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ON MINIMAL SURFACES WITH CONSTANT K\"AHLER
ANGLE IN $CP^{3}$ AND $CP^{4}$

By

Makoto SAKAKI

0. Introduction.

Let $M$ be a 2-dimensional Riemannian manifold isometrically immersed in a
K\"ahler manifold $N$ with the complex structure $J$ , and let $\{e_{1},e_{2}\}$ be a local
orthonormal frame on $M$ . The Kahler angle $\alpha$ of $M$ is defined to be the angle
between $Je_{1}$ and $e_{2}$ . The surface $M$ is holomorphic, anti-holomorphic or totally
real if and only if $\alpha=0,$ $\pi$ or $\pi/2$ , respectively. In [6] Chern and Wolfson
pointed out that the K\"ahler angle plays an important role in the study of minimal
surfaces in K\"ahler manifolds.

Here we consider the problem to classify minimal surfaces with constant
K\"ahler angle in $CP^{\prime\iota}$ , where $CP^{l\ddagger}$ denotes the complex projective space of
constant holomorphic sectional curvature 4. Conceming this problem, several
results are known (see [1], [10], [8], [4] and [9]). In particular, we recall the
following three facts. (I) A minimal surface with constant Kahler angle in $CP^{2}$ is
either holomorphic, anti-holomorphic or totally real (see [6, (2.32)] and [8,

Lemma 2.1]). (II) A pseudo-holomorphic minimal surface with constant Kahler
angle in $CP^{3}$ is either holomorphic, anti-holomorphic, totally real or of constant
curvature (see the proof of Theorem 9.1 of [1]). (III) A minimal 2-sphere with
constant Kahler angle in $CP^{4}$ is either holomorphic, anti-holomorphic, totally real
or of constant curvature (see [1, Theorem 9.1], cf. [8, p. 372]).

REMARK 1. (i) A minimal surface in $CP^{;\iota}$ is called pseudo-holomorphic if
its harmonic sequence terminates at each end (see [3] and [5]).

(ii) Minimal surfaces with constant curvature and Kahler angle in $CP^{l\ddagger}$ are
classified in [10].

In this paper we prove the following:

THEOREM 1. Let $M$ be a superconformal minimal surface with constant
Kahler angle in $CP^{3}$ . Then $M$ is totally real.
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THEOREM 2. Let $M$ be a pseudo-holomorphic minimal surface with constant
Kahler angle in $CP^{4}$ Then $M$ is either holomorphic, anti-holomorphic, totally
real or of constant curvature.

REMARK 2. (i) A minimal surface in $CP^{\prime l}$ is called superconformal if its
harmonic sequence is orthogornally periodic (see [5] and [2]).

(ii) Every minimal 2-sphere in $CP^{\prime t}$ is pseudo-holomorphic (see [3] and [5]).

So Theorem 2 is a generalization of the fact (III). We note that the global
assumption is used in the proof of the fact (III) in [1] (cf. [8]).

(iii) In Section 5, we discuss pseudo-holomorphic totally real minimal
surfaces in $CP^{\prime\iota}$ and superconformal totally real minimal surfaces in $CP^{3}$

In Section 1 we follow [11], [3], [5] and recall the theory of harmonic
sequences. In Section 2, using the method of moving frames developed in [6] and
[8], we introduce some local functions and formulas for minimal surfaces in $CP^{\prime\iota}$

In Section 3 we describe the k-orthogonality and the pseudo-holomorphicity of
minimal surfaces in $CP^{\prime l}$ in terms of the local functions introduced in Section 2.
In Section 4 we prove Theorems 1 and 2. In Section 5 we deal with the above
Remark 2 (iii).

1. Harmonic sequences.

Let $\psi:S\rightarrow CP^{\prime\iota}$ be a map from a metric Riemann surface $S$ to $CP^{ll}$ , and set

$L=\{(x, v)\in CP^{ll}\times C^{l1+1} ; v\in x\}$ .

There is a bijective correspondence between maps $\psi:S\rightarrow CP^{ll}$ and complex line
subbundles of $S\times C^{ll+1}$ given by $\psi\leftrightarrow\psi^{*}L$ . We have the identification
$TCP^{n}=Hom(L, L^{\perp})$ , where the orthogonal complement is taken with respect to
the standard Hermitian inner product on $C^{ll+1}$ . If X is a tangent vector field on $S$ ,

then $d\psi(X):\psi^{*}L\rightarrow\psi^{*}L^{\perp}$ is given by
$d\psi(X)s=\pi_{L^{\perp}}(Xs)$ ,

where $\pi_{L^{\perp}}$ denotes the orthogonal projection to $L^{\perp}$ and the section $s$ of $\psi^{*}L$ is
considered as a $C^{\prime\iota+1}$ -valued map on $S$ .

Let $\partial:T^{(1.0)}S\otimes\psi^{*}L\rightarrow\psi^{*}L^{\perp}$ and $\overline{\partial}:T^{(0,1)}S\otimes\psi^{*}L\rightarrow\psi^{*}L^{\perp}$ be the bundle maps
obtained by the restriction of $ d\psi$ to $T^{(1.0)}S$ and $T^{(0.1)}S$ , respectively. Then, in
terms of a local complex coordinate $z$ on $S$ , we have

$\partial(\partial/\&\otimes s)=\pi_{L^{\perp}}(\partial s/\&)=d\psi(\partial/\&)s$

and
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$\overline{\partial}(\partial/\mathfrak{X}\otimes s)=\pi_{L^{\perp}}(\partial s/\mathfrak{X})=d\psi(\partial/\mathfrak{X})s$ .

Every complex vector subbundle $V$ of $S\times C^{\prime\iota+1}$ inherits a holomorphic
structure for which $s$ is a local holomorphic section if and only if $\partial s/\mathfrak{X}$ is
orthogonal to $V$ . Then $\psi$ is harmonic if and only if $\partial$ is a holomorphic bundle
map, which is also equivalent to that $\overline{\partial}$ is an anti-holomorphic bundle map (see

[11 , Theorem 2.1]).

Write $\psi=\psi_{0},\psi^{*}L=L_{0}$ and assume that $\psi$ is harmonic. If $\partial$ is not the zero-
map, that is, $\psi$ is not anti-holomorphic, then the zeros of $\partial$ are isolated and we
obtain a unique complex line subbundle $L_{1}$ of $L_{0}^{\perp}$ containing the image of $\partial$ . The
map $\partial$ defines a holomorphic bundle map

$\partial_{0}$ ; $T^{(1.0)}S\otimes L_{0}\rightarrow L_{1}$ .

Similarly, if $\overline{\partial}$ is not the zero-map, that is, $\psi$ is not holomorphic, then we have a
complex line subbundle $L_{-1}$ of $L_{0}^{\perp}$ and an anti-holomorphic bundle map

$\overline{\partial}_{0}$ ; $T^{(0,1)}S\otimes L_{0}\rightarrow L_{-1}$ .

The maps $\psi_{1}$ corresponding to $L_{1}$ and $\psi_{-1}$ corresponding to $L_{-1}$ are harmonic
(see [11, Theorem 2.2]). In this way, one inductively builds up a sequence of
harmonic maps $\{\psi_{p}\}$ together with corresponding complex line subbundles $\{L_{p}\}$ ,

holomorphic bundle maps
$\partial_{\rho}$ ; $T^{(1.0)}S\otimes L_{p}\rightarrow L_{\rho+1}$ ,

and anti-holomorphic bundle maps
$\overline{\partial}_{p}$ : $T^{(0,1)}S\otimes L_{p}\rightarrow L_{p-1}$

with Hermitian adjoint $\partial_{p^{*}}=-\overline{\partial}_{\rho+1}$ (see [11] and [3]).

If, for some $q\in Z,\psi_{q}$ is holomorphic (resp. anti-holomorphic), then $\overline{\partial}_{q}$ (resp.
$\partial_{q})$ is identically zero and $\psi_{q-1}$ (resp. $\psi_{q+1}$ ) cannot be defined. In this case, the

sequence $\{\psi_{p}\}$ terminates at the left-(resp. right-) hand end. If $I=\{p\in Z:\psi_{p}$ is
defined}, then $\{\psi_{p}\}_{p\in l}$ is the harmonic sequence determined by $\psi=\psi_{0}$ and
$\{L_{p}\}_{p\in l}$ is the corresponding bundle sequence of complex line subbundles of
$S\times C^{n+1}$

If I is a finite set, then $\psi$ is called pseudo-holomorphic. We shall say that $\psi$

is k-orthogonal if $k$ consecutive bundles of $\{L_{p}\}$ are mutually orthogonal. In
particular, $\psi$ is always 2-orthogonal, $\psi$ is 3-orthogonal if and only if $\psi$ is
conformal, and $\psi$ is at most $(n+1)$ -orthogonal. If $\psi$ is pseudo-holomorphic and

the image of $\psi$ lies fully in $CP^{ll}$ , then $\psi$ is $(n+1)$-orthogonal. Here a subset in
$CP^{n}$ is said to lie fully in $CP^{\prime\iota}$ if it does not lie in a totally geodesic $CP^{ll-1}$ . If $\psi$



36 Makoto SAKAKI

is $(n+])$ -orthogonal but not pseudo-holomorphic, then $\{L_{p}\}is$ orthogonally periodic
with period $n+$ ]. In this case we say that $\psi$ is superconformal. We note that
every conformal harmonic map $\psi:S\rightarrow CP^{2}$ is either pseudo-holomorphic or
superconformal (see [3] and [5]).

A minimal surface $M$ in $CP^{n}$ is the image of a conformal harmonic map
$\psi:S\rightarrow CP^{n}$ with induced metric. We say that $M$ is pseudo-holomorphic if $\psi$ is
pseudo-holomorphic, $M$ is k-orthogonal if $\psi$ is k-orthogonal, and $M$ is
superconformal if $\psi$ is superconformal.

REMARK 3. As noted above, if $\partial_{p}$ is not the zero-map, then the zeros of $\partial_{p}$

are isolated. As our argument in this paper is local in nature, we may assume that
$\partial_{p}$ has no zeros if $\partial_{p}$ is not the zero-map. Similarly we may assume that $\overline{\partial}_{\rho}$ has
no zeros if $\overline{\partial}_{p}$ is not the zero-map.

2. Moving frames.

Throughout this paper we will adopt the following ranges of indices:
$1\leq\alpha,\beta,\gamma\leq n,3\leq\lambda,\mu,$ $v\leq n,$ $1\leq j,k\leq 2$ .

Let $\{\omega_{\alpha}\}$ be a local field of unitary coframes on $CP^{\prime l}$ so that the metric is
represented by $ds^{2}=\sum_{\alpha}\omega_{\alpha}\overline{\omega}_{a}$ . We denote by $\{\omega_{\alpha\beta}\}$ the unitary connection forms
with respect to $\{\omega_{\alpha}\}$ . Then we have

(2.1) $d\omega_{\alpha}=\Sigma_{\beta}\omega_{\alpha\beta}\wedge\omega_{\beta},$ $\omega_{\alpha\beta}+\overline{\omega}_{\beta\alpha}=0$ ,

(2.2) $d\omega_{\alpha\beta}=\Sigma_{\gamma}\omega_{\alpha\gamma}\wedge\omega_{)\beta}+\Omega_{\alpha\beta}$ ,

(2.3) $\Omega_{\alpha\beta}=-\omega_{\alpha}\wedge\overline{\omega}_{\beta}-\delta_{\alpha\beta}\sum_{\gamma}\omega_{\gamma}\wedge\overline{\omega}_{\gamma}$ .

Let $M$ be a minimal surface in $CP^{ll}$ . By using isothermal parameters, we may
write the induced metric on $M$ as $ds_{M}^{2}=\phi\overline{\phi}$ , where $\phi$ is a complex valued l-form
and it is defined up to a complex factor of norm one. Let $\{e_{1},e_{2}\}$ be a local
orthonormal frame on $M$ , and let $J$ denote the complex structure of $CP^{ll}$ . The
Kahler angle $\alpha\in[0,\pi]$ of $M$ is defined to be the angle between $Je$ , and $e_{2}$ .

We assume that $ 0<\alpha<\pi$ on $M$ . It is proved in [6] that there exist fields of
unitary coframes such that

(2.4) $\omega_{1}=\cos(\alpha/2)\phi,$ $\omega_{2}=\sin(\alpha/2)\overline{\phi},$ $\omega_{\lambda}=0$

along $M$ , and they satisfy

(2.5) $\frac{1}{2}\{d\alpha+\sin(\alpha)(\omega_{||}+\omega_{22})\}=a\phi$ ,
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(2.6) $\omega_{12}=c\overline{\phi}$ ,

(2.7) $\cos(\alpha/2)\omega_{\lambda 1}=a_{\lambda}\phi$ ,

(2.8) $\sin(\alpha/2)\omega_{\lambda 2}=c_{\lambda}\overline{\phi}$

for some complex valued functions $a,$ $c,$ $a_{\lambda}$ and $c_{\lambda}$ defined locally on $M$ . We note
that $|a|^{2},|c|^{2},\sum_{\lambda}|a_{\lambda}|^{2}$ and $\Sigma_{\lambda}|c_{\lambda}|^{2}$ are scalar invariants of $M$ (see [8]).

The metric $ds_{M}^{2}=\phi\overline{\phi}$ has a connection form $\rho$ , which is a real l-form
satisfying the equation $ d\phi=-i\rho\wedge\phi$ . Its exterior derivative gives the Gaussian
curvature $K$ as follows:

(2.9) $d\rho=-\frac{i}{2}K\phi\wedge\overline{\emptyset}$

The Gauss equation of $M$ is written as

(2.10) $K=1+3\cos^{2}(\alpha)-2(|a|^{2}+|c|^{2}+\Sigma_{\lambda}|a_{\lambda}|^{2}+\Sigma_{\lambda}|c_{\lambda}|^{2})$

(see [6, (2.31)] and [8, (2.3)]).

The functions $a_{\lambda}$ and $c_{\lambda}$ satisfy

(2.11) $da_{\lambda}-2ia_{\lambda}\rho-\Sigma_{\mu}a_{\mu}\omega_{\lambda\mu}=a_{\lambda,1}\phi+a_{\lambda,2}\overline{\phi},$ $a_{\lambda,2}=-\overline{c}c_{\lambda}\cot(\alpha/2)$ ,

(2.12) $dc_{\lambda}+2ic_{\lambda}\rho-\Sigma_{\mu}c_{\mu}\omega_{\lambda\mu}=c_{\lambda,1}\phi+c_{\lambda,2}\overline{\phi},$ $c_{\lambda,1}=ca_{\lambda}\tan(\alpha/2)$

for some complex valued functions $a_{\lambda,j}$ and $c_{\lambda,j}$ defined locally on $M$ (see [8,

(2.4)], where the equality for $a_{\lambda,2}$ should be corrected as above in (2.11)).

Let $\Delta$ denote the Laplacian of $M$ with respect to $ds_{M}^{2}$ . Then

(2.13) $\Delta\alpha=4\cot(\alpha)|a|^{2}-4\tan(\alpha/2)\Sigma_{\lambda}|a_{\lambda}|^{2}$

$+4\cot(\alpha/2)\Sigma_{\lambda}|c_{\lambda}|^{2}+3\sin(2\alpha)$

(see [6, (2.32)] and [8, Lemma 2.1], where the coefficient 3/2 of the last term of
(2.32) of [6] should be corrected as 3/4).

3. k-orthogonality and pseudo-holomorphicity.

We begin by giving a description of the geometry of $CP^{ll}$ . For
$W=(w_{0},\cdots, w_{n}),$ $Z=(z_{0},\cdots,z_{\iota})\in C^{ll+1}$ , the usual Hermitian inner product is defined
by $<W,$ $Z>=\sum_{tl}w_{l}\overline{z},$ , where we use the index range $0\leq a,$ $b,$ $c\leq n$ . The complex
projective space $CP^{ll}$ is the orbit space of $C^{ll+1}-\{0\}$ under the action of the group
{ $Z\rightarrow\alpha Z$;a $\in C-\{0\}$ }. Let $\pi:C^{n+1}-\{0\}\rightarrow CP^{ll}$ denote the projection. For a point
$x\in CP^{l1}$ we take a vector $Z\in\pi^{-1}(x)=;[x]$ , which is called a homogeneous
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coordinate vector of $x$ . We have the identification T. $CP^{;\iota}=\{W\in C^{ll+1} ;<ZW>=0\}$ .
The complex projective space $CP^{lI}$ is diffeomorphic to the coset space of the

unitary group U(n+l):
$\lambda$ $h$

(3.1) $U(n+])\rightarrow U(n+1)1U(n)\rightarrow U(n+1)1U(1)\times U(n)=CP^{n}$ .

We identify U(n+l) with the space of all unitary frames $\{Z_{tl}\}$ in
$C^{\prime+1}$ , Z. $\in C^{n+1}-\{0\}$ satisfying $<Z_{a},$ $Z_{b}>=\delta_{ab}$ . Under this identification, the first
projection $\lambda$ in (3.1) is defined by assigning to the frame {Z.} its first vector $Z_{0}$ .
The second projection $h$ in (3.1) is the Hopf fibering.

The Maurer-Cartan forms $\theta_{ab}$ of U(n+l) are defined by

(3.2) $dZ_{tl}=\sum_{b}\theta_{c\prime b}Z_{b}$ , $\theta_{\ell\iota b}+\overline{\theta}_{ba}=0$

They satisfy the Maurer-Cartan equations: $d\theta_{b}=\sum_{(}\theta_{a\mathfrak{c}}l\wedge\theta_{b}$ The Fubini-Study
metric on $CP^{ll}$ is given by $ds^{2}=\sum_{\alpha}\theta_{0\alpha}\overline{\theta}_{0a}$ .

If we set

(3.3) $\omega_{\alpha}=\theta_{0\alpha}$ , $\omega_{\alpha\beta}=-(\theta_{\beta a}-\delta_{a\beta}\theta_{\alpha)})$ ,

then they satisfy the condition (2.1). It follows that they are the connection forms
of the Fubini-Study metric. Its curvature forms are

$\Omega_{\alpha\beta}=-\omega_{\alpha}\wedge\overline{\omega}_{\beta}-\delta_{\alpha\beta}\sum_{\gamma}\omega_{\gamma}\wedge\overline{\omega}_{\gamma}$ .

Thus the Fubini-Study metric has constant holomorphic sectional curvature 4.
Let $M$ be a minimal surface in $CP^{ll}$ , which is the image of a conformal

harmonic map $\psi:S\rightarrow CP^{\prime 1}$ from a Riemann surface $S$ to $CP^{\prime l}$ with induced
metric. We wish to define a unitary frame firld $\{Z_{\ell l}\}$ in $C^{ll+1}$ over a neighborhood
$U\subset S$ along $\psi$ as maps $Z_{Cl}$ : $U\rightarrow C^{ll+1}-\{0\}$ such that: (i) $\pi\circ Z_{0}$ : $U\rightarrow CP^{l1}$ is the
restriction of $\psi$ ; and (ii) $\{Z_{0},\cdots,Z_{l}\}$ is a unitary frame in $C^{\prime l+1}$ for each point
$p\in U$ .

Let $p$ be any point on $S$ . Choose $Z:U\rightarrow C^{;l+1}-\{0\}$ to be a homogeneous
coordinate vector for $\psi(p)$ and put $Z_{0}=Z/\langle Z, Z\rangle^{1/2}$ . Assume that the Kahler angle

$\alpha$ of $M$ satisfies $ 0<\alpha<\pi$ on $M$ . Then, from the fact in Section 2, there is a
unitary frame $\{e_{\alpha}\}$ along $M=\psi(S)$ whose dual coframe $\{\omega_{\alpha}\}$ satisfies $(2.4)-$

(2.8). The vector $e_{\alpha}$ corresponds to a vector $Z_{a}\in C^{l1+1}-\{0\}$ by the identification
$T_{\psi tp)}$ (CP ) $=\{W\in C^{l\mathfrak{l}+1};\langle Z, W\rangle=0\}$ . Then $\{Z_{0},\cdots, Z_{l}\}$ is a unitary frame field in
$C^{ll+1}$ over $U$ along $\psi$ . We have by (3.2), (3.3), (2.4), (2.6), (2.7), (2.8),
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$dZ_{0}=\theta_{()()}Z_{0}+\cos(\alpha/2)\phi Z_{1}+\sin(\alpha/2)\overline{\phi}Z_{2}$ ,

(3.4) $dZ_{1}=-\cos(\alpha/2)\overline{\phi}Z_{0}+\theta_{11}Z_{1}+\overline{c}\phi Z_{2}-\sec(\alpha/2)\phi\Sigma_{\lambda}a_{\lambda}Z_{\lambda}$ ,

$dZ_{2}=-\sin(\alpha/2)\phi Z_{0}-c\overline{\phi}Z_{1}+\theta_{22}Z_{2}-[cosec](\alpha/2)\overline{\phi}\Sigma_{\lambda}c_{\lambda}Z_{\lambda}$ ,

where we use the notation in Section 2. Let $\{L_{p}\}$ be the bundle sequence
corresponding to the harmonic sequence generated by $\psi$ , together with the
corresponding bundle maps $\{\partial_{?}\}$ and $\{\overline{\partial}_{p}\}$ . Then by (3.4), $L_{0}=[Z_{0}],$ $L_{1}=[Z_{1}],$ $L_{-1}$

$=[Z_{2}],$ $L_{2}=[\overline{c}Z_{2}-\sec(\alpha/2)\sum_{\lambda}a_{\lambda}Z_{\lambda}]$ if $\partial_{1}$ is not the zero-map, and $L_{-2}=[-cZ_{1}-$

$[cosec](\alpha/2)\sum_{\lambda}c_{\lambda}Z_{\lambda}]$ if $\overline{\partial}_{-1}$ is not the zero-map (cf. Remark 3).

Assume that $M$ lies fully in $CP^{n}$ where $n\geq 3$ . Then either $\partial_{1}$ or $\overline{\partial}_{-1}$ is not the
zero-map (see [3, Lemma 1.2]). So either $L_{2}$ or $L_{-2}$ can be defined as above, and
we can see the following:

LEMMA 1. Let $M$ be a minimal surface lying fully in $CP^{n}$ where $n\geq 3$ , and
assume that the Kahler angle $\alpha$ of $M$ satisfies $ 0<\alpha<\pi$ on M. Then $M$ is 4-
orthogonal $lf$ and only $lfc=0$ under the notation above.

Assume that $M$ lies fully in $CP^{n}$ where $n\geq 4$ , and neither $\partial_{1}$ nor $\overline{\partial}_{-1}$ is the
zero-map. Then both $L_{2}$ and $L_{-2}$ can be defined as above, and we can see the

following:

LEMMA 2. Let $M$ be a minimal surface lying fully in $CP^{n}$ where $n\geq 4$ .
Assume that the Kahler angle $\alpha$ of $M$ satisfies $ 0<\alpha<\pi$ on $M$ , and neither $\partial$ ,
nor $\overline{\partial}_{-f}$ is the zero-map. Then $M$ is 5-orthogonal $\iota f$ and only if $c=o$ and $\sum_{\lambda}a_{\lambda}\overline{c}_{\lambda}$

$=0$ under the notation above.

Assume that $M$ lies fully in $CP^{4}$ , neither $\partial_{1}$ nor $\overline{\partial}_{-1}$ is the zero-map, and $M$ is
5-orthogonal. Then by Lemma 2, $c=0$ , and $L_{0},$ $L_{1},$ $L_{-1},$ $L_{2}=[\sum_{\lambda}a_{\lambda}Z_{\lambda}],$ $L_{-2}=$

$[\sum_{\lambda}c_{\lambda}Z_{\lambda}]$ are mutually orthogonal. So we may replace $\sum_{\lambda}a_{\lambda}Z_{\lambda}/||\sum_{\lambda}a_{\lambda}Z_{\lambda}||$ and
$\sum_{\lambda}c_{\lambda}Z_{\lambda}/||\Sigma_{\lambda}c_{\lambda}Z_{\lambda}||$ by $Z_{3}$ and $Z_{4}$ , respectively (cf. Remark 3). With respect to

this new frame, $a_{4}=c_{3}=0$ . So by (2.11), (2.12) and that $c=0$ ,

(3.5) $-a_{3}\omega_{43}=a_{4,1}\phi$ ,

(3.6) $-c_{4}\omega_{34}=c_{3.2}\overline{\phi}$

We have by (3.2), (3.3), (3.4), (3.5), (3.6) and that $a_{4}=c_{3}=0$ ,

$dZ_{3}=\overline{a}_{3}\sec(\alpha/2)\overline{\phi}Z_{1}+\theta_{33}Z_{3}+(a_{4.1}/a_{3})\phi Z_{4}$ ,
(3.7)

$dZ_{4}=\overline{c}_{4}[cosec](\alpha/2)\phi Z_{2}+(c_{3,2}/c_{4})\overline{\phi}Z_{3}+\theta_{44}Z_{4}$ :
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As $L_{\underline{7}}=[Z_{\lambda}]$ and $L_{-2}=[Z_{4}]$ , by (3.7), we have:

LEMMA 3. Let $M$ be a minimal surface lying fully in $CP^{4}$ . Assume that the
Kahler angle $\alpha$ of $M$ satisfies $0<\alpha<\pi$ on $M$ , and neither $\partial_{l}$ nor $\overline{\partial}_{-l}$ is the zero-
map. Then $M$ is pseudo-holomorphic if and only if $M$ is 5-orthogonal and
$a_{4.1}=c_{3.2}=0$ under the notation above.

4. Proof of Theormes 1 and 2.
First we show the following lemma (cf. [8, Lemma 3.2]).

LEMMA 4. Let $M$ be a minimal surface in $CP^{n}$ . Assume that the Kahler angle
$\alpha$ of $M$ satisfies $ 0<\alpha<\pi$ on $M$ , and $M$ is 4-orthogonal. Then, under the notation
in Section 2,

(4.1) $|d(\Sigma_{\lambda}|a_{\lambda}|^{2})|^{2}=4|\Sigma_{\lambda}a_{\lambda}\overline{a}_{\lambda.1}|^{2}$

(4.2) $\Delta(\Sigma_{\lambda}|a_{\lambda}|^{2})=4\{\Sigma_{\lambda}|a_{\lambda.1}|^{2}+K\sum_{\lambda}|a_{\lambda}|^{2}-\sec^{2}(\alpha/2)(\sum_{\lambda}|a_{\lambda}|^{2})^{2}$

$+[cosec]^{2}(\alpha/2)|\sum_{\lambda}a_{\lambda}\overline{c}_{\lambda}|^{2}$ -cos(a) $\sum_{\lambda}|a_{\lambda}|^{2}$ },

(4.3) $|d(\Sigma_{\lambda}|c_{\lambda}|^{2})|^{2}=4|\Sigma_{\lambda}c_{\lambda}\overline{c}_{\lambda.2}|^{2}$

(4.4) $\Delta(\Sigma_{\lambda}|c_{\lambda}|^{2})=4\{\Sigma_{\lambda}|c_{\lambda.2}|^{2}+K\Sigma_{\lambda}|c_{\lambda}|^{2}+\sec^{2}(\alpha/2)|\Sigma_{\lambda}a_{\lambda}\overline{c}_{\lambda}|^{2}$

-cosec2 $(\alpha/2)(\Sigma_{\lambda}|c_{\lambda}|^{2})^{2}+\cos(\alpha)\Sigma_{\lambda}|c_{\lambda}|^{2}$ }.

PROOF. As $M$ is 4-orthogonal, $c=0$ by Lemma 1. Using (2.11), (2.1) and that
$c=0$ , we have

(4.5) $d(\Sigma_{\lambda}|a_{\lambda}|^{2})=\Sigma_{\lambda}(\overline{a}_{\lambda}a_{\lambda.1}\phi+a_{\lambda}\overline{a}_{\lambda.1}\overline{\phi})$ ,

from which we get (4.1). By (4.5),

(4.6) $d(\Sigma_{\lambda}|a_{\lambda}|^{2})=i\sum_{\lambda}(a_{\lambda}\overline{a}_{\lambda.1}\overline{\phi}-\overline{a}_{\lambda}a_{\lambda.1}\phi)$ .

By taking the exterior derivative of (2.11) and using (2.11), (2.9), (2.2), (2.7),
(2.8), (2.3), (2.4), we get

(4.7) $d(a_{\lambda,1}\phi)=-2ia_{\lambda.1}\phi\wedge\rho-\sum_{\mu}a_{\mu}.|\phi\wedge\omega_{\lambda\mu}+\{-Ka_{\lambda}$

$+\sec^{2}(\alpha/2)a_{\lambda}(\sum_{\mu}|a_{\mu}|^{2})-[cosec]^{2}(\alpha/2)c_{\lambda}(\sum_{\mu}a_{\mu}\overline{c}_{\mu})+\cos(\alpha)a_{\lambda}\}\phi\wedge\overline{\phi}$ .

Because of $dd^{c}(\sum_{\lambda}|a_{\lambda}|^{2})=(i/2)\Delta(\sum_{\lambda}|a_{\lambda}|^{2})\phi\wedge\overline{\phi}$ , by taking the exterior
derivative of (4.6) and using (2.11), (4.7), (2.1), we get (4.2). The equations (4.3)

and (4.4) can be shown similarly.
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Now we prove the following theorem which includes Theorem 1 and the fact
(II) in the introduction.

THEOREM 3. Let $M$ be a minimal surface with constant Kahler angle in $CP^{3}$

Assume that $M$ is 4-orthogonal. Then $M$ is either holomorphic, anti-holomorphic,
totally real or of constant curvature.

PROOF. We use the notation in Section 2. Assume that $M$ is neither
holomorphic, anti-holomorphic nor totally real. As $d\alpha=a\phi+\overline{a}\overline{\phi}$ by (2.5) and $\alpha$

is constant, $a=0$ . As $M$ is 4-orthogonal, $c=0$ by Lemma 1. So we have by (2.10)

and (2.13),

(4.8) $|a_{3}|^{2}=\frac{1}{2}\cos^{2}(\alpha/2)(1+3\cos(\alpha)-K)$ ,

(4.9) $|c_{3}|^{2}=\frac{1}{2}\sin^{2}(\alpha/2)(1-3\cos(\alpha)-K)$

The equations (4.1) and (4.3) are written as $|d(|a_{3}|^{2})|^{2}=4|a_{3}|^{2}|a_{3,1}$
2 and

$|d(|c_{3}|^{2})|^{2}=4|c_{3}|^{2}|c_{3,2}|^{2}$ , respectively. So (4.2) and (4.4) are rewritten as
(4.10) $|a_{3}|^{2}\Delta(|a_{3}|^{2})=|d(|a_{3}|^{2})|^{2}+4|a_{3}|^{4}$ {K-sec2 $(\alpha/2)|a_{3}|^{2}$

$+[cosec]^{2}(\alpha/2)|c_{3}|^{2}$ -cos(a)},

(4.11) $|c_{3}|^{2}\Delta(|c_{3}|^{2})=|d(|c_{3}|^{2})|^{2}+4|c_{3}|^{4}\{K+\sec^{2}(\alpha/2)|a_{3}|^{2}$

$-[cosec]^{2}(\alpha/2)|c_{3}|^{2}+\cos(\alpha)\}$ ,

respectively. Inserting (4.8) (4.9) into (4.10), (4.11), and noting that $\cos(\alpha)\neq 0$ ,

we get

$\Delta K=\frac{8}{3}\{5K^{2}-7K+2(1+9\cos^{2}(\alpha))\}=:P(K)$ ,

$|dK|^{2}=\frac{4}{3}\{7K^{3}-18K^{2}+3(5-21\cos^{2}(\alpha))K-4(1-9\cos^{2}(\alpha))\}=:Q(K)$ .

If $K$ is not constant, then

(4.12) $QK+(P-Q^{\prime})(P-\frac{1}{2}Q^{\prime})+Q(P^{\prime}-\frac{1}{2}Q^{\prime\prime})=0$ ,

where the prime denotes the differentiation with respect to $K$ (see [7, Lemma
3.3]). By the computation we can find that (4.12) is a nontrivial equation for $K$ .
So $K$ must be constant, which is a contradiction. Hence $K$ is constant, and the
proof is complete.
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PROOF OF THEOREM 1. As $M$ is superconformal, $M$ is neither holomorphic nor
anti-holomorphic. In the case where $M$ does not lie fully in $CP^{\urcorner}$ , the theorem is
included in the fact (I) in the introduction. So we assume that $M$ lies fully in $CP^{\urcorner}$

As $M$ is a superconformal minimal surface lying fully in $CP^{\urcorner},$ $M$ is 4-orthogonal
but not pseudo-holomorphic. Non-pseudo-holomorphic minimal surfaces with
constant curvature and Kahler angle in $CP^{ll}$ are totally real (see [10]). Hence by
Theorem 3, $M$ is totally real.

PROOF $0F$ THEOREM 2. We use the notation in Section 2 and 3. In the case
where $M$ does not lie fully in $CP^{4}$ , the theorem is included in the fact (I) and (II)

in the introduction. So we assume that $M$ lies fully in $CP^{4}$ . Assume that $M$ is
neither holomorphic, anti-holomorphic nor totally real. By the hypothesis and
Lemma 1, we have $a=c=0$ .

If $\partial_{1}$ is the zero-map, that is, $\sum_{\lambda}|a_{\lambda}|^{2}=0$ (see Section 3), then by (2.10) and

(2.13), we can see that $K$ is constant. Similarly, if $\overline{\partial}_{-1}$ is the zero-map, that is,
$\sum_{\lambda}|c_{\lambda}|^{2}=0$ , then $K$ is constant.

If neither $\partial_{1}$ nor $\overline{\partial}_{-1}$ is the zero-map, then by the hypothesis and Lemma 3,

we may choose the frame so that $a_{4}=c_{3}=a_{4.1}=c_{3,2}=0$ . So we have by (2.10)

and (2.13),

(4.13) $|a_{3}|^{2}=\frac{1}{2}\cos^{2}(\alpha/2)(1+3\cos(\alpha)-K)$ ,

(4.14) $|c_{4}|^{2}=\frac{1}{2}\sin^{2}(\alpha/2)(1-3\cos(\alpha)-K)$

The equations (4.1) and (4.3) are written as $|d(|a_{3}|^{2})|^{2}=4|a_{3}|^{2}|a_{3.1}$
2 and

$|d(|c_{4}|^{2})|^{2}=4|c_{4}|^{2}|c_{4,2}$
2 respectively. So, noting that $a_{4}=c_{3}=a_{4.1}=c_{3.2}=0$ ,

(4.2) and (4.4) are rewritten as

(4.15) $|a_{3}|^{2}\Delta(|a_{3}|^{2})=|d(|a_{3}|^{2})|^{2}+4|a_{3}|^{4}$ {K-sec2 $(\alpha/2)|a_{3}|^{2}-\cos(\alpha)$ },

(4.16) $|c_{4}|^{2}\Delta(|c_{4}|^{2})=|d(|c_{4}|^{2})|^{2}+4|c_{4}|^{4}$ {K-cosec2 $(\alpha/2)|c_{4}|^{2}+\cos(\alpha)$ },

respectively. Inserting (4.13), (4.14) into (4.15), (4.16), and noting that
$\cos(\alpha)\neq 0$ , we get

$\Delta K=\frac{2}{3}\{23K^{2}-34K+]]+45\cos^{2}(\alpha)\}=:R(K)$ ,

$|dK|^{2}=\frac{4}{3}$ { $7K^{3}-18K^{2}+3$(5-2 lcos2 $(\alpha)$ ) $K-4(1-9\cos^{2}(\alpha))$ } $=:S(K)$ .

If $K$ is not constant, then

(4.17) $SK+(R-S^{\prime})(R-\frac{1}{2}S^{\prime})+S(R^{\prime}-\frac{1}{2}S^{\prime\prime})=0$ ,
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where the prime denotes the differentiation with respect to $K$ (see [7, Lemma
3.3]). By the computation we can find that (4.17) is a nontrivial equation for $K$ .
So $K$ must be constant, which is contradiction. Hence $K$ is constant, and the proof
is complete.

5. Remark 2 (iii).

Let $RP^{n}$ be the n-dimensional real projective space of constant curvature 1,
which we regard as a totally geodesic submanifold in $CP^{n}$ through the standard
inclusion $i:RP^{n}\rightarrow CP^{n}$ . Let $\pi:S^{n}\rightarrow RP^{n}$ be the natural projection, where $S^{n}$

denotes the n-dimensional unit sphere.

For a minimal surface $M$ in $S^{n},(i\circ\pi)(M)$ is a totally real minimal surface in
$CP^{n}$ , which lies in $RP^{n}$ (see [3]). So if $M$ is a minimal surface in $S^{n}$ such that
$(i\circ\pi)(M)$ is pseudo-holomorphic in $CP^{n}$ (for example, $M$ is a minimal 2-sphere
in $S^{n}$ ), then $(i\circ\pi)(M)$ is a pseudo-holomorphic totally real minimal surface in
$CP^{n}$ , which lies in $RP^{n}$

Conversely, if $M$ is a pseudo-holomorphic totally real minimal surface in
$CP^{n}$ , then by Theorem 3.6 of [3], there is a holomorphic isometry $g$ of $CP^{n}$ such
that $g(M)\subset RP^{n}$ . So, up to congruence, pseudo-holomorphic totally real minimal
surfaces in $CP^{n}$ are constructed as above.

If $M$ is a minimal surface in $S^{3}$ which is not totally geodesic, then $(i\circ\pi)(M)$

is a superconformal totally real minimal surface lying fully in $CP^{3}$ , which lies in
$RP^{3}$ (see the last Remark in [3]). Conversely, if $M$ is a superconformal totally
real minimal surface lying fully in $CP^{3}$ , then by Theorem 3.6 of [3] together with
Theorem 2.2 of [5], there is a holomorphic isometry $g$ of $CP^{3}$ such that $g(M)$

$\subset RP^{3}$ . So, up to congruence, superconformal totally real minimal surfaces lying
fully in $CP^{3}$ are constructed as above.

As noted in Section 1, every minimal surface in $CP^{2}$ is either pseudo-
holomorphic or superconformal. If $M$ is a pseudo-holomorphic totally real
minimal surface in $CP^{2}$ , then as mentioned above, there is a holomorphic
isometry $g$ of $CP^{2}$ such that $g(M)\subset RP^{2}$ So, totally real minimal surfaces in
$CP^{2}$ with Gaussian curvature not identically 1, are superconformal, which are
intrinsically characterized in Theorem 3.8 of [7]. Hence, superconformal totally
real minimal surfaces in $CP^{2}$ are constructed through Theorem 3.8 of [7].
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