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\S 1. Introduction
A linearly ordered topological space (abbreviated LOTS) is a triple

$\langle X, \lambda,\leq\rangle,where\langle X,\leq\rangle is$ a linearly ordered set and $\lambda is$ the usual interval topology
defined by $\leq.$Throughout this paper, $\lambda,$ $\lambda(\leq)$ or $\lambda_{X}$ denote the usual interval topology
on a linearly ordered set $\langle X,\leq\rangle$ .

A generalized ordered space (abbreviated GO-space) is a triple $\langle X, \tau,\leq\rangle$ ,

where $\langle X,\leq\rangle$ is a linearly ordered set and $T$ is a topology on $X$ such that $\lambda\subset\tau$

and $\tau$ has a base of open sets each of which is order-convex, where a subset $A$ of
$X$ is called order-convex if $x\in A$ for every $x$ lying between two points of $A$ .
For a GO-space $\langle X,\tau,\leq\rangle$ and $Y\subset X$ , $\tau|Y$ denotes the subspace topology
$\{U\cap Y:U\in\tau\}$ on $Y$ and $\leq|Y$ denotes the restricted ordering of $\leq onY$ . If it will
cause no confusion, we shall omit $\lambda$ (or $\tau$ ) and $\leq$ , and say simply “ $X$ is a
LOTS (GO-space)”. A topological space $\langle X, \tau\rangle$ , where $\tau$ is a topology on a set
$X$ , is said to be orderable if \langle X, $\tau,\leq\rangle$ is a LOTS for some linear ordering $\leq onX$ .
Similarly, we say simply “

$X$ is an orderable space” if it will cause no confusion.
A LOTS $Z=\langle Z,\lambda,\leq Z\rangle$ is said to be a linearly ordered extension of a GO-space
$ X=\langle X, \tau,\leq X\rangle$ if $X\subset Z,$ $\tau=\lambda|X$ and $\leq_{x^{=\leq}z}|X$ . Furthermore, $ifX$ is closed
(resp., dense) in the space $\langle Z,\lambda\rangle$ , then $Z$ is said to be a linearly ordered c-
extension (resp., d-extension) of X. Similarly, an orderable space $Z=\langle Z, \tau_{Z}\rangle is$

said to be an orderable c-(resp., d- )extension of a GO-space $ X=\langle X, \tau_{X}\leq\rangle$ if $X$

is a closed (resp., dense) subset of $Z$ and $\tau_{X}=\tau_{Z}$ I $X$ . Note that every GO-space
has a compact linearly ordered d-extension ([5, (2.9)]).

Throughout this paper, we use the following notation: Let $\langle Y,\lambda,\leq\rangle$ be a
LOTS. For a GO-space $\langle X, \tau,\leq\rangle$ with the same underlying set $Y$ and the same
order $\leq,wewriteX=GO_{Y}(R, E, I, L)$ ,where $I=\{x\in X:\{x\}\in\tau-\lambda\},$ $R=\{x\in X$ :
$[x,\rightarrow)\in\tau-\lambda\}-I,$ $L=\{x\in X:(\leftarrow,x]\in\tau-\lambda\}-I$ and $E=X-(I\cup R\cup L)$ .

The following problem naturally arises.

Received December 10, 1993. Revised March 17, 1995.



2 Harold R. BENNETT, Masami HOSOBUCHI and Takuo MIWA

PROBLEM 1.1. Let $P$ be a topological property. Does a GO-space with $P$

have an orderable extension with $P$ ?

Concerning this problem, metrizability and (hereditary) paracompactness
have affirmative answers (see [5]). But perfectness is unknown, where a
topological space is perfect if each closed subset is a $G_{\delta}$ -set. The following

problem was posed in [3, Question 1].

PROBLEM 1.2. Does every perfect GO-space have aperfect orderable
extension?

In connection with this, the following is known from [5, (5.9) and (7.2)]: The
Sorgenfrey line $S$ is a perfect GO-space, but it does not have a perfect orderable
c-extension.

However, $S$ does not answer Problem 1.2 negatively, since the LOTS
$S\times\{0,1\}$ with the lexicographic ordering is a perfect linearly ordered d-extension
of $S$ .

The following problem which is a strong version of Problem 1.2 was posed in
[2, ”Posed problems” No. 8] or [6, Question (V)].

PROBLEM 1.3. Does every perfect GO-space have a perfect orderable d-
extension?

In connection with this, a partial negative answer was given in [8]; that is,

there exists a perfect GO-space which does not have any perfect linearly ordered
d-extension.

In this paper, we investigate some conditions in which we have affirmative
answers of Problems 1.2 and 1.3. Throughout this paper, we use the letter $\omega$ to

stand for the set of all natural numbers or the countable cardinality. For undefined
terminology, we refer the reader to [4].

\S 2. Some conditions in which problems 1.2 and 1.3 have
affirmative answers

In this section, for a GO-space $X,$we define LOTS’s $H(X),$ $L(X),$ $M(X)$ and
$N(X)$ , and investigate some conditions in which Problems 1.2 and 1.3 have

affirmative answers.

DEFINITION 2.1. Let $X=GO_{Y}(R, E, I, L)$ be a GO-space on a LOTS Y. Let
$I_{+}=$ { $x\in I$ : there is a $y\in X$ such that $y<x$ and $(y,x)=\phi$ }, $I_{-}=\{x\in I$ : there is a
$y\in X$ such that $x<y$ and $(x,y)=\phi$ } and $I_{0}=I-(I_{+}\cup I_{-})$ . We define subsets
$H(X),$ $L(X),$ $M(X)$ and $N(X)$ of $X\times[-1,1]$ as follows:
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(1) $H(X)=(X\times\{0\})\cup(R\cup I_{-})x(-1,0))\cup((L\cup I_{+})\times(0,1))u(l_{()}\times(-1,1))$ .

(2) $L(X)=(X\times\{0\})\cup((R\cup I_{-})R\cup I_{-})\times\{-1\})\cup((L\cup I_{+})\times\{1\})\cup(I_{0}\times\{-1,1\})$ .

(3) $ M(X)=(X\times\{0\})\cup(R\times(-1,0))\cup(L\times(0,1))\cup(I_{-}\times\{-1\})\cup$

$\cup(I_{+}\times\{1\})\cup(I_{0}\times\{-1,1\})$ .

(4) $ N(X)=(X\times\{0\})\cup(R\times\{-1\})\cup(L\times\{1\})\cup(I_{-}\times(-1,0))\cup$

$(I_{+}\times(0,1))\cup(I_{0}\times(-1,1))$ .

Throughout this paper, $H(X),$ $L(X),$ $M(X)$ and $N(X)$ will be ordered
lexicographically and will carry the usual interval topology of the ordering. Then
it is easy to see that $e_{H}$ : $X\rightarrow H(X),$ $e_{L}$ : $X\rightarrow L(X),$ $e_{M}$ : $X\rightarrow M(X)$ and
$e_{N}$ : $X\rightarrow N(X)$ defined by $ e_{*}(x)=\langle x,0\rangle$ are order-preserving homeomorphisms
from $X$ onto the subspace $X\times\{0\}$ . Note that $L(X)$ is the same space as the
LOTS $\tilde{X}$ defined in [8], and $L(X)$ is the minimal d-extension of $X([8, (2.1)])$ .

Now we obtain the following theorem which is an affirmative answer for
Problem 1.2 in a restricted situation. A “

$\sigma$ -discrete set” means the union of
countably many discrete closed sets.

THEOREM 2.2 Let $X=GO_{Y}(R, E, I, L)$ be a perfect GO-space. Then $H(X)$ is
perfect if and only if $R\cup L$ is a $\sigma$ -discrete set of $X$ .

PROOF. “Only if” part: Let $H(X)$ be perfect and let $U=R\times(-1,0)$ , then
$U$ is an open set in $H(X)$ . Put $U=\cup\{F_{ll} : n\in\omega\}$ , where F. is closed in $H(X)$ .
Let $K$. $=$ { $x\in R:\langle x,y\rangle\in F_{l}$ for some $y\in(-1,0)$ }. Then $R=\cup\{K_{l1} : n\in\omega\}$ . Suppose
that $K_{2}$ has a cluster point $p$ in $X$ . Since $p$ is not an isolated point, we may
suppose that $p\in E^{\prime}\cup R\cup L$ , where $E‘=E-$ { $x:x$ is an isolated point of $X$ }. We
prove that $\langle p,0\rangle$ is a cluster point of F. in $H(X)$ . Let $V$ be a neighborhood of
$\langle p,0\rangle$ in $H(X)$ .

Case 1: Let $p\in E^{\prime}$ . There exist points $a,$ $b$ of $X$ such that $a<p<b$ and
$W=(\langle a,0\rangle,\langle b,0\rangle)$ is contained in $V$ , where $(\langle a,0\rangle, \langle b,0\rangle)$ is an interval in $H(X)$ .
Since an interval $(a,b)$ in $X$ is a neighborhood of $p$ in $X$ , it follows that
$(a,b)\cap(K_{l\ddagger}-\{p\})\neq\phi$ . Hence $ W\cap F_{l}\neq\phi$ . Therefore, $ V\cap F_{l}\neq\phi$ .

Case2: Let $p\in L$ . There exists a point $a\in X$ such that $a<p$ and
$W=(\langle a,0\rangle,\langle p,0\rangle]\subset V$ . Since $(a,p$ ] is a neighborhood of $p$ in $X$ ,

$(a,p]\cap(K_{l}-\{p\})\neq\phi$ . Hence $ W\cap F_{l}\neq\psi$ , so $ V\cap F_{ll}\neq\psi$ .
Case 3: Let $p\in R$ . The proof is similar to Case 2.
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Since $\langle p,0\rangle\not\in F_{l}$ , this contradicts the closedness of $F_{1}$ . Thus $K_{ll}$ does not have
a cluster point in $X$ , that is, K. is discrete, closed and $R=\cup\{K_{l} : n\in\omega\}$ is $\sigma-$

discrete in $X$ . Similarly, $L$ is $\sigma$ -discrete in $X$ . Thus $R\cup L$ is $\sigma$ -discrete in $X$ .
“IP part: Let $R\cup L$ be $\sigma$ -discrete in a perfect GO-space $X$ . Let $U$ be

open in $H(X)$ . First, we show that $U\cap(I\times(-1,1))$ is $F_{\sigma}$ in $H(X)$ . Since $I$ is
open in $X,$ $I$ is $F_{\sigma}$ in $X$ i.e., $I=\cup\{F_{l} : n\in\omega\}$ , where $F_{n}$ is closed in X.It is clear
that $U\cap(l\times(-1,1))=\cup\{U\cap(F_{t}\times(-1,1)):n\in\omega\}.Letx\in F_{ll}$ .Since $U\cap(\{x\}\times(-1,1))$

is homeomorphic to an open subset of $(-1,1)$ , we can express as
$U\cap(\{x\}\times(-1,1))=\cup\{F(x,n,k):k\in\omega\}$ , where $F(x,n,k)$ is closed in $H(X)$ . Set
$G(n,k)=\cup\{F(x,n,k):x\in F_{1}\}$ . Then $G(n,k)$ is closed in $H(X)$ . In fact, let
$\langle x,t\rangle\not\in G(n,k)$ . If $x\in X-F_{l}$ and $t=0$ , then there is a neighborhood $V$ of $x$ in $X$

such that $ V\cap F_{ll}=\phi$ . Then $W=(V\times(-1,1))\cap H(X)$ is a neighborhood of $\langle x,0\rangle$ in
$H(X)$ such that $ W\cap G(n,k)=\phi$ . If $x\in I\cup R\cup L$ and $\langle x,t\rangle\in H(X)-G(n,k)$ with
$t\neq 0$ , then it is easy to see that there is a neighborhood of $\langle x,t\rangle$ in $H(X)$ that
does not meet $G(n,k)$ . If $x\in F_{l}$ and $\langle x,O\rangle\in H(X)-G(n,k)$ , then we can find a
neighborhood of $\langle x,0\rangle$ in $H(X)$ that does not meet $G(n,k)$ since $x\in I_{0}\cup I_{+}\cup I_{-}$ .
Hence $U\cap(F_{\iota}\times(-1,1))$ is $F_{\sigma}$ in $H(X)$ . Therefore $U\cap(I\times(-1,1))$ is $F_{\sigma}$ in
$H(X)$ . Next, since $R$ is $\sigma$ -discrete in $X$ , we can write $R=\cup\{R_{l} : n\in\omega\}$ , where
each $R_{l}$ is discrete, closed in $X$ . It follows from the above argument that
$U\cap(R_{ll}\times(-1,0])$ is an $F_{\sigma}$ -set of $H(X)$ using the discreteness of $R_{l}$ . Hence
$ U\cap$ $(R\times(-1,0$ ]) is $F_{\sigma}$ in $H(X)$ . Similarly, $U\cap(L\times[0,1))$ is an $F_{\sigma}$ -set of $H(X)$ .
Finally, we show that $E\times\{0\}$ is covered by countably many closed sets of $H(X)$

that are contained in $U$ . To see this, it is enough to notice that $U\cap(E\times\{0\})\subset U$

$\cap(X\times\{0\})\subset U$ and $U\cap(X\times\{0\})$ is an $F_{\sigma}$ -set of $H(X)$ , because $X\times\{0\}$ is a
perfect, closed subspace of $H(X)$ . Therefore, $U$ is an $F_{\sigma}$ -set of $H(X)$ and $H(X)$

is perfect.

REMARK 2.3. In this theorem, we may take a LOTS $X^{*}$ (see $[5,(2.5)]$ )

instead of $H(X)$ since $X^{*}$ can be embedded in $H(X)$ . For a GO-space
$X=(X, \tau,\leq),$ $X^{*}$ was defined in [5, (2.5)] as follows: Let $\lambda=\lambda(\leq)$ be the usual
order topology on $X$ . Define a subset $X^{*}$ of $X\times Z$ (where $Z$ is the set of all
integers) by $ X^{*}=(X\times\{0\})\cup$ { $\langle x,n\rangle:[x,\rightarrow)\in\tau-\lambda$ and $n\leq 0$ } $\cup\{\langle x,m\rangle:(\leftarrow,x$ ]
$\in\tau-\lambda$ and $m\leq 0$ }.

The following theorem is an affirmative answer for Problem 1.3 in a
restricted situation. We use an abbreviation “ccc” to stand for the “countable
chain condition” (i.e., every disjoint collection of open sets is countable).
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THEOREM 2.4. Let $Y$ be a LOTS satisfying the $ccc$ , and $X=GO_{Y}(R, E, I, L)$

be a GO-space. Then $L(X)$ is perfect if and only if $|I|\leq\omega$ , where $|I|$ denotes
the cardinality of $I$ .

PROOF. “If” part: We shall show that $L(X)$ satisfies the ccc. Then $L(X)$

is perfect by [5, (2.10)] and $[4, 3.8.A. (b)]$ . Let $\{U_{\alpha}:\alpha\in A\}$ be a family of
disjoint open sets of $L(X)$ . Then we show that $A$ is countable. Let $\langle x,t\rangle\in U_{\alpha}$

with $x\in R\cup L\cup E$ . Then $U_{\alpha}\cap X$ contains a nonvoid open set of Y. Hence such
$U_{\alpha}^{t}s$ are countable, because $Y$ satisfies the ccc. Since $I$ is countable, $A$ is
countable. Therefore, $L(X)$ satisfies the ccc.

“Only if” part: Let $L(X)$ be perfect. Since $I\times\{0\}$ is open in $L(X)$ , we can
express as $I\times\{0\}=\cup\{F. :n\in\omega\}$ , where F. is closed in $L(X)$ . Let
$x\in(I_{-}\cup I_{0})\cap F_{l}$ . Since $\langle x,-1\rangle\in L(X)-F_{ll}$ , there exists a neighborhood $V$ of
$\langle x,-1\rangle$ in $L(X)$ such that $ V\cap F_{l}=\phi$ . Hence there is an $a_{X}\in X$ such that $a_{X}<x$

and $(a_{X},x)_{X}\cap F_{l}=\phi$ , where $(a_{X},x)_{\chi}$ denotes an interval in $X$ . If $x\in I_{+}\cap F_{\iota}$ ,

then $a_{X}$ is taken as the predecessor of $x$ . Similarly, there is a $b_{X}\in X$ such that
$x<b_{X}$ and $(x,b_{X})_{X}\cap F_{ll}=\phi$ . So, for each $x\in F_{\iota}$ , there exists a neighborhood
$(a.,b.)$ of $x$ in $Y$ such that $(a_{X},b_{X})\cap F_{\iota}=\{x\}$ . Let $x\neq y$ for $x,y\in F_{l}$ , say $x<y$ .
If $(a_{X},b_{X})\cap(a_{Y},b_{v})\neq\phi$ , then the set $(a_{X},b_{X})\cap(a_{v},b_{v})$ does not meet $F_{ll}$ . In this
case, we choose the intervals $(a_{X},b_{v})$ and $(b_{X},b_{1})$ as the disjoint neighborhoods of
$x$ and $y$ in $Y$ , respectively. Since $Y$ satisfies the ccc, F. is countable. Hence $I$

is countable.

REMARK 2.5. If a GO-space satisfies the ccc, the answer of Problem 1.3 is
“yes”, as was announced in [2, “Posed problems” No. 8].

THEOREM 2.6. Let $Y$ be a LOTS satisfying the $ccc$ , and $X=GO_{Y}(R, E, I, L)$

be a GO-space. Then $M(X)$ is perfect if and only if $|R\cup L\cup I|\leq\omega$ .

PROOF. “If” part: Suppose that I $ R\cup L\cup I|\leq\omega$ and $Y$ satisfies the ccc.
Then it is enough to show that $M(X)$ satisfies the ccc. Then $M(X)is$ perfect by
[5, (2.10)] and $[4, 3.8.A.(b)]$ . Let $\{U_{\alpha} : \alpha\in A\}$ be a family of disjoint open sets of
$M(X)$ . Since $I$ is countable, $A_{l}=\{\alpha\in A:(I\times\{-1,0,1\}\cap U_{\alpha}\neq\phi\}$ is countable.
Since $R$ is countable and $(-1,0$ ] satisfies the ccc, $A_{R}=\{\alpha\in A:(R\times(-1,0$ ]) $\cap U_{\alpha}$

$\neq\phi\}is$ countable. Similarly, $A_{L}=\{\alpha\in A:(L\times[0,1))\cap U_{\alpha}\neq\phi\}$ is countable. Set
$A_{E}=\{\alpha\in A:(E\times\{0\})\cap U_{\alpha}\neq\phi\}$ and take an element $\alpha\in A_{E}$ . Since $U_{\alpha}$ contains a
non-void open set, $A_{E}$ is countable. Hence $A=A_{l}\cup A_{R}\cup A_{L}\cup A_{E}$ is countable.
Therefore, $M(X)$ satisfies the ccc.
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“Only if” part: Let $M(X)$ be perfect. Since $I\times\{0\}$ is open in $M(X)$ , we
can express as $\cup\{F_{l} : n\in\omega\}$ , where $F_{l}$ is closed in $M(X)$ . Note that each F. is

not necessarily closed in Y. However, the proof of “Only if” part of Theorem 2.4
shows that $I$ is countable. Next, the proof of “Only if” part of Theorem 2.2

shows that $R$ and $L$ is $\sigma$ -discrete in $X$ . Set $R=\cup\{R_{l} : n\in\omega\}$ , where $R_{n}$ is
discrete closed in $X$ . For each $x\in R_{n}$ , we can take a neighborhood $[x,b_{X}$ ) of $x$

in $X$ such that $[x,b_{\mathfrak{r}}$ ) $\cap R_{n}=\{x\}$ . It is easy to see that a collection $\{(x,b_{X}):x\in R_{n}\}$

of open intervals in $Y$ is pairwise disjoint and each member $(x,b_{X})$ is not empty.
Hence $R_{l}$ is countable because $Y$ satisfies the ccc, $|R|\leq\omega$ . Similarly, 1 $ L|\leq\omega$ .
Therefore, it follows that $|R\cup L\cup I|\leq\omega$ .

We close this section with the following theorem.

THEOREM 2.7. Let $Y$ be a LOTS satisfying the $ccc$ , and $X=GO_{Y}(R, E, I, L)$

be a GO-space. Then $N(X)$ is perfect if and only if I satisfies the following
condition:

$(C)I$ is a countable union of its subsets $H_{l1}(n\in\omega)$ , and for each $ n\in\omega$ and
$x\in R\cup L\cup E$ , there are points $a,b\in X$ such that $a<x<b$ and $(a,b)\cap H_{n}=\phi$ .

PROOF. “If” part: Suppose that $J=\cup\{H_{l} : n\in\omega\}$ satisfies the condition (C).

Let $U$ be an open subset of $N(X)$ . Then we shall show that $U$ is $F_{\sigma}$ in $N(X)$ by

the following three steps.

Step (1): Let $U$ be an open subset of $I(N)=(I\times(-1,1))\cap N(X)$ . Note that
$I(N)$ is open in $N(X)$ . Set $H_{t}^{\prime}=H_{l}\cap\pi(U)$ , where $\pi:X\times(-1,1)\rightarrow X$ is the

projection. For each $x\in H_{l}^{\prime}$ , we set $(\{x\}\times(-1,1))\cap U=u\{F(x,n,k):k\in\omega\}$ ,

where $F(x,n,k)$ is closed in $N(X)$ . Then $G(n,k)=\cup\{F(x,n,k):x\in H_{n^{\prime}}\}$ is closed
in $N(X)$ . We prove this as follows:

Case 1. Let $<y,t>\in N(X)$ with $y\in I-H_{l}^{\prime}$ . Then $(\{y\}\times(-1,1))\cap N(X)$ is a
neighborhood of $\langle y,t\rangle$ in $N(X)$ and does not meet $G(n,k)$ .

Case 2. Let $\langle y,t\rangle\in N(X)$ with $y\in R\cup L\cup E$ . Then, by the condition (C),

there exist $a,b\in X$ such that $a<y<b$ and $(a,b)\cap H_{1}=\phi$ . If $a\in H_{n^{\prime}}$ and
$(a,y)\neq\phi$ , there is an $a^{\prime}\in X$ such that $a<a^{\prime}<y$ . Then $(\{a^{\prime}\}\times(0,1))\cap U=\phi$ since
$(a,y)\cap H_{ll}^{\prime}=\phi$ . If $a\in H_{ll}^{\prime}$ and $(a,y)=\phi$ , we set $a^{\prime}=a$ . Then $a^{\prime}\in I_{-}$ and
$(\{a^{\prime}\}\times(0,1))\cap U=\phi$ since $(\{a^{\prime}\}\times(0,1))\cap N(X)=\phi$ . If $a\not\in H_{ll}^{\prime}$ , we set $a^{\prime}=a$ . In

all cases we considered, $(\{a^{\prime}\}\times(0,1))\cap G(n,k)=\phi$ . Hence $(\langle a^{\prime},0\rangle,\langle y,t\rangle$ ] $\cap G(n,k)$

$=\phi$ . Similarly, there is a $b^{\prime}\in X$ such that $y<b^{\prime}\leq b$ and $[\langle y,t\rangle,\langle b^{\prime},0\rangle$ ) $\cap$

$ G(n,k)=\phi$ . Therefore, $(\langle a^{\prime},0\rangle,\langle b^{\prime},0\rangle)$ is a neighborhood of $\langle y,t\rangle$ in $N(X)$ and
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does not meet $G(n,k)$ .

Case 3. $Let\langle y,l\rangle\in N(X)-G(n,k)$ with $y\in H^{\prime_{1}}$ . Since $F(x,n,k)$ is closed in
$(\{x\}\times(-1,1))\cap N(X)$ for each $x\in H^{\prime}$ , there exists a neighborhood of $\langle y,t\rangle$ in
$N(X)$ which does not meet $G(n,k)$ .

Since $U=\cup\{G(n,k):n\in\omega,k\in\omega\},$ $U$ is $F_{\sigma}$ in $N(X)$ .
Step (2): Let $U$ be a convex open subset of $N(X)$ . Then $U$ can be

considered as an interval of $N(X)$ or $N(X)^{+}$ where $N(X)^{+}$ is the Dedekind
compactification of $N(X)$ . We consider the following two cases: (i) $U$ is of the
form $(a,b),[a,b),(a,b],(a,\rightarrow)$ , etc., where $a,b\in N(X)$ ; (ii) $U$ is of the form
$[a^{+},b^{+}]\cap N(X),$ $[a^{+},\rightarrow]\cap N(X)$ , etc., where $a^{+},b^{+}$ are gaps of $N(X)$ and
$[a^{+},b^{+}]$ denotes an interval in $N(X)^{+};$ (iii) $U$ is of the form $[a^{+},b$ ) $\cap N(X)$ or
$(a,b^{+})\cap N(X)$ .

Case (i): It is sufficient to consider the case $U=(a,b)$ , because other cases
are similar to and simpler than that case.

First, we prove that $N(X)$ is first countable. Let $\langle x,t\rangle\in N(X)$ . Since $Y$

satisfies the ccc, $Y$ is perfect. Hence $Y$ is first countable ([1, 2.1]). If $x$ has the
immediate predecessor $x^{\prime}$ , we set $a_{k}=x^{\prime}$ for all $ k\in\omega$ . 0therwise, there exists
an increasing sequence $\{a_{k} : k\in\omega\}$ which converges to $x$ . Similarly, if $x$ has the
immediate successor $x^{\prime\prime}$ , we set $b_{k}=x^{\prime\prime}$ for all $ k\in\omega$ . 0therwise, there exists a
decreasing sequence $\{b_{k} : k\in\omega\}$ which converges to $x$ . Then $\{(a_{k},b_{k}):k\in\omega\}$ is a
neighborhood base at $x\in Y$ .

Case 1. Let $\langle x,t\rangle\in(L\times\{0\})\cup(R\times\{-1\})$ . Then $\{(\langle a_{k},0\rangle,\langle x,t\rangle]:k\in\omega\}$ is a
neighborhood base at $\langle x,t\rangle$ in $N(X)$ .

Case 2. Let $\langle x,t\rangle\in(L\times\{1\})\cup(R\times\{0\})$ . Then $\{[\langle x,t\rangle,\langle b_{k},0\rangle):k\in\omega\}$ is a
neighborhood base at $\langle x,t\rangle$ .

Case 3. Let $x\in E$ (hence $t=0$ ). Then $\{(\langle a_{A},0\rangle,\langle b_{k},0\rangle):k\in\omega\}$ is a
neighborhood base at $\langle x,0\rangle$ .

Case 4. If $x\in I$ , then it is clear that $N(X)$ is first countable at $\langle x,l\rangle$ .
As we have shown that $N(X)$ is first countable, there exist decreasing

sequence $\{a_{ll}\}$ converging to $a$ and an increasing sequence $\{b_{\iota}\}$ converging to $b$ .
Therefore $U=\cup\{[a_{l},b_{ll}]:n\in\omega\}$ is an $F_{\sigma}$ -set of $N(X)$ .

Case (ii): It is sufficient to consider the case $U=[a^{+},b^{+}]\cap N(X)$ , and $a^{+},b^{+}$

are gaps of $N(X)$ , because other cases are similar to this case. Since
$U=N(X)-((\leftarrow,a^{+})\cup(b^{+},\rightarrow))\cap N(X),$ $U$ is closed in $N(X)$ .

(iii) This is done by mixing proofs of Cases (i) and (ii).

Step (3): Express $U$ as the union of the collection $\{U_{\alpha}:\alpha\in A\}$ of all
convex components of $U$ in $N(X)$ . Set $B=\{\alpha\in A:U_{\alpha}\subset I(N)\},$ $\Lambda=\{\alpha\in A:U_{\alpha}$ is
not contained in $I(N)$ } and $V=\cup\{U_{\alpha}:\alpha\in B\}$ . Then $U=V\cup(\cup\{U_{\alpha}:\alpha\in\Lambda\})$ ,
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where $V$ is open in $1(N)$ and $U_{\alpha}$ is a convex open subset of $N(X)$ for each
$\alpha\in\Lambda$ . Each $U_{\alpha}(\alpha\in\Lambda)$ contains a point $\langle x,t\rangle$ which belongs to
$(E\times\{0\})\cup(L\times\{0,1\})\cup(R\times\{-1,0\})$ . It follows that, for each $\alpha\in\Lambda,$ $U_{\alpha}\cap(X\times\{0\})$

contains a nonvoid open set of Y. Since $Y$ satisfies the ccc, it follows that
$|\Lambda|\leq\omega$ . $V$ and $U_{\alpha}$ are $F_{\sigma}$ in $N(X)$ as shown in Steps (1) and (2). Hence $U$ is
$F_{\sigma}$ in $N(X)$ . Thus $N(X)$ is perfect.

“Only if’ part: If $N(X)$ is perfect, $1(N)=(I\times(-1,1))\cap N(X)$ is an $F_{\sigma}$ -set
of $N(X)$ . Let $I(N)=\cup\{F_{n}:n\in\omega\}$ , where each $F_{n}$ is closed in $N(X)$ . Then
$I=\cup\{H_{1} : n\in\omega\}$ , where $H_{n}=\{x\in X:<x,0>\in F_{n}\}$ . We shall show that
$I=\cup\{H_{n} : n\in\omega\}$ satisfies the condition (C) as follows:

Case 1. Let $x\in L$ . Since $\langle x,0\rangle\not\in F_{n}$ and $F_{n}$ is closed in $N(X)$ , there exists a
neighborhood $V$ of $\langle x,0\rangle$ in $N(X)$ such that $ V\cap F_{l}=\phi$ . Hence there exists $a\in X$

such that $a<x$ and ( $\langle a,0\rangle,\langle x,0\rangle$ ] $\subset V$ . Therefore, $(a,x$ ] $\cap H_{n}=\phi$ . Since
$\langle x, 1\rangle\not\in F_{ll}$ , there exists a neighborhood $W$ of $\langle x, 1\rangle$ in $N(X)$ such that $ W\cap F_{n}=\phi$ .
Hence there exists $b\in X$ such that $x<b$ and [ $\langle x, 1\rangle,\langle b,0\rangle$ ) $\subset W$ . Hence
$[x,b)\cap H_{l}=\phi$ . Therefore, $(a,b)\cap H_{1}=\phi$ .

Case 2. Let $x\in R$ . The proof is similar to Case 1.
Case 3. Let $x\in E$ . Since $\langle x,0\rangle\not\in F_{l}$ , there exists a neighborhood $V$ of $\langle x,0\rangle$

in $N(X)$ such that $ V\cap F_{l}=\phi$ . Hence there exist $a,b\in X$ such that $a<x<b$ and
$(\langle a,0\rangle,\langle b,O\rangle)\subset V$ . Therefore, $(a,b)\cap H_{l}=\phi$ .

This completes the proof of Theorem 2.7.

\S 3. Examples

In this section, we present several examples.

EXAMPLE 3.1. The following two examples show that the condition “ccc” is
needed in Theorems 2.4 and 2.6.

(1) Let $Y=\omega_{1},$ $X=GO_{Y}(\phi, Y,\phi,\phi)=Y$ , where $\omega_{1}$ is the set of all ordinals
less than $\omega_{1}$ . Then $L(X)=M(X)=X$ is not perfect, but 1 $ I|=|R\cup L\cup I|=|\phi|\leq\omega$ .
Notice that $Y$ does not satisfy the ccc.

(2) Let $Y=\omega_{1}\times[0,1$ ) be a LOTS with the lexicographic order. Then $Y$ is
the long line (see [4]). Each point may be thought of as $\alpha+x$ , where $\alpha\in\omega_{1}$ and
$x\in[0,1)$ . Let $X=GO_{Y}(\ell im\omega_{1}, Y-\omega_{1},\omega_{1}-(\ell im\omega_{1}),\phi)$ , where $\lim\omega_{1}$ denotes the
set of all limit ordinals less than $\omega_{1}$ . Then it is easy to see that
$M(X)=(X\times\{0\})u((\ell im\omega_{1})\times(-1,O))u((\omega_{1}-(\ell im\omega_{1}))\times\{-1,1\})$ and $M(X)$ is a
pairwise disjoint union of clopen metrizable spaces. Thus $M(X)$ is metrizable
(hence, perfect). But $|I|=|\omega_{1}-(\ell im\omega_{1})|=\omega_{1}>\omega$ and $|R|=|\ell im\omega_{1}|>\omega$ . Notice
that $Y$ does not satisfy the ccc.
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EXAMPLE 3.2. Let $Y=\omega_{1}\times[0,1$ ) be the same space as Example 3.1 (2). Let
$X=GO_{Y}(\omega_{1}, Y-\omega_{1},\phi,\phi)$ . Since $\omega_{1}$ is the set of all ordinals less than $\omega_{1}$ , it
follows that $X$ is a pairwise disjoint union of clopen metrizable spaces
$\{z:\alpha\leq z<\alpha+1,\alpha\in\omega_{1}\}$ , thus $X$ is metrizable (hence, perfect). Since
$ N(X)=(X\times\{0\})\cup$ ( $\omega_{1}\times\{$ -l})contains a subspace $\omega_{1}\times\{-1\},$ $N(X)$ is not perfect.
Since $I(=\phi)$ satisfies the condition (C), the ccc is needed in Theorem 2.7.

EXAMPLE 3.3. Let $K=[0,1]-\cup\{(a_{n},b_{n}):n\in\omega\}$ be the Cantor set,

$A=\{a_{n} : n\in\omega\},$ $B=\{b_{n} : n\in\omega\}$ and $Y=[0,1]$ be the usual unit interval. Let
$X=GO_{Y}(A, Y-K, K-(A\cup B), B)$ . Then $X$ is a metrizable (hence, perfect)

space, because $\{\mathfrak{B}(i,n):i,n\in\omega\}\cup\{\{x\}:x\in K-(A\cup B)\}$ is a $\sigma$ -discrete base
for $X$ , where $\{\mathfrak{B}(i,n):n\in\omega\}$ be a $\sigma$ -discrete base for $[a_{i},b_{j}]$ . But $ N(X)=(X\times$

$\{O\})u(A\times\{-1\})u(B\times\{1\})u((K-(AuB))\times(-1,1))$ is not perfect. On the
contrary, suppose that $N(X)$ is perfect. Then an open set
$I\times(-1,1)=(K-(AuB))\times(-1,1)$ of $N(X)$ is $F_{\sigma}$ . Let $I\times(-1,1)=u\{F_{n}:n\in\omega\}$ ,

where each $F_{l}$ is closed in $N(X)$ . Let $H_{n}=\{x\in K:<x,0>\in F_{n}\}$ . Then
$K=(\cup\{H_{n} : n\in\omega\})\cup(\cup\{\{a_{\iota},b_{l}\};n\in\omega\})$ is a countable union of subsets of $K$ .
For a while, we consider the usual topology on $K$ . Since
$K=(\cup\{C1_{K}H_{n} : n\in\omega\})\cup(\cup\{\{a_{ll},b_{;l}\}:n\in\omega\}$ is a countable union of closed subsets
of $K$ , by the Baire Category Theorem, there is an $ n\in\omega$ such that $C1_{K}H_{n}$

contains a non-void open set $U$ of $K$ . We may assume that $U=U^{\prime}\cap K$ , where
$U^{\prime}$ is an open interval in R. We shall show that there exists a point $a_{j}\in A\cap U^{\prime}$ .
Since $ U^{\prime}\cap K\neq\phi$ , there is an $x\in U‘\cap K$ . If $x\in B$ , then there is an $a_{j}\in A$ such
that $x<a_{j}$ and $a_{j}\in U^{\prime}$ since $U^{\prime}$ is an open interval containing $x$ and $K$ is the
Cantor set. Similarly, if $x\in K-(A\cup B)$ , then there is an $a_{j}\in A$ such that $a_{l}<x$

and $a_{j}\in U^{\prime}$ . Hence there exists an $a_{i}\in A\cap U^{\prime}$ . Since $a_{j}\in U\subset C1_{K}H_{ll}$ . $a_{j}$ is a
cluster point of H. in $K$ , and hence $\langle a_{j},-1\rangle\in N(X)$ is a cluster point of $F_{n}$ in
$N(X)$ . This contradicts the closedness of $F_{\iota}$ . Therefore, $N(X)$ is not perfect.

It follows from Theorem 2.7 that $I$ does not satisfy the condition (C).

On the other hand, $I=K-(A\cup B)$ is a closed set of $X$ . Therefore this
example shows that, in Theorem 2.7, the statement “

$I$ satisfies the condition (C)

can not be weakened by “
$I$ is $F_{\sigma}$ in $X’$ .

EXAMPLE 3.4. Let $R$ and $Q$ be the set of all real numbers and all rational
numbers, respectively. Let $K$ be the Cantor set and $T=\cup\{K+q:q\in Q\}$ where
$K+q=\{x+q:x\in K\}$ . Let $X=GO_{R}(R-T,\phi, T,\phi)$ . Since $T$ satisfies the condition
(C), $N(X)$ is perfect by Theorem 2.7. However, $L(X)$ is not perfect by Theorem
2.4. We do not know whether this example has a perfect orderable d-extension.
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(This example was announced in [7].)
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