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A NORMALIZATION-PROCEDURE FOR THE FIRST
ORDER CLASSICAL NATURAL DEDUCTION

WITH FULL LOGICAL SYMBOLS

By

ANDOU, Yuuki

\S $0$ . Introduction

The system of natural deduction was introduced by Gentzen [1]. He also
introduced the system of sequent calculus in order to prove his Hauptsatz which
states every proof can be reduced to a proof without roundabouts. (In some
cases, the Hauptsatz is called the cut-elimination theorem or the normalization
theorem.) His system of natural deduction was not suitable for the Hauptsatz
in the case of classical logic, because in the system the classical logic was
formalized as the intuitionistic logic with the law of the excluded middle.
Prawitz [2], [3] settled this trouble in his system of natural deduction by
formalizing the classical logic as the $m\iota nimallogic$ with classical absurdity rule.
However his solution was a partial one, since his system of classical logic did
not have the logical symbols for the disjunction and for the existential quantifier
as the primitive logical symbols. Seldin [4], [5] and Stalmarck [6] proved the
normalization theorem for the first order classical natural deduction with full
logical symbols. But the reduction procedures defined by them are complicated

in comparison with Prawitz’s one.
In this paper, we define another reduction procedure for the first order

classical natural deduction with full logical symbols. It is as simple as Prawitz’s
one is. In other words, our reduction procedure is a natural extension of the
Prawitz’s. Our proof of the normalization theorem will be done simultaneously
for the intuitionistic logic and for the classical logic, as the Gentzen’s proof of
the Hauptsatz was. Notice that our normalization theorem is one of the so
called weak normalization theorems.

\S 1. System

The system used in this paper is the first order classical logic formalized
in the style of natural deduction. It has all logical symbols as primitive ones.
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$\prime 1^{\urcorner}he$ inference rules consist of the introduction rule and elimination rule for

each logical symbol, and the classical absurdity rule [2]. These are denoted by
$(\mathcal{L}I)$ and $(\mathcal{L}E)$ for each logical symbol $\mathcal{L}$ , and $(\perp c)$ respectively. We present

them by the inference figure schemata in the same manner with Gentzen [1].

(&I) $\frac{\mathfrak{A}_{1}\mathfrak{A}_{2}}{\mathfrak{A}_{1}\&\mathfrak{A}_{2}}$ (&E) $\frac{\mathfrak{A}_{1}\&\mathfrak{A}_{2}}{\mathfrak{A}_{i}}$ ($i=1$ or 2)

$[\mathfrak{A}_{1}]$ $[\mathfrak{A}_{2}]$

$(I)$ $\frac{\mathfrak{A}_{i}}{\mathfrak{A}_{1}\vee \mathfrak{A}}2$ ($i=1$ or 2) $(E)$ $\underline{\mathfrak{A}_{1}\vee \mathfrak{A}_{2}}\underline{\mathfrak{C}\mathfrak{C}}\mathfrak{C}$

$[\mathfrak{A}]$

$(\supset I)$ $\frac{\mathfrak{B}}{\mathfrak{A}\supset \mathfrak{B}}$ $(\supset E)$ $\frac{\mathfrak{A}\supset \mathfrak{B}}{\mathfrak{B}}-\mathfrak{A}$

$[\mathfrak{A}]$

$(7 I)$ $\frac{\perp}{7\mathfrak{A}}$ $(7 E)$ $\frac{7\mathfrak{A}\mathfrak{A}}{\perp}$

$(\forall I)$ $\frac{\mathfrak{F}\iota\iota}{\forall \mathfrak{x}\mathfrak{F}\},}$ $(\forall E)$ $\frac{\forall \mathfrak{x}\mathfrak{F}r}{\mathfrak{F}\downarrow}$

$[\mathfrak{F}\mathfrak{a}]$

$(\exists I)$ $\frac{\mathfrak{F}t}{\exists \mathfrak{x}\mathfrak{F}}f$

,

$(\exists E)$ $\frac{\exists \mathfrak{x}\mathfrak{F}\mathfrak{x}\mathfrak{C}}{\mathfrak{C}}$

$[7 \mathfrak{A}]$

$(\perp c)$ $-\perp\overline{\mathfrak{A}}$

$(\forall I)$ and $(\exists E)$ are subject to the restriction of eigenvariable [1]. In a proof,

the elgenvariables must be separated as usual [2].

\S 2. Definitions

DEFINITION (Maximum formula). Let $\mathfrak{A}$ be a formula-occurrence in a proof
$\Pi$ . $\mathfrak{A}$ is a maximum formula in $\Pi$ iff it satisfies the following conditions.

(1) $\mathfrak{A}$ is not an assumption-formula. And the inference rule whose con-
clusion is $\mathfrak{A}$ is an introduction rule, a $(E)$ , a $(\exists E)$ , or a $(\perp c)$ .

(2) $\mathfrak{A}$ is the major premiss of an elimination rule.

DEFINITION (Normal proof). A proof $\Pi$ is normal iff it contains no maxi-
mum formula.

DEFINITION (Regular proof). In a proof-figure, an assumption-formula dis-
charged by a $(\perp c)$ is regular iff it is the major premiss of a $(7 E)$ . A proof-

figure is regular iff any assumption-formula discharged by any $(\perp c)$ in the proof
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is regular.

DEFINITION (Segment). Let $\mathfrak{A}_{1},$

$\cdots,$
$\mathfrak{A}_{n}$ be a sequence of formula-occurrences

in a regular proof $\Pi$ . $\mathfrak{A}_{1},$ $\cdots$ , $\mathfrak{A}_{n}1S$ a segment in $\Pi$ iff it satisfies the follow-
ing conditions.

(1) $\mathfrak{A}_{1}$ is neither the conclusion of a $(E)$ nor that of a $(\exists E)$ . Moreover,
$\mathfrak{A}_{1}$ is not the conclusion of a $(\perp c)$ where at least one assumption

formula is discharged.
(2) For all $i<n;(a)\mathfrak{A}_{i}$ is a minor premiss of a $(E)$ or a $(\exists E)$ , and the

conclusion of the inference is $\mathfrak{A}_{i+1}$ ; or (b) $\mathfrak{A}_{i}$ is the minor premiss of
a $(7 E)$ whose major premiss is an assumption-formula discharged by a
$(\perp c)$ , and the conclusion of the $(\perp c)$ is $\mathfrak{A}_{i+1}$ .

(3) $\mathfrak{A}_{n}$ is neither a minor premiss of a $(E)$ nor that of a $(\exists E)$ . More-
over, $\mathfrak{A}_{n}$ is not the minor premiss of a $(7E)$ whose major premiss is
an assumption-formula discharged by a $(\perp c)$ .

\S 3. Reduction steps

To simplify the description, our reduction steps are defined only for regular
proofs. For non regular proofs, we use the following lemma.

LEMMA 1. Let $\Pi$ be a given non regular proof. Then we can construct a
regular proof $\Pi^{\prime}$ which has the same set of assumptions and the same end

formula with $\Pi$ .

PROOF. Let $7\mathfrak{A}$ be a non regular assumption-formula in $\Pi$ . Then, trans-
form $\Pi$ by replacing $7\mathfrak{A}$ with the following subproof:

$\frac{7\mathfrak{A}\mathfrak{A}21}{\frac{\perp}{7\mathfrak{A}}1}$ $(7 E)$

Where, $\mathfrak{A}1$ is discharged by the $(7I)$ represented in the above figure with the

indicator 1. And 7
$\mathfrak{A}2$ is discharged by the $(\perp c)$ which corresponds with the

$(\perp c)$ in $\Pi$ discharging the $7\mathfrak{A}$ in $\Pi$ . Then 7
$\mathfrak{A}2$ is regular. Clearly this trans-

formation does not change the set of assumptions and the end formula. By
applying this transformation for all non regular assumption-formulae of all $(\perp c)s$

in $\Pi$ , we get the regular proof: $\Pi^{\prime}$ . $\blacksquare$

Now, we define our reduction steps. Let $\Pi$ be a regular but not normal
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proof. And let $\mathfrak{M}$ be a maximum formula in $\Pi$ , and $I$ be the inference whose
conclusion is M. The reduction of $\Pi$ at $\mathfrak{M}$ is defined according to $I$ .

First we treat the case that $I$ is a $(\perp c)$ . Let $K_{1},$
$\cdots,$

$K_{n}$ be all the $(7 E)s$

whose major premisses are discharged by $I$ , if they exist. We show $\Pi$ by the
next figure.

–
$L_{i}$

:.
$\frac{7\mathfrak{M}\mathfrak{M}}{\perp}K_{i}$

:

$\frac{\frac{\perp}{9Jl}I.\Sigma_{1}\Sigma_{2}}{\mathfrak{D}_{:}}J$

where $\Sigma_{1}$ and $\Sigma_{2}$ are the proofs of the minor premisses of $J$ , if they exist.
The $reduct\dot{l}on$ is carried out as follows:

(1) For all $i$ , replace the inference $K_{i}$ by the following figure.

$\frac{7\mathfrak{D}\overline{\underline{\mathfrak{M}}}L_{i-}\mathfrak{D}^{\Sigma_{1}}}{\perp}\underline{\Sigma_{2}}J$

(2) Concatenate the $\cdot$ premiss of $I$ with the conclusion of $J$ by a $(\perp c)$ where
the $7\mathfrak{D}\prime s$ brought about by the replacement (1) are discharged.

Notice that there is no assumption formula discharged by $I$, except for the
major premisses of $K_{1},$

$\cdots,$
$K_{n}$ ; because $\Pi$ is regular. The next diagram shows

the reduction mentioned above.

$\frac{7\mathfrak{M}\overline{\mathfrak{M}^{:}}L_{i}}{\perp}K_{i}$ $7\mathfrak{D}1\frac{\overline \mathfrak{M}^{:}L_{i}\Sigma_{1}\Sigma_{2}}{\mathfrak{D}}J$

$\frac{\frac I\mathfrak{M}^{:}\wedge 1\Sigma_{2}\perp\nabla}{\mathfrak{D}}J$

$=$
$\frac{\dot{\perp}^{:}\perp}{\mathfrak{D}}1$

In the other cases, $i$ . $e.$ $I$ is an introduction rule, a $(E)$ , or a $(\exists E)$ ; the
reduction steps are the same wlth the ones for the intuitionistic logic, defined
by Prawitz [2], [3]. We show them briefly by the figures below.

(i) $I$ is a (&I):

$\Gamma_{1}\{\frac{\mathfrak{A}_{1}^{:}\Gamma_{2}\{\dot{\mathfrak{A}}_{2}^{:}}{\frac{\mathfrak{A}_{1}\&\mathfrak{A}_{2}}{\mathfrak{A}_{i}}}I$

$\Rightarrow$ $\Gamma_{i}\{\mathfrak{A}_{i}^{:}$
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where $\mathfrak{A}_{1}\&\mathfrak{A}_{2}$ is the maximum formula: $\mathfrak{M}$ .
(ii) $I$ is a $(\forall I)$ : similarly to the case (i).

(iii) $I$ is

$a_{\frac{\frac I\mathfrak{A}v^{\dot{\mathfrak{A}}_{\mathfrak{A}^{i\Sigma_{1}\{\cdot\cdot\Sigma_{2}\{}}^{:}}\Gamma_{1}\{I:_{2}[\mathfrak{A}_{1}]\dot{\mathfrak{C}}[\mathfrak{A}_{\dot{\mathfrak{C}}^{2}}]}{\mathfrak{C}}}().$

.
$\Rightarrow$

$\Gamma\{\dot{\mathfrak{A}}_{i}\dot{\mathfrak{C}}$

$\Sigma_{i}$

where $\mathfrak{A}_{I}\mathfrak{A}_{2}$ is the maximum formula: M.
(iv) $I$ is a $(\exists I)$ : similarly to the case (iii).

(v) $I$ is a $(\supset I)$ :

$\Gamma_{\overline{\mathfrak{A}}}\left\{\begin{array}{l}[\mathfrak{A}]\\.\\.\\.\\\supset \mathfrak{B}\mathfrak{B} I\Sigma\{\dot{\mathfrak{A}}\end{array}\right.$

$=$
$\Sigma\{\dot{\mathfrak{B}}\dot{\mathfrak{A}}$

$\Gamma$

where $\mathfrak{A}\supset \mathfrak{B}$ is the maximum formula: M.
(vi) $I$ is a $(7I)$ : similarly to the case (v).

(vii) $I$ is a $(E)$ :

$\frac{\Gamma\{\mathfrak{A}_{1}\dot{}^{:}\mathfrak{A}_{2}}{\frac{\Delta_{1}\{[\mathfrak{A}]\Delta_{2}\left\{\begin{array}{l}[\mathfrak{A}_{2}]\\.\\\dot{\mathfrak{M}} I\end{array}\right.\mathfrak{M}\Sigma_{1}\Sigma_{2}\dot{\mathfrak{M}}^{1}}{\mathfrak{D}}}$

$\Rightarrow$
$\frac{\Gamma\{\mathfrak{A}_{1}\vee^{:}\mathfrak{A}_{2}\frac{\Delta_{1}\{[\mathfrak{A}]\dot{\mathfrak{M}}^{1}\Sigma_{1}\Sigma_{2}}{\mathfrak{D}}\frac{\Delta_{2}\left\{\begin{array}{l}[\mathfrak{A}_{2}]\\.\\.\\\mathfrak{M} \sum_{1}\end{array}\right.}{\mathfrak{D}}}{\mathfrak{D}}$

(viii) $I$ is a $(\exists E)$ : similarly to the case (vii).

Our reduction steps are all defined by the items mentioned above. It is clear
that the following fact holds.

FACT 2. The proof which is obtained from a regular proof by applying our
reduction step is also regular.

\S 4. Proof of the normalization theorem

NOTATIONS. Let $\mathfrak{A}$ be a maximum formula in a regular proof. By $g(\mathfrak{A})$

we denote the number of the logical symbols occurring in $\mathfrak{A}$ . By $r(\mathfrak{A})$ we
denote the maximum length of the segments whose last formula is $\mathfrak{A}$ . By $l(\mathfrak{A})$

we denote the number of inferences below $\mathfrak{A}$ in the proof.



158 ANDOU, Yuuki

DEFINITION (Degree of a maximum formula). Let $\mathfrak{A}$ be a maximum formula
in a regular proof. The degree of $\mathfrak{A}$ , denoted by $d(\mathfrak{A})$ , is the ordered pair

defined as follows:
$ d(\mathfrak{A})=\langle g(\mathfrak{A}), r(\mathfrak{A})\rangle$

Degrees of maximum formulae are compared by lexicographical order.

NOTATIONS. Let $\Pi$ be a regular proof. Notations $M(\Pi)$ and $E(\Pi)$ are
defined as follows:

$ M(\Pi)=\{\max$

{
$d(\mathfrak{A})|amaximum\langle 0,0\rangle,if\prod_{\mathfrak{A}is}isnormal$

,

formula in $\Pi$ }, otherwise

$E(\Pi)=$ { $\mathfrak{A}$ : a maximum formula in $\Pi|d(\mathfrak{A})=M(\Pi)$ }

DEFINITION (Degree of a proof). Let $\Pi$ be a regular proof. The degree
of $\Pi$ , denoted by $d(\Pi)$ , is the ordered triple defined as follows:

$d(\Pi)=$ \langle $M(\Pi)$ , Card $ E(\Pi),\sum_{91\in E(\Pi)}1(\mathfrak{A})\rangle$

where in the case of $E(\Pi)$ is empty, by
$\sum_{\mathfrak{A}\in E(\Pi)}l(\mathfrak{A})$ we mean $0$ . Degrees of

proofs are compared by lexicographical order.

We call a formula-occurrence $\mathfrak{A}$ a side-set formula of a formula-occurrence
$\mathfrak{B}$ , if $\mathfrak{A}$ is one of the minor premisses of the inference whose major premiss
is $\mathfrak{B}$ .

LEMMA 3. Let $\Pi$ be a given regular proof. If $\Pi$ is not normal, we can
find in it a formula-occurrence $\mathfrak{A}$ which satisfies the following conditions.

(1) $\mathfrak{A}\in E(\Pi)$ .
(2) If $\mathfrak{B}\in E(\Pi)$ ; and if $S$ is a segment in $\Pi$ , whose last formula is $\mathfrak{A}$ ;

then $\mathfrak{B}$ is not above the first formula of $S$ .
(3) If $\mathfrak{B}\in E(\Pi)$ ; and if $S$ is a segment in $\Pi$ , whose last formula is $\mathfrak{B}$ ; then

the first formula of $S$ is not above nor equal to any of the side-set for-
mulae of $\mathfrak{A}$ .

PROOF. Construct a sequence $\mathfrak{A}_{1},$ $\mathfrak{A}_{2},$ $\cdots$ of maximum formulae in $\Pi$ by the
following manner. Take $\mathfrak{A}_{1}$ from the maximum formulae satisfying the condi-
tion (1) and (2). If $\mathfrak{A}_{1}$ also satisfies the condition (3), terminate the sequence
at it. If not, take $\mathfrak{A}_{2}$ from the maximum formulae destroying the condition (3)

for $\mathfrak{A}_{1}$ and satisfying the condition (1) and (2). By iterating this construction,

we obtain the sequence $\mathfrak{A}_{1},$ $\mathfrak{A}_{2},$ $\cdots$ . It holds that if $m<n$ then $\mathfrak{A}_{m}\neq \mathfrak{A}_{n}$ , by
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induction on $n-m$ . Therefore, the sequence $\mathfrak{A}_{1},$ $\mathfrak{A}_{2},$ $\cdots$ is finite. Then, the
last formula of the sequence satisfies all the conditions for $\mathfrak{A}$ . $\blacksquare$

It is clear that the following fact holds.

FACT 4. Let $\mathfrak{A}$ be a formula-occurrence in a regular proof $\Pi$ . If $\mathfrak{A}$ satisfies
the conditions of Lemma 3, then it also satisfies the following condition.

(3’) If $\mathfrak{B}\in E(\Pi)$ , then $\mathfrak{B}$ is not above nor equal to any of the side-set for-
mulae of $\mathfrak{A}$ .

THEOREM (Normalization theorem). Let $\Pi$ be a given proof. Then we can
construct a normal proof which has the same set of assumptions and the same
end formula with $\Pi$ .

PROOF. By Lemma 1 and Fact 2, it can be assumed that $\Pi$ is regular.
We prove this theorem by induction on the degree of $\Pi$ . If $\Pi$ is not normal,

we can find in $\Pi$ a formula-occurrence, say $\mathfrak{M}$ , which is one of the maximum
formulae satisfying the conditions for $\mathfrak{A}$ of Lemma 3. Reduce $\Pi$ at M. Then,
the degree of the proof obtained, say $\Pi^{\prime}$ , is lower than that of $\Pi$ . In the
following we show this fact according to the inference, say $I$ , whose conclusion
is M.

Case 1. $I$ is a (&I) or a $(\forall I)$ : Because $\mathfrak{M}$ satisfies the condition (1) for
$\mathfrak{A}$ of Lemma 3, it holds that

\langle $M(\Pi)$ , Card $ E(\Pi)\rangle$ $>$ \langle $M(\Pi^{\prime})$ , Card $ E(\Pi^{\prime})\rangle$

This leads $d(\Pi)>d(\Pi^{\prime})$ .
Case 2. $I$ is a (VI) or a $(\exists I)$ : Because $\mathfrak{M}$ satisfies the conditions (1) and

(2) for $\mathfrak{A}$ of Lemma 3, it holds that

\langle $M(\Pi)$ , Card $ E(\Pi)\rangle$ $>$ \langle $M(\Pi^{\prime})$ , Card $ E(\Pi^{\prime})\rangle$

This leads $d(\Pi)>d(\Pi^{\prime})$ .
Case 3. $I$ is a $(\supset I)$ or a $(7I)$ : Because $\mathfrak{M}$ satisfies the conditions (1) and

(3’) for $\mathfrak{A}$ of Lemma 3 and Fact 4, it holds that

\langle $M(\Pi)$ , Card $ E(\Pi)\rangle$ $>$ \langle $M(\Pi^{\prime})$ , Card $ E(\Pi^{\prime})\rangle$

This leads $d(\Pi)>d(\Pi^{\prime})$ .
Case 4. $I$ is a (V $E$), a $(\exists E)$ , or a $(\perp c)$ : Let $J$ be the inference in $\Pi$

whose major premiss is M. Let $\mathfrak{D}^{1}$ be the formula-occurrence in $\Pi$ which is
the conclusion of $J$ . Let $\mathfrak{D}^{0}$ be the last formula of a segment in $\Pi$ which
includes $\mathfrak{D}^{1}$ as its member. We show $\Pi$ by the next figure.



160 $\Lambda N$ DOU, Yuuki

$\mathfrak{M}_{--}^{:_{-l_{\mathfrak{D}}}}\sum_{\frac{\Delta_{1}^{\urcorner}}{1}-J}2$

:
$\dot{\mathfrak{D}}^{0}$

:.
Case 4-1. $\mathfrak{D}^{0}$ is not a maximum formula in $\Pi$ : Because $\mathfrak{M}$ satisfies the

conditions (1) and (3’) for $\mathfrak{A}$ of Lemma 3 and Fact 4, it holds that

\langle $M(\Pi)$ , Card $ E(\Pi)\rangle$ $>$ \langle $M(\Pi^{\prime})$ , Card $ E(\Pi^{\prime})\rangle$

This leads $d(\Pi)>d(\Pi^{\prime})$ .
Case 4-2. $\mathfrak{D}^{0}$ is a maximum formula in $\Pi$ : It holds that $d(\mathfrak{D}^{0})<M(\Pi)$ ,

since;
(a) If $J$ is a $(\vee E)$ or a $(\exists E)$ , then there exists a segment in $\Pi$ whose

first formula is above or equal to one of the side-set formulae of $\mathfrak{R}l$

and whose last formula is $\mathfrak{D}^{0}$ . This leads $d(\mathfrak{D}^{0})<M(\Pi)$ , because $\mathfrak{M}$

satisfies the condition (3) for $\mathfrak{A}$ of Lemma 3.
(b) 0therwise, it holds that $g(\mathfrak{D}^{1})<g(\mathfrak{M})$ . This leads $d(\mathfrak{D}^{0})<d(\mathfrak{M})=M(\Pi)$ .

Let $\tilde{\mathfrak{D}}^{0}$ be the maximum formula in 77’ which corresponds with $\mathfrak{D}^{0}$ . Then it
holds that $d(\overline{\mathfrak{D}}^{0})\leqq M(\Pi)$ , since $g(\overline{\mathfrak{D}}^{0})=g(\mathfrak{D}^{0})$ and $r(\tilde{\mathfrak{D}}^{0})\leqq r(\mathfrak{D}^{0})+1$ .

Case 4-2-1. $d(\overline{\mathfrak{D}}^{0})<M(\Pi)$ : Because $\mathfrak{M}$ satisfies the conditions (1) and (3’)

for $\mathfrak{A}$ of Lemma 3 and Fact 4, it holds that

\langle $M(\Pi)$ , Card $ E(\Pi)\rangle$ $>$ \langle $M(\Pi)$ , Card $ E(\Pi^{\prime})\rangle$

This leads $d(\Pi)>d(\Pi^{\prime})$ .
Case 4-2-2. $d(\tilde{\mathfrak{D}}^{0})=M(\Pi)$ : For each $\mathfrak{B}$ in $E(\Pi)$ , we define a maximum

formula $\mathfrak{B}^{\prime}$ in $\Pi^{\prime}$ as follows:
(a) If $\mathfrak{P}$ is $\mathfrak{M}$ , then $\mathfrak{P}^{\prime}$ is $\tilde{\mathfrak{D}}^{0}$ .
(b) 0therwise, $\mathfrak{P}^{\prime}$ is the maximum formula in $\Pi^{\prime}$ which corresponds with

$\mathfrak{P}$ (Since $\mathfrak{M}$ satisfies the condition (3’) for $\mathfrak{A}$ of Fact 4, exactly one
formula-occurrence in $\Pi^{\prime}$ corresponds with $\mathfrak{P}$ ) For $d(\tilde{\mathfrak{D}}^{0})=M(\Pi)$ , it
holds that $E(\Pi^{\prime})=\{\mathfrak{P}^{\prime}|\mathfrak{P}\in E(\Pi)\}$ . Therefore,

(i) \langle $M(\Pi)$ , Card $ E(\Pi)\rangle$ $=$ \langle $M(\Pi^{\prime})$ , Card $ E(\Pi^{\prime})\rangle$

Next, we compare $l(\mathfrak{P}^{\prime})$ with $l(\mathfrak{P})$ . If $\mathfrak{P}$ is $\mathfrak{M}$ , then $1(\mathfrak{P})>1(\mathfrak{P}^{\prime})$ ; since $\mathfrak{M}$ is
is above $\mathfrak{D}^{0}$ . 0therwise, $1(\mathfrak{P})\geqq l(\mathfrak{P}^{\prime})$ ; since $\mathfrak{M}$ satisfies the condition (3’) for $\mathfrak{A}$

of Fact 4. Therefore,

(ii) $\sum_{\mathfrak{U}\in E(\Pi)}l(\mathfrak{A})>\sum_{\prime \mathfrak{A}\in E(\Pi)}l(\mathfrak{A})$

From (i) and (ii), we obtain that $d(\Pi)>d(\Pi^{\prime})$ . $\blacksquare$
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Appendix

The classical natural deduction for which Seldin proved the normalization
theorem in [5] was formallzed as the intuitionistic logic with Peirce’s law. To
that system, our reduction-procedure can be applied. The regularity of proofs

is defined similarly. For a regular proof $\Pi$ , the reduction of $\Pi$ at $\mathfrak{M}$ which
is the conclusion of a Peirce’s law, say $I$ , is defined as follows:

:.
$\mathfrak{M}\supset \mathfrak{A}\overline{\mathfrak{M}^{:}}$

$\mathfrak{D}\supset \mathfrak{A}1$

$\frac{\mathfrak{M}\Sigma_{1}\Sigma_{2}}{\mathfrak{D}}$

$\mathfrak{A}$

$\mathfrak{A}$

$\frac{\frac I\mathfrak{M}^{:}\Sigma_{1}\Sigma_{2}\dot{\mathfrak{M}}}{\mathfrak{D}}$

$\Rightarrow$

$\frac{\mathfrak{M}^{:}\Sigma_{1}\Sigma_{2}}{\frac{\mathfrak{D}}{\mathfrak{D}}1}$

With the appropriate definition of segments, the normalization theorem can be
proved similarly to our main issue.
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