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1 Introduction

Let $(M, g)$ be a compact Hermitian surface with an orintation induced by the
complex structure of $M$ , and $P$ a principal bundle over $M$ with stmcture group
$SU(n)$ . Then a canonical representation $p$ of $SU(n)$ induces a smooth complex
vector bundle $E=P\times_{\rho}C^{n}$ . A necessary and sufficient condition for a $SU(n)-$

connection $D$ on $E$ to be an anti-self-dual connection is that the curvature of $D$ is
a differential 2-form of type $(1,1)$ , and is orthogonal to the fundamental form $\Phi$

of $(M, g)$ . Hence, a holomorphic structure is induced on $E$ and hence on $End^{0}E$

(the subbundle of $EndE$ consisting of endomorphisms with trace $0$ ) by an anti-
self-dual connection $D$ . Itoh ([4]) showed that the moduli space of anti-self-dual
connections over K\"ahler surfaces is a complex manifold. We will extend this
result over K\"ahler surfaces to over Hermitian surfaces, which are not necessarily
K\"ahlerian.

Let $K_{M}$ be a canonical line bundle over $M$ . We define $\tilde{H}_{D}=$

$H_{D}^{0}(M;\subset/)(End^{0}E\otimes K_{M})$ as the space of holomorphic sections, where $End^{0}E$ is
endowed with the holomorphic structure induced from the irreducible anti-self-
dual connection $D$ . We denote by $,/ff$ the moduli space of irreducible anti-self-
dual connections (the quotient space of irreducible anti-self-dual connections by
the gauge transformation group $SU(E))$ , and set $\mathscr{M}_{0}$ as follows: $\mathscr{M}_{0}=$

$\{[D]\in,\parallel l\tilde{H}_{D}=(0)\}$ . Then we obtain the following

THEOREM 1. Let $M$ be a compact Hermitian surface. If $\mathscr{M}_{0}$ is not empty,
then $\mathscr{M}_{0}$ is a complex manifold.

We can make $H_{D}$ vanish under a certain condition. On a Hermitian manifold
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$(M, g),$ $Sca1(g)$ denotes the scalar curvature of the Hermitian connection with
respect to $g$ . Then we have the following vanishing theorem.

PROPOSITION 1. Let ( $M$ , g) be a compact Hermitian surface with
fundamental form $\Phi$ which satisfies $\partial\overline{\mathfrak{N}}=0$ . If $\int_{M}Sca1(g)dv\geq 0$ , then $\tilde{H}_{D}=(0)$ .

With this proposition, Theorem 1 implies the following.

THEOREM 2. Let $(M, g)$ be a compact Hermitian surface which satisfies the
same condition as proposition 1. If, 1/ is not empty, then $\parallel$ is a complex

mamfold.

2. Two moduli spaces

In this section we will recall the moduli spaces of anti-self-dual connections
and holomorphic semi-connections following [1], [4], and [5].

Let $(M, g)$ be a compact oriented Hermitian surface with fundamental form
$\Phi=\sqrt{-1}\sum g_{\alpha\beta}dz^{\alpha}\wedge d\overline{z}^{\beta}$ We will denote by $A^{\rho}$ (resp. $A^{\rho.q}$ ) the space of real

valued smooth p-forms (resp. $(p,q)$ -forms) on $M$ . Then we have the decompo-
sition of the space of 2-forms,

$A^{2}\otimes C=A^{2.0}\oplus A^{|.|}\oplus A^{0,2}$ . (2.1)

The fundamental form $\Phi$ decomposes $A^{}$ further:

A $=\mathcal{A}_{\Phi^{1}}^{1},\oplus(A_{\dot{\Phi}}^{11})^{\perp}$ , (2.2)

where

$A_{\Phi^{11}},=\{f\Phi:f\in C^{\infty}(M;C)\}$ , (2.3)

and

$(A_{\Phi}^{1,1})^{\perp}=\{\psi=\sum\psi_{\alpha\overline{\beta}}dz^{a}\wedge\overline{z}^{\beta} : \sum g^{\alpha\overline{\beta}}\psi_{\alpha\overline{\beta}}=0\}$ . (2.4)

$(A_{\Phi}^{l,1})^{\perp}$ is the space of all primitive $(1,1)$ -forms in $(M, g)$ . We put

$A_{+}^{2}=(A^{2,0}+A_{\Phi}^{1,1}+A^{0,2})\cap A^{2}$ , (2.5)

and

$A_{-}^{2}=(A_{\dot{\Phi}}^{11})^{\perp}\cap A^{2}$ . (2.6)

Then $A_{+}^{2}$ (resp. $/A_{-}^{2}$ ) is the self-dual part (resp. the anti-self-dual part) of $A^{2}$

([1]). Then projection from $A^{2}$ onto $A_{-}^{2}$ is denoted by $p_{+}$ .
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Let $P$ be a principal bundle over $M$ with structure group $SU(n)$ . Then the
canonical representation $\rho$ of $SU(n)$ induces a smooth complex vector bundle
$E=P\times_{\rho}C^{n}$ . We denote by $h$ and $\omega$ , the Hermitian structure and the n-form on $E$

defined by the $SU(n)$ -structure of $P$ , respectively. Let $GL(E)$ denote the group of
$C^{\infty}$ -bundle automorphisms of $E$ (inducing the identity transformations on the base
manifold $M$). Let $SL(E)$ (resp. $SU(E)$ ) denote the subgroup of $GL(E)$ consisting
of bundle automorphisms of $E$ (resp. unitary automorphisms of $(E,$ $h)$ ) with
determinant 1. They are called the gauge transformation groups of $E$ . Let $End^{}$

(resp. $End^{}(E,$ $h)$ ) the subbundle of the endomorphism bundle $EndE$ consisting
of endomorphisms (resp. skew-Hermitian endomorphisms) with trace $0$ . $End^{}(E$ ,

h) is the real subbundle of $End^{0}E$ and we have

$End^{0}E=End^{0}(E,h)\oplus\sqrt{-1}End^{}(E,h)$ . (2.7)

For $\psi=\psi_{0}+\sqrt{-1}\psi_{1},\psi_{0}-\sqrt{-1}\psi_{1}$ , we denote the complex conjugate by $\overline{\psi}$ , which
is defined by $\overline{\psi}=\psi_{0}-\sqrt{-1}\psi_{1}$ .

An $SU(n)$ -connection $D$ in $(E, h)$ is a connection in $E$ preserving $h$ and $\omega$ ,

i.e., a homomorphism $D:A^{0}(E)\rightarrow A^{1}(E)$ over $C$ such that

$ D(f\sigma)=\sigma df+f.D\sigma$ for $f\in A_{c}^{0},\sigma\in A_{c}^{0}(E)$ ,

$Dh=0$ ,

$D\omega=0$ . (2.8)

The set of $SU(n)$ -connections has an affine structure. Namely, it is given by
$\{D+v:v\in A^{1}(End^{}(E,h))\}$ for a fixed $SU(n)$ -connection $D$ . We can extend an
$SU(n)$ -connection $D$ to a connection in $End^{}(E, h)$ . We call $D$ irreducible when
the kemel of $D:A^{0}(End^{}(E,h))\rightarrow A^{1}(End^{}(E,h))$ is trivial. An $SU(n)$ -connection
$D$ is called anti-self-dual, if the curvature form $R(D)$ belongs to $A_{-}^{2}(End^{}(E,h)$ ,

namely $p_{+}R(D)=0$ . Let Asd be the set of all anti-self-dual $SU(n)$ -connections in
$(E, h)$ . The gauge transformation group $SU(E)$ acts on the space of $SU(n)-$

connections and leaves Asd invariant. Thus we obtain the moduli space
Asd/SU(E) of anti-self-dual $SU(n)$ -connection in $(E, h)$ .

A semi-connection $D^{\prime\prime}$ in $E$ is a linear map $D^{\prime\prime}$ : $A^{0}(E)\rightarrow A^{0,1}(E)$ satisfying
$ D^{\prime\prime}(f\sigma)=D^{\prime\prime}f\sigma+fD^{\prime\prime}\sigma$ for $\sigma\in A^{0}(E),f\in C^{\infty}(M;C)$ . Moreover we assume that
$D$“ preserves the n-form $\omega$ , i.e.; $D^{n}\omega=0$ . The set of semi-connections has an
(complex) affine space. Namely, it is given by $\{D^{\nu}+v:v\in A^{0.1}(End^{0}E)\}$ for a
fixed semi-connection $D$“. We can extend $D$“ to a semi-connection in $End^{0}E$ .
We call $D$“ simple when the kemel of $D$“ : $A^{0}(End^{0}E)\rightarrow A^{0,1}(End^{0}E)$ is trivial.
A semi-connection $D^{\prime\prime}$ which satisfies $D^{\prime\prime}\circ D^{\prime\prime}=0$ defines a unique holomorphic
structure on $E$ . We call such a semi-connection holomorphic. Let Hol be the set
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of all holomorphic semi-connections in $E$ . The gauge transformation group $SL(E)$

acts on the space of semi-connections and leaves Hol invariant. Thus we obtain
the moduli space Hol/SL(E) of holomorphic semi-connections in $E$ .

Let $D$ be an $SU(n)$ -connection in $(E, h)$ . Set $D=D^{\prime}+D^{\nu}$ where
$D^{\prime}$ : $A^{0}(E)\rightarrow A^{0,1}(E)$ . Then $D$“ is a semi-connection in $E$ . This natural map
$D\vdash\div D^{\nu}$ is a bijective map of the set of $SU(n)$-connections onto the set of semi-
connections. If $D$ is anti-self-dual, $D^{\nu}$ is holomorphic. In fact the $(0,2)-$

component of $R(D)=D^{\prime\prime}\circ D$“. Thus we obtain a natural map $f;Asd/SU(E)$

$\rightarrow Ho1/SL(E)$ . It is known that $f$ is an injective map (cf. [5, p.243]). Moreover
we have

LEMMA 1. If an anti-self-dual connection $D$ is irreducible, then $D^{\nu}$ is
simple.

Proof) Suppose $\phi\in A^{0}(End^{0}E)$ be a holomorphic section of $End^{0}E$ . Then
$D^{\nu}\phi=0$ . By the vanishing theorem of the holomorphic sections ([5]), we obtain
$D\phi=0$ . By the assumption that $D$ is an irreducible connection, we conclude
$\phi\equiv 0$ .

In order to consider infinitesimal deformations, we introduce two complexes
(2.9), (2.10), and their cohomology groups. For $D\in Asd$ set

$ 0\rightarrow A^{0}(End^{}(E,h))\rightarrow$$A^{}D$ $(End^{}(E,h))^{D}\rightarrow^{+}A_{+}^{2}(End^{}(E,h))\rightarrow 0$ (2.9)

where $D_{+^{-\leftarrow}}p_{+}\circ D$ . Their cohomology groups are denoted by $H_{D}^{\rho}(p=0,1,2)$ . For
$D‘‘\in Ho1$ , we consider the Dolbeault complex

$0\rightarrow A^{0.0}(End^{0}E)^{D}\rightarrow^{\prime\prime}A^{0,1}(End^{0}E)^{D}\rightarrow^{\prime\prime}A^{0.2}(End^{0}E)\rightarrow 0$ (2.10)

and their cohomology groups are denoted by $H_{D^{\prime\prime}}^{o,p}(p=0,1,2).$ . We set

$’\parallel_{0}=$ { $[D]\in Asd/SU(E):D$ is irreducible and $H_{D}^{2}$ vanishes} (2.11)

Then it is known that $\parallel_{0}$ is a smooth manifold, and its tangent space at $[D]$ is
naturally isomorphic to $H_{D}^{1}$ . We set

$’\parallel_{0}=$ { $[D‘‘]\in Ho1/SU(E):D^{\nu}$ is simple and $H_{D}^{0.2}$ vanishes} (2.12)

Similarly it is known that $\parallel_{0}$ is a complex manifold and its tangent space at $[D^{\nu}]$

is naturally isomorphic to $H_{D^{\prime\prime}}^{0.1}$ .
Now we consider the following natural homomorphism between two

complexes (2.9), (2.10) for an irreducible anti-self-dual $SU(n)$ -connection $D$ and
its corresponding holomorphic semi-connection $D$ :
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$0$ $\rightarrow$ $A^{0}(End^{}(E,h))$ $\rightarrow^{D}$ $A^{1}(End^{}(E,h))$ $D\rightarrow+$

$A_{+}^{2}(End^{}(E,h))$ $\rightarrow$ $0$

$\downarrow h_{0}$ $\downarrow h_{1}$ $\downarrow h_{2}$

$0$ $\rightarrow$ $A^{0,0}(End^{}E)$ $\rightarrow^{D^{\prime\prime}}$ $A^{0,1}(End^{}E)$
$\rightarrow^{D^{\prime\prime}}$ $A^{0,2}$ (Endo $E$) $\rightarrow$ $0$

(2.13)

where
$h_{0}$ : inclusion
$h_{1}$ : $\alpha\rightarrow\alpha^{0,1}$

$h_{2}$ : $\alpha\rightarrow\alpha^{0,2}$

and $\alpha^{0,p}$ represents the $(0, p)$-component of $\alpha$ . Itoh showed that $h_{p}$ induces an
isomorphism of $H_{D}^{p}$ onto $H_{D^{\prime\prime}}^{0,p}(p=0,1,2)$ when $(M, g)$ is a K\"ahler surface. We

can extend this result to the case of a Hermitian surface. Its proof will be given
in section 3. Therefore we have $f(,/n)\subset,\mathscr{K}_{0}$ for the natural map $f$. Moreover it
is known that $f$ is a differentiable map. Since we can regard the differential $f_{*}$

of $f$ at $[D]$ as $h_{1},f$ is a diffeomorphisms of $m$ into $\parallel_{0}$ . Thus it has been shown
that \rangle % is a complex manifold. We note that $H_{D^{\prime\prime}}^{0,2}$ is isomorphic to
$\tilde{H}_{D}=H^{0}(M,(/)(End^{0}E\otimes K_{M}))$ by the Serre duality. Hence our Theorem 2 has

been proved.

3. Isomorphisms between cohomology groups $H_{D}^{p}$ and $H_{lJ^{\prime\prime}}^{\theta,p}$

In this section, we prove that for an irreducible anti-self-dual connection the
cohomology groups $H_{D}^{p}$ are isomorphic to $H_{D^{\prime\prime}}^{0,p}(p=0,1,2)$ in the diagram (2.13).

We first begin with the preparation for the proof. On a Hermitian surface
$(M, g)$ , we define differential l-forms $\theta=-d^{*}\Phi\eta=\theta\circ J$ , and $(1,0)$ -form
$\varphi=\eta+\sqrt{-1}\theta$ . Here $J$ is the complex structure of $(M, g)$ . Then we obtain
following formulas by direct calculation.

LEMMA 2. For the operators acting on $A^{\rho}(End^{0}E)$ , the following formulas
hold:

$ D^{\prime}*=-\sqrt{-1}(D^{\nu}\Lambda-\Lambda D^{\nu})+\frac{1}{2}(p-2)i(\overline{\varphi})-\frac{\sqrt{-1}}{2}\epsilon(\overline{\varphi})\Lambda$ (3.1)

$ D^{\nu*}=\sqrt{-1}(D^{\prime}\Lambda-\Lambda D^{\prime})+\frac{1}{2}(p-2)i(\varphi)-\frac{\sqrt{-1}}{2}\epsilon(\varphi)\Lambda$ (3.2)

It is known that there is a unique Hermitian metric up to the homothetry such that
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$d^{*}\eta=0$ in the conformal class of the given Hermitian metric ([3]). Moreover the
anti-self-duality is preserved by a conformal change of the metric. Therefore we
may assume that $d^{*}\eta=0$ on the given Hermitian surface. Define a mapping
(
$/^{)}$ : $A^{0}(End^{0}E)\rightarrow A^{0}(End^{0}E)$ by ($l=-\sqrt{-1}\Lambda D^{\prime}D$“. Then we have

LEMMA 3. On $A^{0}(End^{0}E)$

(
$l=\frac{1}{2}(\Delta_{D}+i(\eta)D)$ , (3.3)

where $\Delta_{D}=D^{*}D$ .

PROOF) In fact

$\Delta_{D}=D^{*}D=(D^{\prime}*+D^{\nu^{*}})(D^{\prime}+D^{\nu})$

(3.4)
$=D^{\prime}D^{\prime}+D^{\prime\prime}D^{\prime\prime}**$ .

Using equations (3.1) and (3.2), we see that

$D^{\prime}D^{\prime}*+D^{\nu^{*}}D$
$‘‘=\sqrt{-1}\Lambda D^{\nu}D^{\prime}-\frac{1}{2}i(\overline{\varphi})D^{\prime}-\sqrt{-1}\Lambda D^{\prime}D^{\prime\prime}-\frac{1}{2}i(\varphi)D$

“

$=\sqrt{-1}\Lambda(D^{\prime}D‘‘ -D^{\nu}D^{\prime})-i(\eta)D$ . (3.5)

Since $D$ is an anti-self-dual connection, for $\psi\in A^{0}(End^{0}E)$ , we have

$\Lambda(D^{\prime}D^{\prime\prime}+D^{\nu}D^{\prime})\psi=\Lambda R(D)(\psi)$

$=\Lambda(R(D)\circ\psi-\psi\circ R(D))$

$=(\Lambda R(D))\psi-\psi(\mathscr{O}(D))$

$=0$ . (3.6)

It follows that

$\Delta_{D}=-2\sqrt{-1}\Lambda D^{\prime}D‘‘-i(\eta)D$ . (3.7)

Then we obtain (3.3).

From Lemma 3 we see that $(/^{\prime}(A^{0}(End^{0}E,h))\subset A^{0}(End^{0}E,h))$ . Let ($\ell^{*}$ be the
formal adjoint operator of ($l$ . For $\phi,\psi\in A^{0}(End^{}(E,h))$ ,

$(^{(}J^{\prime}\phi,\psi)_{M}=(\frac{1}{2}\Delta_{D}\phi+\frac{1}{2}i(\eta)D\phi,\psi)_{M}$

$=(\phi,\frac{1}{2}\Delta_{D}\psi+\frac{1}{2}D^{*}\epsilon(\eta)\psi)_{M}$ (3.8)

Consequently we have
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$/^{*}(=\frac{1}{2}(\Delta_{D}+D^{*}\epsilon(\eta))$ . (3.9)

By the direct calculation on $A^{0}(End^{}(E,h))$ , we have

$D^{*}\epsilon(\eta)=\epsilon(d^{*}\eta)-i(\eta)D$

$=-i(\eta)D$ . (3.10)

Consequently, we obtain

$g\#_{=\frac{1}{2}(\Delta_{D}-i(\eta)D)}$ . (3.11)

LEMMA 4. On $A^{0}(End^{}(E,h))$ , we have

$ker^{(}l=ker^{c}l^{*}=kerD$ (3. 12)

Proof) It is clear that $kerD\subset ker\Psi$ , and $kerD\subset ker^{(}l^{*}$ by (3.3), (3.11).

Conversely suppose that $g\emptyset=0$ , for $\phi\in A^{0}(End^{}(E,h))$ . Then
$0=(g^{7}\phi,\phi)_{M}$

$=(\frac{1}{2}\Delta_{D}\phi+\frac{1}{2}i(\eta)D\phi,\phi)_{M}$

$=\frac{1}{2}(D\phi,D\phi)_{M}+\frac{1}{2}(i(\eta)D\phi,\phi)_{M}$ (3.13)

Using (3.10), we see that

$(i(\eta)D\phi,\phi)_{M}=(\phi,D^{*}\epsilon(\eta)\phi)_{M}$

$=-(\phi,i(\eta)D\phi)_{M}$

$=-(i(\eta)D\phi,\phi)_{M}$ . (3.14)

Then

$(i(\eta)D\phi,\phi)_{M}=0$ , (3.15)

From (3.13) it follows that $D\phi=0$ . Noting that $(l(A^{0}(End^{0}(E,h)))$

$\subset A^{0}(End^{}(E,h))$ , we obtain

$ker9^{7}\subset kerD$ (3.16)

Owing to (3.11), we obtain $kerg?^{*}\subset kerD$ similarly.

THEOREM 3. Let $D$ be an irreducible anti-self-dual SU(n)-connection. Then
the homomorphisms of the cohomology groups $h_{p}$ : $H_{D}^{p}\rightarrow H_{D^{\prime\prime}}^{0,\rho}(p=0,1,2)$ induced
from the diagram (2.13) are isomorphisms.
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PROOF)

ZL :

By Lemma 1, we have $H^{0}\rightarrow H^{0.0}=0$ . Therefore it is trivial that $h_{0}$ is
isomorphic.

$\underline{h_{1}}$ :

First we show the injectivity of $h_{1}$ . Suppose $[\alpha]\in H^{1}$ and $h_{1}([\alpha])=0$ . That is
$\alpha\in A^{1}(End^{0}(E,h))$ satisfies $D_{+}\alpha=0$ and there exists $\phi\in A^{0}(End^{0}E)$ such that
$ h_{1}(\alpha)=\alpha^{0.1}=D^{\prime\prime}\phi$ . Since $D_{+}\alpha=0,$ $\Lambda(D^{\nu}D^{\prime}\overline{\phi}+D^{\prime}D^{\prime\prime}\phi)=0$ . We set $\phi=$

$\phi_{0}+\sqrt{-1}\phi_{1}$ and $\overline{\phi}=\phi_{0}\sqrt{-1}\phi_{1}$ for $\phi_{0},\phi l\in A^{0}(End^{}(E,h))$ . Then

$0=\Lambda(D^{\prime\prime}D^{\prime}\phi_{0}-\sqrt{-1}D^{\nu}D^{\prime}\phi_{1}+D^{\prime}D^{\nu}\phi_{0}+\sqrt{-1}D^{\prime}D^{\nu}\phi_{1})$

$=\Lambda(D^{\prime\prime}D^{\prime}\phi_{0}+D^{\prime}D^{\prime\prime}\phi_{0})-\sqrt{-1}\Lambda(D^{\nu}D^{\prime}\phi_{1}-D^{\prime}D^{\nu}\phi_{1})$ (3.17)

Since $D$ is an anti-self-dual connection,

$\Lambda(D^{u}D^{\prime}+D^{\prime\prime}D^{\prime})\phi_{0}=(\Lambda R(D))\phi_{0}=0$ , (3.18)

and

$-\sqrt{-1}\Lambda(D^{\prime}D^{\prime\prime}-D^{\prime\prime}D^{\prime})\phi_{1}=2^{(}/’\phi_{1}$ . (3.19)

Therefore we have 2 (
$/^{\prime}\phi_{1}=0$ . Together with Lemma 4, the irreducibility of $D$

implies $\phi_{1}\equiv 0$ . Consequently
$\alpha=\alpha^{1.0}+\alpha^{0,I}=D^{\prime}\phi_{0}+D^{\nu}\phi_{0}=D\phi_{0}$ (3.20)

and then $[\alpha]=0$ in $H_{D}^{1}$ . It is shown that $h_{I}$ is injective.
Next, in order to prove the surjectivity of $h_{1}$ , given $\beta\in^{\vee}A^{0,1}(End^{0}E)$ satisfying

$D^{\nu}\beta=0$ , we will find $[\alpha]\in H_{D}^{1}$ such that $h_{1}([\alpha])=[\beta]$ in $H_{D^{\prime\prime}}^{0.1}$ . To do so, we put
$\alpha=\overline{\beta}+D^{\prime}\overline{\psi}+\beta+D$“ $\psi\in A^{1}(End^{0}(E,h))$ . The equation $D_{+}\alpha=0$ means

$D^{\nu}\alpha^{0,1}=D^{\nu}(\beta+D‘‘\psi)=0$ (3.21)

and
$\Lambda(D^{\prime\prime}\alpha^{1,0}+D^{\prime}\alpha^{0,1})=\Lambda(D^{\prime\prime}\overline{\beta}+D^{\nu}D‘\overline{\psi}+D^{\prime}\beta+D^{\prime}D‘‘\psi)$

$=\Lambda(D\overline{\beta}+D^{\prime}\beta+2\sqrt{-1}\Lambda D^{\prime}D^{\prime\prime}\psi_{1}=0$ , (3.22)

where $\psi=\psi_{0}+\sqrt{-1}\psi_{1}$ . Therefore we have

2 ($/^{J}\psi_{1}=\Lambda(D^{\nu}\overline{\beta}+D^{\prime}\beta)$ (3.23)

By Lemma 4 and the irreducibility of $D$ , the kernel of ($/^{\#}$ is trivial. Then we can
find $\psi_{1}$ which satisfies the equation (3.23). Taking $\psi_{0}$ suitably, we obtain
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$\alpha\in A^{1}(End^{0}E,h))$ satisfying $h_{1}([\alpha])=[\beta]$ .
$\underline{h_{2}}$ :

It is clear that $h_{2}$ is surjective. So we show the injectivity. Let $\psi$ be an element
of $A_{+}^{2}(End^{}(E,h))$ . We decompose $\psi$ as follows: $\psi=\psi^{2,0}+(1/2)\Phi\wedge\phi+\psi^{0,2}$ for
$\phi\in A^{0}(End^{0}(E,h))$ . Suppose $h_{2}([\psi])=0$ . That is, there exists a $\beta\in A^{0,1}(End^{0}E,)$

such that $ h_{2}(\psi)=\psi^{0,2}=D^{\prime\prime}\beta$ . We will find $\alpha\in A^{1}(End^{0}(E,h))$ such that
$\psi=D_{+}\alpha$ . To do so, we put $\alpha=\overline{\beta}+D^{\prime}\overline{\gamma}+\beta+D^{\prime\prime}\gamma$ for some $\gamma\in A^{0}(End^{0}E)$ .
Then we have

$\psi=D_{+}\alpha$

$=D^{\prime}(\overline{\beta}+D^{\prime}\overline{\gamma})+\frac{1}{2}\Phi\wedge\Lambda\{D^{\prime\prime}(\overline{\beta}+D^{\prime}\overline{\gamma})+D^{\prime}(\beta+D‘‘\gamma)\}+D^{\nu}(\beta+D^{\nu}\gamma)$

(3.24)

We set $\gamma=\gamma_{0}+\sqrt{-1}\gamma_{1}$ for $\gamma_{0},\gamma_{1}\in A^{0}(End^{0}E,h))$ . Then
$\phi=\Lambda(D^{\nu}\overline{\beta}+D^{\nu}D^{\prime}\gamma+D^{\prime}\beta+D^{\prime}D^{\prime\prime}\gamma)$

$=\Lambda(D^{\nu}\overline{\beta}+D^{\prime}\beta)+2\Lambda D^{\prime}D^{\prime\prime}\gamma_{1}$ . (3.25)

Therefore we have

2 (
$ l\gamma_{1}=\Lambda(D^{\prime\prime}\overline{\beta}+D^{\prime}\beta)-\phi$ . (3.26)

The solution $\gamma_{1}$ of (3.26) exists since $D$ is irreducible and $ker\varphi^{*}=\{0\}$ . We have
found $\alpha$ satisfying $\psi=D_{+}\alpha$ .

4. Vanishing of $\tilde{H}_{D}$

In this section, we will prove Proposition 1 in the introduction. First we recall
the results obtained by Gauduchon in [2]. Let $(M, g)$ be an m-dimensional
compact Hermitian manifold with $\partial\overline{\partial}\Phi^{m-1}=0$ . Let $L$ be a holomorphic line
bundle over $(M, g)$ , and $h$ be its Hermitian structure. We denote by $k$ the mean
curvature of $(L, h)$ . We use the notation “mean curvature” following Kobayashi
[5, p. 51] and it is called the Ricci-scalar in Gauduchon [2]. Then the following
holds ([2]):

1. $\int_{M}kdv$ is independent of the Hermitian structure $h$ .

2. There exists a unique Hermitian structure $h_{0}$ on $L$ (up to the homothety)

such that its mean curvature $k_{0}$ is constant.

In particular, applying the above results to the canonical line bundle $K_{M}$ , we
obtain the Hermitian structure with constant mean curvature $k_{0}$ . We note that
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$k_{0}Vol(M,g)=-\int_{M}Sca1(g)dv$ , where Sca1 $(g)$ denotes the scalar curvature of the

Hermitian connection with respect to $g$ .
Now we return to the proof of Proposition 1. The $C^{\infty}$ -Hermitian vector

bundle $(E, h)$ has a holomorphic structure defined by the anti-self-dual $SU(n)-$

connection D. $D$ is the Hermitian connection of $(E, h)$ with respect to this
holomorphic structure and it has mean curvature $0$ and so for End $0E$ . Together
with the former, it implies that the tensor product $F=End^{0}E\otimes K_{M}$ admits a
Hermitian structure with mean curvature $k_{0}I_{L}$ . If $k_{0}<0$ , by the vanishing
theorem of the holomorphic sections ([5, pp. 49-53]), $End^{0}E\otimes K_{M}$ admits no
nonzero holomorphic sections. Further, if $k_{0}=0$ , then every holomorphic section
is parallel. Let $f$ be a nonzero holomorphic section section of $End^{0}E\otimes K_{M}$ . For
each point $x$ on $M$ , consider the eigenspace of the homomorphism $f_{X}$ . These
eigenspaces define a parallel subbundle of $E$ . This contracts that $D$ is an
irreducible connection. Consequently, even if $k_{0}=0,End^{0}E\otimes K_{M}$ has no nonzero
holomorphic sections.

REMARK: Let $(M, g)$ be a compact anti-self-dual Hermitian surface (i.e., its
Weyl conformal curvature tensor $W$ belongs to $A_{-}^{2}$ ) with $\partial\overline{\partial}\Phi=0$ . Then we have
$\int_{M}Sca1(g)dv\geq 0$ and the equality holds if and only if $(M, g)$ is Kahlerian (cf.

Boyer [6]).
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