi_{1}$, we denote the complex conjugate by $\bar{\psi}$, which is defined by $\bar{\psi}=\psi_{0}-\sqrt{-1} \psi_{1}$.

An $S U(n)$-connection D in (E, h) is a connection in E preserving h and ω, i.e., a homomorphism $D: A^{0}(E) \rightarrow A^{1}(E)$ over \mathbf{C} such that

$$
\begin{align*}
& D(f \sigma)=\sigma d f+f . D \sigma \quad \text { for } f \in A_{\mathbf{C}}^{0}, \sigma \in A_{\mathbf{C}}^{0}(E), \\
& D h=0, \\
& D \omega=0 \tag{2.8}
\end{align*}
$$

The set of $S U(n)$-connections has an affine structure. Namely, it is given by $\left\{D+v: v \in A^{1}\left(\operatorname{End}^{0}(E, h)\right)\right\}$ for a fixed $S U(n)$-connection D. We can extend an $S U(n)$-connection D to a connection in $\operatorname{End}^{0}(E, h)$. We call D irreducible when the kernel of $D: A^{0}\left(\operatorname{End}^{0}(E, h)\right) \rightarrow A^{1}\left(\operatorname{End}^{0}(E, h)\right)$ is trivial. An $S U(n)$-connection D is called anti-self-dual, if the curvature form $R(D)$ belongs to $A_{-}^{2}\left(\operatorname{End}^{0}(E, h)\right.$, namely $p_{+} R(D)=0$. Let Asd be the set of all anti-self-dual $S U(n)$-connections in (E, h). The gauge transformation group $S U(E)$ acts on the space of $S U(n)$ connections and leaves Asd invariant. Thus we obtain the moduli space Asd/SU(E) of anti-self-dual $S U(n)$-connection in (E, h).

A semi-connection $D^{\prime \prime}$ in E is a linear map $D^{\prime \prime}: A^{0}(E) \rightarrow A^{0,1}(E)$ satisfying $D^{\prime \prime}(f \sigma)=D^{\prime \prime} f \sigma+f D^{\prime \prime} \sigma$ for $\sigma \in A^{0}(E), f \in C^{\infty}(M ; \mathbf{C})$. Moreover we assume that $D^{\prime \prime}$ preserves the n-form ω, i.e.; $D^{\prime \prime} \omega=0$. The set of semi-connections has an (complex) affine space. Namely, it is given by $\left\{D^{\prime \prime}+v: v \in A^{0,1}\left(\operatorname{End}^{0} E\right)\right\}$ for a fixed semi-connection $D^{\prime \prime}$. We can extend $D^{\prime \prime}$ to a semi-connection in End ${ }^{0} E$. We call $D^{\prime \prime}$ simple when the kernel of $D^{\prime \prime}: A^{0}\left(\operatorname{End}^{0} E\right) \rightarrow A^{0,1}\left(\operatorname{End}^{0} E\right)$ is trivial. A semi-connection $D^{\prime \prime}$ which satisfies $D^{\prime \prime} \circ D^{\prime \prime}=0$ defines a unique holomorphic structure on E. We call such a semi-connection holomorphic. Let Hol be the set
of all holomorphic semi-connections in E. The gauge transformation group $S L(E)$ acts on the space of semi-connections and leaves Hol invariant. Thus we obtain the moduli space $\mathrm{Hol} / \mathrm{SL}(\mathrm{E})$ of holomorphic semi-connections in E.

Let D be an $S U(n)$-connection in (E, h). Set $D=D^{\prime}+D^{\prime \prime}$ where $D^{\prime}: A^{0}(E) \rightarrow A^{0,1}(E)$. Then $D^{\prime \prime}$ is a semi-connection in E. This natural map $D \mapsto D^{\prime \prime}$ is a bijective map of the set of $S U(n)$-connections onto the set of semiconnections. If D is anti-self-dual, $D^{\prime \prime}$ is holomorphic. In fact the (0,2)component of $R(D)=D^{\prime \prime} \circ D^{\prime \prime}$. Thus we obtain a natural map f : Asd $\operatorname{SU}(E)$ $\rightarrow \mathrm{Hol} / \operatorname{SL}(E)$. It is known that f is an injective map (cf. [5, p.243]). Moreover we have

Lemma 1. If an anti-self-dual connection D is irreducible, then $D^{\prime \prime}$ is simple.

Proof) Suppose $\phi \in A^{0}\left(\right.$ End $\left.^{0} E\right)$ be a holomorphic section of End ${ }^{0} E$. Then $D^{\prime \prime} \phi=0$. By the vanishing theorem of the holomorphic sections ([5]), we obtain $D \phi=0$. By the assumption that D is an irreducible connection, we conclude $\phi \equiv 0$.

In order to consider infinitesimal deformations, we introduce two complexes (2.9), (2.10), and their cohomology groups. For $D \in$ Asd set

$$
\begin{equation*}
0 \rightarrow A^{0}\left(\operatorname{End}^{0}(E, h)\right) \xrightarrow{D} A^{1}\left(\operatorname{End}^{0}(E, h)\right) \xrightarrow{D_{+}} A_{+}^{2}\left(\operatorname{End}^{0}(E, h)\right) \rightarrow 0 \tag{2.9}
\end{equation*}
$$

where $D_{+}=p_{+} \circ D$. Their cohomology groups are denoted by $H_{D}^{p}(p=0,1,2)$. For $D^{\prime \prime} \in$ Hol , we consider the Dolbeault complex

$$
\begin{equation*}
0 \rightarrow A^{0,0}\left(\mathrm{End}^{0} E\right) \xrightarrow{D^{\prime \prime}} A^{0,1}\left(\mathrm{End}^{0} E\right) \xrightarrow{D^{\prime \prime}} A^{0,2}\left(\mathrm{End}^{0} E\right) \rightarrow 0 \tag{2.10}
\end{equation*}
$$

and their cohomology groups are denoted by $H_{D^{\prime \prime}}^{o, p}(p=0,1,2)$. We set

$$
\begin{equation*}
\mathscr{M}_{0}=\left\{[D] \in \text { Asd } / S U(E): D \text { is irreducible and } H_{D}^{2} \text { vanishes }\right\} \tag{2.11}
\end{equation*}
$$

Then it is known that $\cdot \mu_{0}$ is a smooth manifold, and its tangent space at $[D]$ is naturally isomorphic to H_{D}^{1}. We set

$$
\begin{equation*}
\mathscr{H}_{0}=\left\{\left[D^{\prime \prime}\right] \in \mathrm{Hol} / S U(E): D^{\prime \prime} \text { is simple and } H_{D^{\prime \prime}}^{0.2} \text { vanishes }\right\} \tag{2.12}
\end{equation*}
$$

Similarly it is known that \mathscr{H}_{0} is a complex manifold and its tangent space at [$D^{\prime \prime}$] is naturally isomorphic to $H_{D^{\prime \prime}}^{0,1}$.

Now we consider the following natural homomorphism between two complexes (2.9), (2.10) for an irreducible anti-self-dual $S U(n)$-connection D and its corresponding holomorphic semi-connection D :

where

$$
\begin{aligned}
& h_{0}: \text { inclusion } \\
& h_{1}: \alpha \rightarrow \alpha^{0,1} \\
& h_{2}: \alpha \rightarrow \alpha^{0,2}
\end{aligned}
$$

and $\alpha^{0, p}$ represents the ($0, p$)-component of α. Itoh showed that h_{p} induces an isomorphism of H_{D}^{p} onto $H_{D^{\prime \prime}}^{0, p}(p=0,1,2)$ when (M, g) is a Kähler surface. We can extend this result to the case of a Hermitian surface. Its proof will be given in section 3. Therefore we have $f\left(\mathscr{M}_{0}\right) \subset \mathscr{H}_{0}$ for the natural map f. Moreover it is known that f is a differentiable map. Since we can regard the differential f_{*} of f at $[D]$ as h_{1}, f is a diffeomorphisms of. \mathscr{M}_{0} into \mathscr{H}_{0}. Thus it has been shown that \mathscr{M}_{0} is a complex manifold. We note that $H_{D^{\prime \prime}}^{0,2}$ is isomorphic to $\tilde{H}_{D}=H^{0}\left(M, \mathcal{C}\left(\operatorname{End}^{0} E \otimes K_{M}\right)\right)$ by the Serre duality. Hence our Theorem 2 has been proved.

3. Isomorphisms between cohomology groups H_{D}^{p} and $H_{D^{\prime \prime}}^{0, p}$

In this section, we prove that for an irreducible anti-self-dual connection the cohomology groups H_{D}^{p} are isomorphic to $H_{D^{\prime \prime}}^{0, p}(p=0,1,2)$ in the diagram (2.13).

We first begin with the preparation for the proof. On a Hermitian surface (M, g), we define differential 1 -forms $\theta=-d^{*} \Phi \eta=\theta \circ J$, and (1,0)-form $\varphi=\eta+\sqrt{-1} \theta$. Here J is the complex structure of (M, g). Then we obtain following formulas by direct calculation.

Lemma 2. For the operators acting on $A^{p}\left(\operatorname{End}^{0} E\right)$, the following formulas hold:

$$
\begin{gather*}
D^{\prime *}=-\sqrt{-1}\left(D^{\prime \prime} \Lambda-\Lambda D^{\prime \prime}\right)+\frac{1}{2}(p-2) i(\bar{\varphi})-\frac{\sqrt{-1}}{2} \varepsilon(\bar{\varphi}) \Lambda \tag{3.1}\\
D^{\prime \prime *}=\sqrt{-1}\left(D^{\prime} \Lambda-\Lambda D^{\prime}\right)+\frac{1}{2}(p-2) i(\varphi)-\frac{\sqrt{-1}}{2} \varepsilon(\varphi) \Lambda \tag{3.2}
\end{gather*}
$$

It is known that there is a unique Hermitian metric up to the homothetry such that
$d^{*} \eta=0$ in the conformal class of the given Hermitian metric ([3]). Moreover the anti-self-duality is preserved by a conformal change of the metric. Therefore we may assume that $d^{*} \eta=0$ on the given Hermitian surface. Define a mapping $\mathscr{T}^{\prime}: A^{0}\left(\operatorname{End}^{0} E\right) \rightarrow A^{0}\left(\operatorname{End}^{0} E\right)$ by $\mathscr{T}^{\prime}=-\sqrt{-1} \Lambda D^{\prime} D^{\prime \prime}$. Then we have

Lemma 3. On $A^{0}\left(\operatorname{End}^{0} E\right)$

$$
\begin{equation*}
\mathscr{P}=\frac{1}{2}\left(\Delta_{D}+i(\eta) D\right), \tag{3.3}
\end{equation*}
$$

where $\Delta_{D}=D^{*} D$.

Proof) In fact

$$
\begin{align*}
\Delta_{D} & =D^{*} D=\left(D^{\prime *}+D^{\prime \prime *}\right)\left(D^{\prime}+D^{\prime \prime}\right) \tag{3.4}\\
& =D^{\prime *} D^{\prime}+D^{\prime \prime *} D^{\prime \prime} .
\end{align*}
$$

Using equations (3.1) and (3.2), we see that

$$
\begin{align*}
D^{*} D^{\prime}+D^{\prime \prime *} D^{\prime \prime} & =\sqrt{-1} \Lambda D^{\prime \prime} D^{\prime}-\frac{1}{2} i(\bar{\varphi}) D^{\prime}-\sqrt{-1} \Lambda D^{\prime} D^{\prime \prime}-\frac{1}{2} i(\varphi) D^{\prime \prime} \\
& =\sqrt{-1} \Lambda\left(D^{\prime} D^{\prime \prime}-D^{\prime \prime} D^{\prime}\right)-i(\eta) D . \tag{3.5}
\end{align*}
$$

Since D is an anti-self-dual connection, for $\psi \in A^{0}\left(\right.$ End $\left.^{0} E\right)$, we have

$$
\begin{align*}
\Lambda\left(D^{\prime} D^{\prime \prime}+D^{\prime \prime} D^{\prime}\right) \psi & =\Lambda R(D)(\psi) \\
& =\Lambda(R(D) \circ \psi-\psi \circ R(D)) \\
& =(\Lambda R(D)) \psi-\psi(\Lambda R(D)) \\
& =0 . \tag{3.6}
\end{align*}
$$

It follows that

$$
\begin{equation*}
\Delta_{D}=-2 \sqrt{-1} \Lambda D^{\prime} D^{\prime \prime}-i(\eta) D . \tag{3.7}
\end{equation*}
$$

Then we obtain (3.3).
From Lemma 3 we see that $\left.\mathscr{T}^{\prime}\left(A^{0}\left(\operatorname{End}^{0} E, h\right)\right) \subset A^{0}\left(\operatorname{End}^{0} E, h\right)\right)$. Let \mathscr{P}^{*} be the formal adjoint operator of $\mathscr{\mathscr { C }}$. For $\phi, \psi \in A^{0}\left(\operatorname{End}^{0}(E, h)\right)$,

$$
\begin{align*}
(\mathscr{\mathscr { C }} \phi, \psi)_{M} & =\left(\frac{1}{2} \Delta_{D} \phi+\frac{1}{2} i(\eta) D \phi, \psi\right)_{M} \\
& =\left(\phi, \frac{1}{2} \Delta_{D} \psi+\frac{1}{2} D^{*} \varepsilon(\eta) \psi\right)_{M} . \tag{3.8}
\end{align*}
$$

Consequently we have

$$
\begin{equation*}
\mathscr{P}^{*}=\frac{1}{2}\left(\Delta_{D}+D^{*} \varepsilon(\eta)\right) \tag{3.9}
\end{equation*}
$$

By the direct calculation on $A^{0}\left(\operatorname{End}^{0}(E, h)\right)$, we have

$$
\begin{align*}
D^{*} \varepsilon(\eta) & =\varepsilon\left(d^{*} \eta\right)-i(\eta) D \\
& =-i(\eta) D \tag{3.10}
\end{align*}
$$

Consequently, we obtain

$$
\begin{equation*}
\mathscr{L}^{*}=\frac{1}{2}\left(\Delta_{D}-i(\eta) D\right) . \tag{3.11}
\end{equation*}
$$

Lemma 4. On $A^{0}\left(\operatorname{End}^{0}(E, h)\right)$, we have

$$
\begin{equation*}
\operatorname{ker} \mathscr{P}=\operatorname{ker} \mathscr{C}^{*}=\operatorname{ker} D \tag{3.12}
\end{equation*}
$$

Proof) It is clear that $\operatorname{ker} D \subset \operatorname{ker} \mathscr{L}$, and $\operatorname{ker} D \subset \operatorname{ker} \mathscr{L}^{*}$ by (3.3), (3.11). Conversely suppose that $\mathscr{L} \phi=0$, for $\phi \in A^{0}\left(\operatorname{End}^{0}(E, h)\right)$. Then

$$
\begin{align*}
0 & =(\mathscr{L} \phi, \phi)_{M} \\
& =\left(\frac{1}{2} \Delta_{D} \phi+\frac{1}{2} i(\eta) D \phi, \phi\right)_{M} \\
& =\frac{1}{2}(D \phi, D \phi)_{M}+\frac{1}{2}(i(\eta) D \phi, \phi)_{M} \tag{3.13}
\end{align*}
$$

Using (3.10), we see that

$$
\begin{align*}
(i(\eta) D \phi, \phi)_{M} & =\left(\phi, D^{*} \varepsilon(\eta) \phi\right)_{M} \\
& =-(\phi, i(\eta) D \phi)_{M} \\
& =-(i(\eta) D \phi, \phi)_{M} . \tag{3.14}
\end{align*}
$$

Then

$$
\begin{equation*}
(i(\eta) D \phi, \phi)_{M}=0, \tag{3.15}
\end{equation*}
$$

From (3.13) it follows that $D \phi=0$. Noting that $\mathscr{P}^{(}\left(A^{0}\left(\operatorname{End}^{0}(E, h)\right)\right)$ $\subset A^{0}\left(\operatorname{End}^{0}(E, h)\right)$, we obtain

$$
\begin{equation*}
\operatorname{ker} \mathscr{P} \subset \operatorname{ker} D \tag{3.16}
\end{equation*}
$$

Owing to (3.11), we obtain $\operatorname{ker} \mathscr{P}^{*} \subset \operatorname{ker} D$ similarly.
Theorem 3. Let D be an irreducible anti-self-dual $\operatorname{SU}(n)$-connection. Then the homomorphisms of the cohomology groups $h_{p}: H_{D}^{p} \rightarrow H_{D^{\prime \prime}}^{0, p}(p=0,1,2)$ induced from the diagram (2.13) are isomorphisms.

Proof)
h_{0} :
By Lemma 1, we have $H^{0} \rightarrow H^{0.0}=0$. Therefore it is trivial that h_{0} is isomorphic.
$\underline{h_{1}}$:
First we show the injectivity of h_{1}. Suppose $[\alpha] \in H^{1}$ and $h_{1}([\alpha])=0$. That is $\alpha \in A^{1}\left(\operatorname{End}^{0}(E, h)\right)$ satisfies $D_{+} \alpha=0$ and there exists $\phi \in A^{0}\left(\operatorname{End}^{0} E\right)$ such that $h_{1}(\alpha)=\alpha^{0,1}=D^{\prime \prime} \phi . \quad$ Since $\quad D_{+} \alpha=0, \Lambda\left(D^{\prime \prime} D^{\prime} \bar{\phi}+D^{\prime} D^{\prime \prime} \phi\right)=0$. We set $\phi=$ $\phi_{0}+\sqrt{-1} \phi_{1}$ and $\bar{\phi}=\phi_{0} \sqrt{-1} \phi_{1}$ for $\phi_{0}, \phi_{1} \in A^{0}\left(\operatorname{End}^{0}(E, h)\right)$. Then

$$
\begin{align*}
0 & =\Lambda\left(D^{\prime \prime} D^{\prime} \phi_{0}-\sqrt{-1} D^{\prime \prime} D^{\prime} \phi_{1}+D^{\prime} D^{\prime \prime} \phi_{0}+\sqrt{-1} D^{\prime} D^{\prime \prime} \phi_{1}\right) \\
& =\Lambda\left(D^{\prime \prime} D^{\prime} \phi_{0}+D^{\prime} D^{\prime \prime} \phi_{0}\right)-\sqrt{-1} \Lambda\left(D^{\prime \prime} D^{\prime} \phi_{1}-D^{\prime} D^{\prime \prime} \phi_{1}\right) \tag{3.17}
\end{align*}
$$

Since D is an anti-self-dual connection,

$$
\begin{equation*}
\Lambda\left(D^{\prime \prime} D^{\prime}+D^{\prime \prime} D^{\prime}\right) \phi_{0}=(\Lambda R(D)) \phi_{0}=0 \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
-\sqrt{-1} \Lambda\left(D^{\prime} D^{\prime \prime}-D^{\prime \prime} D^{\prime}\right) \phi_{1}=2 \mathscr{S}^{\prime} \phi_{1} . \tag{3.19}
\end{equation*}
$$

Therefore we have $2 \mathscr{C} \phi_{1}=0$. Together with Lemma 4, the irreducibility of D implies $\phi_{1} \equiv 0$. Consequently

$$
\begin{equation*}
\alpha=\alpha^{1,0}+\alpha^{0,1}=D^{\prime} \phi_{0}+D^{\prime \prime} \phi_{0}=D \phi_{0} \tag{3.20}
\end{equation*}
$$

and then $[\alpha]=0$ in H_{D}^{1}. It is shown that h_{1} is injective.
Next, in order to prove the surjectivity of h_{1}, given $\beta \in A^{0,1}\left(\right.$ End $\left.^{0} E\right)$ satisfying $D^{\prime \prime} \beta=0$, we will find $[\alpha] \in H_{D}^{1}$ such that $h_{1}([\alpha])=[\beta]$ in $H_{D^{\prime \prime}}^{0.1}$. To do so, we put $\alpha=\bar{\beta}+D^{\prime} \bar{\psi}+\beta+D^{\prime \prime} \psi \in A^{1}\left(\operatorname{End}^{0}(E, h)\right)$. The equation $D_{+} \alpha=0$ means

$$
\begin{equation*}
D^{\prime \prime} \alpha^{0.1}=D^{\prime \prime}\left(\beta+D^{\prime \prime} \psi\right)=0 \tag{3.21}
\end{equation*}
$$

and

$$
\begin{align*}
\Lambda\left(D^{\prime \prime} \alpha^{1,0}+D^{\prime} \alpha^{0,1}\right) & =\Lambda\left(D^{\prime \prime} \bar{\beta}+D^{\prime \prime} D^{\prime} \bar{\psi}+D^{\prime} \beta+D^{\prime} D^{\prime \prime} \psi\right) \\
& =\Lambda\left(D^{\prime \prime} \bar{\beta}+D^{\prime} \beta+2 \sqrt{-1} \Lambda D^{\prime} D^{\prime \prime} \psi_{1}=0,\right. \tag{3.22}
\end{align*}
$$

where $\psi=\psi_{0}+\sqrt{-1} \psi_{1}$. Therefore we have

$$
\begin{equation*}
2 \mathscr{C}^{\prime} \psi_{1}=\Lambda\left(D^{\prime \prime} \bar{\beta}+D^{\prime} \beta\right) \tag{3.23}
\end{equation*}
$$

By Lemma 4 and the irreducibility of D, the kernel of \mathscr{V}^{*} is trivial. Then we can find ψ_{1} which satisfies the equation (3.23). Taking ψ_{0} suitably, we obtain
$\alpha \in A^{1}\left(\operatorname{End}^{0} E, h\right)$) satisfying $h_{1}([\alpha])=[\beta]$.
$\underline{h_{2}}$:
It is clear that h_{2} is surjective. So we show the injectivity. Let ψ be an element of $A_{+}^{2}\left(\operatorname{End}^{0}(E, h)\right)$. We decompose ψ as follows: $\psi=\psi^{2,0}+(1 / 2) \Phi \wedge \phi+\psi^{0,2}$ for $\phi \in A^{0}\left(\operatorname{End}^{0}(E, h)\right)$. Suppose $h_{2}([\psi])=0$. That is, there exists a $\beta \in A^{0,1}\left(\operatorname{End}^{0} E\right.$, $)$ such that $h_{2}(\psi)=\psi^{0,2}=D^{\prime \prime} \beta$. We will find $\alpha \in A^{1}\left(\operatorname{End}^{0}(E, h)\right)$ such that $\psi=D_{+} \alpha$. To do so, we put $\alpha=\bar{\beta}+D^{\prime} \bar{\gamma}+\beta+D^{\prime \prime} \gamma$ for some $\gamma \in A^{0}\left(\operatorname{End}^{0} E\right)$. Then we have

$$
\begin{aligned}
\psi & =D_{+} \alpha \\
& =D^{\prime}\left(\bar{\beta}+D^{\prime} \bar{\gamma}\right)+\frac{1}{2} \Phi \wedge \Lambda\left\{D^{\prime \prime}\left(\bar{\beta}+D^{\prime} \bar{\gamma}\right)+D^{\prime}\left(\beta+D^{\prime \prime} \gamma\right)\right\}+D^{\prime \prime}\left(\beta+D^{\prime \prime} \gamma\right)
\end{aligned}
$$

We set $\gamma=\gamma_{0}+\sqrt{-1} \gamma_{1}$ for $\left.\gamma_{0}, \gamma_{1} \in A^{0}\left(\operatorname{End}^{0} E, h\right)\right)$. Then

$$
\begin{align*}
\phi & =\Lambda\left(D^{\prime \prime} \bar{\beta}+D^{\prime \prime} D^{\prime} \gamma+D^{\prime} \beta+D^{\prime} D^{\prime \prime} \gamma\right) \\
& =\Lambda\left(D^{\prime \prime} \bar{\beta}+D^{\prime} \beta\right)+2 \Lambda D^{\prime} D^{\prime \prime} \gamma_{1} . \tag{3.25}
\end{align*}
$$

Therefore we have

$$
\begin{equation*}
2 \mathscr{C} \gamma_{1}=\Lambda\left(D^{\prime \prime} \bar{\beta}+D^{\prime} \beta\right)-\phi . \tag{3.26}
\end{equation*}
$$

The solution γ_{1} of (3.26) exists since D is irreducible and ker $\mathscr{P}^{*}=\{0\}$. We have found α satisfying $\psi=D_{+} \alpha$.

4. Vanishing of \tilde{H}_{D}

In this section, we will prove Proposition 1 in the introduction. First we recall the results obtained by Gauduchon in [2]. Let (M, g) be an m-dimensional compact Hermitian manifold with $\partial \bar{\partial} \Phi^{m-1}=0$. Let L be a holomorphic line bundle over (M, g), and h be its Hermitian structure. We denote by k the mean curvature of (L, h). We use the notation "mean curvature" following Kobayashi [5, p.51] and it is called the Ricci-scalar in Gauduchon [2]. Then the following holds ([2]):

1. $\int_{M} k d v$ is independent of the Hermitian structure h.
2. There exists a unique Hermitian structure h_{0} on L (up to the homothety) such that its mean curvature k_{0} is constant.

In particular, applying the above results to the canonical line bundle K_{M}, we obtain the Hermitian structure with constant mean curvature k_{0}. We note that
$k_{0} \operatorname{Vol}(M, g)=-\int_{M} \operatorname{Scal}(g) d v$, where $\operatorname{Scal}(g)$ denotes the scalar curvature of the Hermitian connection with respect to g.

Now we return to the proof of Proposition 1. The C^{∞}-Hermitian vector bundle (E, h) has a holomorphic structure defined by the anti-self-dual $S U(n)$ connection $D . D$ is the Hermitian connection of (E, h) with respect to this holomorphic structure and it has mean curvature 0 and so for $E^{0}{ }^{0} E$. Together with the former, it implies that the tensor product $F=\operatorname{End}^{0} E \otimes K_{M}$ admits a Hermitian structure with mean curvature $k_{0} I_{L}$. If $k_{0}<0$, by the vanishing theorem of the holomorphic sections ([5, pp. 49-53]), End ${ }^{0} E \otimes K_{M}$ admits no nonzero holomorphic sections. Further, if $k_{0}=0$, then every holomorphic section is parallel. Let f be a nonzero holomorphic section section of $\operatorname{End}^{0} E \otimes K_{M}$. For each point x on M, consider the eigenspace of the homomorphism f_{x}. These eigenspaces define a parallel subbundle of E. This contracts that D is an irreducible connection. Consequently, even if $k_{0}=0$, End $^{0} E \otimes K_{M}$ has no nonzero holomorphic sections.

Remark: Let (M, g) be a compact anti-self-dual Hermitian surface (i.e., its Weyl conformal curvature tensor W belongs to A_{-}^{2}) with $\partial \bar{\partial} \Phi=0$. Then we have $\int_{M} \operatorname{Scal}(g) d v \geq 0$ and the equality holds if and only if (M, g) is Kählerian (cf. Boyer [6]).

References

[1] Atiyah, M. F., Hitchin, N. J., and Singer, I. M.: Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London. A, 362 (1978) 425-461.
[2] Gauduchon, P.: Fibrès Hermitian à endomorphisme de Ricci non négatif, Bull. Soc. Math. France., 105 (1977) 113-140.
[3] Gauduchon, P.: Le théorème de l'excentricité nulle, C. R. Acad. Sc. Paris. t. 285 (1977) 387390.
[4] Itoh, M.: The moduli space of Yang-Mills connections over a Kähler surface is a complex manifold, Osaka J. Math., 22 (1985) 845-862.
[5] Kobayashi, S.: "Differential geometry of complex vector bundles", Iwanami Shoten (1987).
[6] Boyer, C. P.: Conformal duality and compact complex surfaces, Math. Ann., 274 (1986) 517526.

