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Introduction.

Let $R_{1}^{n+1}$ be an $(n+1)$-dimensional Minkowski space and $S_{1}^{n+1}(c)$ (resp.
$H_{1}^{n+1}(c))$ an (n+l)-dimensional de Sitter space (resp. an anti-de Sitter space) of
constant curvature $c$ . The class of these indefinite Riemannian manifolds of
constant curvature $c$ and with index 1 is called a Lorentz space form, which is
denoted by $M_{1}^{n+1}(c)$ . A submanifold $M$ of a Lorentz space form $M_{1}^{n+1}(c)$ is said
to be space-like if an induced metric on $M$ from that of the ambient space is
positive definite. After the study of Calabi [3] and Cheng and Yau [6] about
the Bernstein type property for maximal space-like hypersurfaces in a Minkowski
space $R_{1}^{n+1}$ , complete space-like hypersurfaces with constant mean curvature in
a Lorentz space form have been studying by many geometers. As standard
models of not totally umbilic space-like hypersurfaces with constant mean cur-
vature in a Lorentz space form $M_{1}^{n+1}(c)$ there exists a class of hypersurfaces
$H^{k}(c_{1})\times M^{n-k}(c_{2})$ , where $k=1,$ $\cdots,$ $n-1$ , where $H^{m}(c)$ (resp. $M^{m}(c)$ ) is an m-
dimensional hyperbolic space (resp. a space form) of constant curvature $c$ . In
the case of $k=1$ , it is called a hyperbolic cylinder. In particular, when it is
maximal, $c_{1}$ and $c_{2}$ satisfy $c_{1}=nc/k$ and $c_{2}=nc/(n-k)$ .

Now, for a complete minimal hypersurface in $S^{n+I}(1)$ with constant scalar
curvature, Chern pointed out that it seems to be interesting to study the dis-
tribution of the value of the squared norm of the second fundamental form,

and Peng and Terng [10] and Cheng [4] partially realized the aim in $S^{4}(1)$ .
Relative to the problem the similar case for space-like hypersurfaces with con-
stant mean curvature $H$ of $M_{1}^{4}(c)$ is recently classified by Aiyama and Cheng
[2]. Numbers $S_{0}$ and $S_{\pm}$ are defined by

$S_{0}=\frac{h^{2}}{3}$ and $S_{\pm}=-3c+\frac{1}{4}(3h^{2}\pm\sqrt{h^{4}-8ch^{2}})$ ,
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where $h=3H$ and $S_{0}<S_{-}\leqq S_{+}$ . They prove that a 3-dimensional hyperbolic
cylinder is the only complete space-like hypersurface with non-zero constant
mean curvature, constant scalar curvature and $S>S_{-}$ . However, there are no
informations about the case $S\leqq S_{-}$ . The purpose of this paper is to investigate
the case $S<S_{-}$ in the maximal hypersurface and to prove the following theorem
which is the Lorentz version in $H_{1}^{4}(c)$ about Chern’s problem.

THEOREM. Let $M$ be a 3-dimensional complete maximal space-like hypersur-
face with constant scalar curvature in an anti-de Sitter space $H_{1}^{4}(c)$ . If $-kc<S$
$\leqq-3c,$ $k=2.64$ , then $M$ is congruent to the hyperbolic cylinder $H^{1}(c_{1})\times H^{2}(c_{2})$ .

1. Preliminaries.

Let $(M, g)$ be a space-like hypersurface in an $(n+1)$-dimensional Lorentz
space form $M_{1}^{n+1}(c)$ . We choose a local field of orthonormal frames $e_{I},$ $\cdots,$ $e_{n}$

adapted to the Riemannian metric induced from the indefinite Riemannian metric
on the ambient space and let $\omega_{1}$ , – , $\omega_{n}$ denote the dual coframes on $M$. The
connection forms $\{\omega_{ij}\}$ on $M$ are characterized by the structure equations

(1.1) $\left\{\begin{array}{l}d\omega_{i}+\Sigma\omega_{ij}\wedge\omega_{J}=0, \omega_{ij}+\omega_{ji}=0,\\d\omega_{ij}+\Sigma\omega_{lk}\wedge\omega_{ij}=\Omega_{ij},\\\Omega_{ij}=-\frac{1}{2}\Sigma R_{ijkl}\omega_{k}\wedge\omega_{l},\end{array}\right.$

where $\Omega_{ij}$ (resp. $R_{ijkl}$ ) denotes the Riemannian curvature form (resp. components
of the Riemannian curvature tensor $R$ ) of $M$. The second fundamental form
$\alpha$ with values in the normal bundleu is given by $\alpha=-\Sigma h_{ij}\omega_{i}\omega_{j}e_{0}$ , where $e_{0}$ is
a unit time-like normal vector and the mean curvature $H$ of $M$ is given by
$H=h/n=\Sigma h_{jj}/n$ .

The Gauss equation, the Codazzi equation and the Ricci formula for the
second fundamental form are given by

(1.2) $R_{ijil}=c(\delta_{il}\delta_{ji}-\delta_{ik}\delta_{jl})-h_{il}h_{ji}+h_{ii}h_{jl}$ ,

(1.3) $h_{iji}-h_{ikj}=0$ ,

(1.4) $h_{ijkl}-h_{ijlk}=-\Sigma h_{rj}R_{riil}-\Sigma h_{ir}R_{rjil}$ ,

(1.5) $h_{ijklm}-h_{ijiml}=-\Sigma h_{rjk}R_{rilm}-\sum h_{iri}R_{rjlm}-\sum h_{ijr}R_{rklm}$ ,

where $h_{ijk},$ $h_{ijkl}$ and $h_{ijilm}$ denote components of the covariant differentials
$\nabla\alpha,$ $\nabla^{2}\alpha$ and $\nabla^{3}a$ of $\alpha$ , respectively.

We denote by $R_{ij}$ components of the Ricci curvature tensor $Ric$ . The Ricci
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tensor $R_{ij}$ and the scalar curvature $r$ are given by

(1.6) $R_{ij}=(n-1)c\delta_{ij}-hh_{ij}+\Sigma h_{ik}h_{ij}$ ,

(1.7) $r=n(n-1)c-h^{2}+\Sigma h_{ij^{2}}$ ,

Now, we compute some local formulas under the assumption that the mean
curvature of $M$ is constant. First of all, by making use of (1.4) and by taking
account of the Codazzi equation (1.3), the Gauss equation (1.2) and the Bianchi
equation, it is well known that the Laplacian of the second fundamental form
is given by

(1.8) $\Delta h_{ij}=c(nh_{ij}-h\delta_{ij})-h\Sigma h_{ik}h_{kj}+f_{2}h_{ij}$ ,

where $f_{2}=\Sigma h_{ij^{2}}$ . For simplicity we put $f_{m}=\Sigma h_{ik_{1}}h_{k_{1}k_{2}}\cdots h_{k_{m-1}i}$ for any
positive integer $m$ . In particular, we denote by $S$ the square of the length of
the second fundamental form $\alpha,$ $i.e.,$ $S=f_{2}$ . By utilizing (1.8), the Laplacian

of the non-negative function $S$ can be determined as follows:

(1.9) $\frac{1}{2}\Delta S=\Sigma h_{ijk^{2}}+\Sigma h_{ij}\Delta h_{ij}=\Sigma h_{ijh^{2}}-hf_{3}+S(S+nc)-ch^{2}$ .

On the other hand we easily see that

$\frac{1}{2}\Delta h_{ijk^{2}}=\Sigma h_{ijkt^{2}}+\Sigma h_{ijk}\Delta h_{ijk}$ .
By a similar and direct computation to the argument above we have

$\Delta h_{ijk}=\Sigma h_{ir}R_{rjk}+\Sigma h_{ikr}R_{rj}+\Sigma h_{ijr}R_{rk}$

$-\Sigma h_{rs}R_{rijsk}-\Sigma h_{jr}R_{rik\cdot*}-\Sigma h_{ir}R_{rjk\$ S}$

$-\Sigma h_{krS}R_{rij\$}-2\Sigma h_{jrs}R_{rik\epsilon}-2\Sigma h_{iri}R_{rjk\$}$ ,

where $R_{ijk}$ denote components of the covariant differential $\nabla Ric$ of the Ricci
tensor $Ric$ . Thus one finds

PROPOSITION 1.1. Let $M$ be an n-dimensional space-like hypersurface with
constant mean curvature in a Lorentz space form $M_{1}^{n+1}(c)$ . Then we have

(1.10) $\frac{1}{2}\Delta S=|\nabla\alpha|^{2}-hf_{3}+S(S+nc)-ch^{2}$ ,

(1.11) $\frac{1}{2}\Delta|\nabla\alpha|^{2}=|\nabla^{2}\alpha|^{2}+\{S+(2n+3)c\}|\nabla\alpha|^{2}+3A-6B-3hC+\frac{3}{2}|\nabla S|^{2}$ ,

(1.12) $\frac{1}{3}\Delta f_{3}=-hf_{4}+(S+nc)f_{3}-chS+2C$ ,

(1.13) $\frac{1}{4}\Delta f_{4}=-hf_{6}+(S+nc)f_{4}-chf_{3}+2A+B$ ,
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where we have put

$A=\Sigma h_{ij}^{2}h_{ikl}h_{jil}$ , $B=\Sigma h_{iji}h_{irs}h_{fr}h_{kS}$ and $C=\Sigma h_{iji}h_{ijl}h_{kl}$ .

REMARK. The equation (1.11) is obtained by Treibergs [11] in the case
where the ambient space is a Minkowski space. These equations are recently

obtained also by Aiyama and Cheng [2].

The generalized maximum principle due to Omori [9] and Yau [12] and a
Lorentz version due to Nomizu [8] of Cartan’s formula for isoparametric hyper-
surfaces are next introduced. A space-like hypersurface in a Lorentz space
form is said to be isoparametric, if all principal curvatures are constant.

THEOREM 1.2. Let $M$ be an n-dimensional complete Riemannian manifold
whose Ricci curvature is bounded from below. Let $F$ be a $C^{2}$-function bounded
from above on M. For any positive number $\epsilon$ there exists a point $p$ in $M$ such
that

$ F(p)>\sup F-\epsilon$ , $|\nabla F(p)|<\epsilon$ , $\Delta F(p)<\epsilon$ ,

where $\nabla F$ denotes a gradient of the function $F$.

THEOREM 1.3. Let $M$ be an isoparametric space-like hypersurface in a
Lorentz space form $M_{1}^{n+1}(c)$ . Let $\lambda_{1},$

$\cdots,$
$\lambda_{p}$ are all constant distinct principal

curvatures of $M$ with multiplicities $m_{1},$ $\cdots,$ $m_{p}$ , respectively. Then we have

$\sum_{j\neq i}m_{j}\frac{c-\lambda_{j}\lambda_{i}}{\lambda_{j}-\lambda_{i}}=0$ .

2. Isoparametric hypersurfaces.

This section is concerned with isoparametric space-like hypersurfaces in
$H_{1}^{4}(c)$ . Let $M$ be a 3-dimensional space-like hypersurface with constant mean
curvature in a 4-dimensional anti-de Sitter space $H_{1}^{4}(c)$ . For any point $x$ in $M$

we can choose a local field $\{e_{1}, \cdots, e_{4}\}$ of orthonormal frames in such a way
that $h_{ij}=\lambda_{i}\delta_{ij}$ , where $\lambda_{i}$ denotes a principal curvature. Without loss of generality
we may assume that

$\lambda_{1}\leqq\lambda_{2}\leqq\lambda_{3}$ .

PROPOSITION 2.1. There does not exist an isoparametric space-like hyper-

surface in an anti-de Sitter space $H_{1}^{4}(c)$ with distinct principal curvatures with
each other.

PROOF. Let $M$ be an isoparametric space-like hypersurface in $H_{1}^{4}(c)$ and
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$\lambda_{1},$ $\lambda_{2}$ and $\lambda_{3}$ distinct principal curvatures. By Theorem 1.2 we have

$\frac{c-\lambda_{1}\lambda_{2}}{\lambda_{2}-\lambda_{1}}+\frac{c-\lambda_{1}\lambda_{3}}{\lambda_{3}-\lambda_{1}}=0$ ,

from which combining with $\lambda_{I}+\lambda_{2}+\lambda_{3}=h$ it follows that we have

$\lambda_{1^{3}}-h\lambda_{I}^{2}+(2\lambda_{2}\lambda_{3}+3c)\lambda_{1}-ch=0$ .
Similarly the following equations are given by the Cartan-Nomizu formula:

(2.1) $\left\{\begin{array}{l}\lambda_{1^{3}}-h\lambda_{1^{2}}+(2\lambda_{2}\lambda_{3}+3c)\lambda_{1}-ch=0,\\\lambda_{2^{3}}-h\lambda_{2^{2}}+(2\lambda_{s}\lambda_{1}+3c)\lambda_{2}-ch=0,\\\lambda_{s^{3}}-h\lambda_{s^{2}}+(2\lambda_{1}\lambda_{2}+3c)\lambda_{3}-ch=0.\end{array}\right.$

The first and the second equations of (2.1) and the assumption $\lambda_{1}\neq\lambda_{2}$ give us
$(\lambda_{1}^{2}+\lambda_{1}\lambda_{2}+\lambda_{2^{2}})-h(\lambda_{1}+\lambda_{2})+3c=0$ .

So, by the equation (2.1) we have

$\lambda_{1}\lambda_{2}+\lambda_{2}\lambda_{3}+\lambda_{3}\lambda_{1}=3c$ .
Accordingly we obtain $S=h^{2}-6c$ . It is seen by Cheng and Nakagawa [5] that
the estimate of the above bound of the squared norm $S$ is given as $S\leqq S_{+}$ ,

from which combining with $S=h^{2}-6c$ it follows that we have $c(h^{2}-9c)\geqq 0$ , a
contradiction. $\square $

REMARK. In the case of the sphere $S^{4}(c)$ , there exists an isoparametric
hypersurface in $S^{4}(c)$ with distinct principal curvatures with each other.

3. Proof of Theorem.

In this section we shall prove the main theorem in the introduction. Let
$M$ be a 3-dimensional complete maximal space-like hypersurface in an anti-de
Sitter space $H_{1}^{4}(c)$ and let $\lambda_{I},$ $\lambda_{2}$ and $\lambda_{3}$ be principal curvatures. Without loss of
generality we may assume that

$\lambda_{1}\leqq\lambda_{2}\leqq\lambda_{3}$ .
As is easily seen, the fact that the scalar curvature $r$ is constant is equivalent
to the property that the squared norm $S$ of $\alpha$ is constant. By the assumption
of the theorem and by the definition of the function $f_{3}$ we have

(3.1) $\{\lambda_{1^{3}}^{1}\lambda_{1^{2}}+\lambda_{2^{2}}^{+_{3}}+^{\lambda}\lambda^{=_{3}0}=S=\lambda+_{+}\lambda_{\lambda_{2}^{2}+^{3}\lambda_{3}^{3^{2}}=f_{3}}$

.
constant,
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PROOF OF THEOREM. First of all we notice that the assumption $0<S$ means
that $M$ is not totally geodesic. Suppose that $f_{3}$ is constant. From the assump-
tion of the theorem, $M$ is isoparametric. So, by Proposition 2.1 two of principal
curvatures $\lambda_{1},$ $\lambda_{2}$ and $\lambda_{3}$ are equal. By a theorem due to Abe, Koike and Yama-
guchi [1], $M$ is congruent to the hyperbolic cylinder $H^{1}(c_{1})\times H^{2}(c_{2})$ and $S=-3c$ .

Next, we show that if $0<-2.64c<S\leqq-3c$ , then $f_{3}$ is constant. We sup-
pose that $f_{3}$ is not constant. Then $S<-3c$ . First we suppose that there does

not exist a point $q$ at which $f_{3}(q)=0$ . By the continuity of the function $f_{3}$

we may suppose that $f_{3}$ is negative without loss of generality. By the Gauss
equation the Ricci curvature is bounded from below and the function $f_{3}$ is
bounded from above by $0$ , and so we can apply Theorem 1.2 to $f_{3}$ . For any
positive number $\epsilon$ there exists a point $p$ in $M$ such that

(3.2) $|\nabla f_{3}(p)|<\epsilon$ , $\Delta f_{3}(p)<\epsilon$ , $ f_{3}(p)>\sup f_{3}-\epsilon$ .
By the first and the second equations of (3.1), solving the problem for the con-
ditional extremum we lead to

$|f_{3}|\leqq\sqrt{\frac{S^{3}}{6}}$ ,

where the equality holds if and only if two of principal curvatures are equal.

Since $f_{3}$ is not constant, we get

(3.3) $-\sqrt{\frac{S^{3}}{6}}<\sup_{M}f_{3}\leqq 0$ .

We observe from (3.1) and (3.3) that $\lambda_{1},$ $\lambda_{2}$ and $\lambda_{3}$ are mutually distinct on $M^{\prime}=$

$\{x\in M:f_{3}(x)\neq-\sqrt{S^{3}/6}\}$ . By taking account of the assumption that $\Sigma h_{ii}=0$

and $\sum h_{ij^{2}}=S=constant$ , the exterior differentiation implies

(3.4) $\Sigma h_{iik}=0$ , $\Sigma\lambda_{i}h_{iik}=0$

for any index $k$ at any point $x$ in $M$. Also we define numbers $\delta_{k}(x)(k=1,2$ ,

3) by

(3.5) $\Sigma\lambda_{i^{2}}h_{iii}(x)=\delta_{i}(x)$

for any index $k$ . Then equations (3.4) and (3.5) can be regarded simultaneous
equations with 3 unknown $h_{11k}(x),$ $h_{22k}(x)$ and $h_{33k}(x)$ , and the unique solution
is given by

$h_{iik}(x)=a_{i}(x)\delta_{k}(x)$

for index $i,$ $k=1,2,3$ at any point $x$ in $M^{\prime}$ . For any positive number $\epsilon(<\sup$

$f_{3}+\sqrt{S^{3}}/6)$ in (3.2), let $M_{0}$ be the connected component containing the point $p$
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in (3.2) of $\{x\in M:f_{3}(x)>\sup f_{3}-\epsilon\}$ . Then $M_{0}$ is contained in $M^{\prime}$ . Since all
principal curvatures $\lambda_{1},$ $\lambda_{2}$ and $\lambda_{3}$ satisfy

(3.6) $|\lambda_{i}|\leqq\sqrt{S}$

by (3.1), it follows from (3.4) that there exists a positive number $c_{1}=c_{1}(p, \epsilon)$

such that $|a_{k}(x)|<c_{1}$ for any point $x$ in $M_{0}$ and $i=1,2,3$ . Furthermore we
have $|\delta_{k}(p)|<\epsilon/3$ at the point $p$ in $M$ satisfying (3.2) and we also have

(3.7) $|h_{iik}(p)|<\frac{1}{3}c_{1}\epsilon$

for any indices $i$ and $k$ . By (1.12) we have

$\Delta f_{3}=3\{(S+3c)f_{3}+2\sum\lambda_{i}h_{ijk^{2}}\}=3(S+3c)f_{3}+2\sum(\lambda_{i}+\lambda_{j}+\lambda_{k})h_{ijk^{2}}$

$=3(S+3c)f_{3}+12(\lambda_{1}+\lambda_{2}+\lambda_{3})h_{123^{2}}+6\sum_{i\neq k}(2\lambda_{i}+\lambda_{i})h_{iik^{2}}+6\sum_{i}\lambda_{i}h_{iii^{2}}$ ,

from which combining with (3.2), (3.6) and (3.7) it follows that we have

$\epsilon>\Delta f_{3}(p)>3(S+3c)f_{3}(p)-14\sqrt{S}c_{1}^{2}\epsilon^{2}$ .
Thus there exists a positive constant $ c_{2}=1/3+14/3\sqrt{S}c_{1}^{2}\epsilon$ such that

$(S+3c)f_{3}(p)<c_{2}\epsilon$ ,

where $c_{2}$ converges to 1/3 if $\epsilon$ tends to zero.
For any convergent sequence $\{\epsilon_{m}\}$ such that $\epsilon_{m}\rightarrow 0(m\rightarrow\infty)$ and $\epsilon>0$ , there

exists a point sequence $\{p_{m}\}$ such that the sequence $\{f_{3}(p_{m})\}$ converges to
$\sup f_{3}$ by (3.2), from which together with the last inequality we have a positive
constant $c_{2}^{\prime}(m)=c_{2}^{\prime}(S, \epsilon_{m})$ such that

$(S+3c)f_{3}(p_{m})<c_{2}^{\prime}(m)\epsilon_{m}$ .
It implies that $\sup_{M}f_{3}\geqq 0$ because $S+3c$ is negative and hence, by means of
the supposition that the function $f_{3}$ is negative we have

(3.8) $\sup_{M}f_{3}=0$ .

Now, under this condition we observe the estimation of the function $|\nabla^{2}\alpha|$ .
Since $|\nabla\alpha|$ is constant by (1.10) and the assumption, (1.11) means that the value
of $|\nabla^{2}\alpha|$ is determined by the function $A-2B$ . So, in order to obtain the
estimate of the lower bound of the function we have
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$3(A-2B)=\sum(\lambda_{t^{2}}+\lambda_{j^{2}}+\lambda_{k^{2}}-2\lambda_{i}\lambda_{j}-2\lambda_{j}\lambda_{k}-2\lambda_{k}\lambda_{i})h_{ijk^{2}}$

$=$
$\sum_{i\neq j\neq k\neq i}$

$\{2(\lambda_{i^{2}}+\lambda_{j^{2}}+\lambda_{k^{2}})-(\lambda_{i}+\lambda_{j}+\lambda_{k})^{2}\}h_{ijk^{2}}$

$+3\sum_{i\neq i}(\lambda_{\iota^{2}}-4\lambda_{i}\lambda_{i})h_{iii^{2}}-3\Sigma\lambda_{i^{2}}h_{iii^{2}}$

$=2S\sum h_{ijt^{2}}+3\sum_{i\neq i}(\lambda_{\iota^{2}}-4\lambda_{i}\lambda_{i}-2S)h_{iik^{2}}-\sum(3\lambda_{i^{2}}+2S)h_{iii^{2}}$ .

Accordingly it follows from this equation, (1.10), (3.6) and (3.7) that there exists
a positive constant $c_{3}=(41/3)Sc_{1^{2}}$ such that

(3.9) $3(A-2B)(p)>-2S^{2}(S+3c)-c_{3}\epsilon^{2}$ .
On the other hand, in order to estimate the value of $|\nabla^{2}\alpha|$ from itself, we shall
analyze the detail of its term. First we put

(3.10) $t_{if}=h_{ijij}-h_{jiji}$ .
Then the Ricci formula (1.4) and the Gauss equation (1.2) imply

(3.11) $t_{ij}=(\lambda_{i}-\lambda_{j})(c-\lambda_{i}\lambda_{j})$ .
Hence the direct calculation implies

(3.12)
$\sum_{i\neq j}t_{ij}^{2}=S^{3}+4cS^{2}+6c^{2}S-2f_{3}^{2}$

because of $n=3,$ $H=0$ and $f_{4}=S^{2}/2$ . Moreover we obtain

$\sum_{i\neq j}h_{ijij^{2}}=\sum_{i<j}h_{ijij^{2}}+\sum_{i<J}(h_{ijij}-t_{ij})^{2}=\sum_{i\neq j}(h_{ijij}-\frac{1}{2}t_{ij})^{2}+\frac{1}{4}\sum_{i\neq j}t_{ij}^{2}$ .

Thus, because of $\sum h_{ijkl^{2}}\geqq 3\sum_{i\neq j}h_{ijij^{2}}$ it is reduced to

(3.13) $\sum h_{ijkl^{2}}\geqq 3\sum_{i\neq j}(h_{\ell jij}-\frac{1}{2}t_{ij})^{2}+\frac{3}{4}\sum_{i\neq j}t_{ij}^{2}$ .

This is the estimation of the lower bound of $|\nabla^{2}\alpha|$ .
Taking account of (3.2) and combining (1.11) with (3.8), (3.12) and (3.13)

we get

(3.14) $S(S+3c)(S+9c)+2S^{2}(S+3c)+c_{3}\epsilon^{2}$

$\geqq 3\sum_{i\neq j}(h_{ijij}-\frac{1}{2}t_{ij})^{2}(p)+\frac{3}{4}S(S^{2}+4cS+6c^{2})-\frac{3}{2}\epsilon^{2}$ .

Therefore, in order to investigate the range of $S$ , it suffices to estimate the
lower bound of the first term of the right hand side in the above inequality.
However, by the direct computation there exists a positive constant $c_{4}=c_{4}(S, c)$

such that
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(3.15) $\sum_{i\neq j}(h_{ijij}-\frac{1}{2}t_{ij})^{2}>(h_{1212}-h_{2323})^{2}-c_{4}\epsilon$ .

In fact, we have

$\sum_{i\neq j}(h_{ijij}-\frac{1}{2}t_{ij})^{2}=(h_{1212}-\frac{1}{2}t_{12})^{2}+(h_{2323}-\frac{1}{2}t_{23})^{2}+\cdots$

$=(h_{1212}-h_{2323})^{2}+2h_{1212}h_{2323}-(t_{12}h_{1212}+t_{23}h_{2323})+\frac{1}{4}(t_{12}^{2}+t_{23}^{2})+\cdots$

$=(h_{1212}-h_{2323})^{2}+2(h_{1212}-\frac{1}{2}t_{23})(h_{2323}-\frac{1}{2}t_{12})+\frac{1}{4}(t_{12}-t_{23})^{2}+\cdots$ .

By (3.11) we see $t_{12}-t_{23}=-(S+3c)\lambda_{2}$ . Because of (3.8) there exist sufficiently

small numbers $\epsilon_{1},$ $\epsilon_{2}$ and $\epsilon_{3}$ such that $\epsilon_{1},$ $\epsilon_{2}$ and $\epsilon_{3}$ converge to zero as $\epsilon$ tends
to zero and

$\lambda_{1}(p)=-\sqrt{\frac{S}{2}}+\epsilon_{1}$ , $\lambda_{2}(p)=\epsilon_{2}$ , $\lambda_{3}(p)=\sqrt{\frac{S}{2}}+\epsilon_{3}$ .

Accordingly, there exists a positive constant $c_{5}=c_{5}(S, c)$ such that

$|t_{12}-t_{23}|<c_{6}\epsilon$ .
Since the function $|\nabla^{2}\alpha|$ is bounded by (1.11), its upper bound depends only on
$S$ and $c$ and we have

$\sum_{i\neq j}(h_{ijij}-\frac{1}{2}t_{ij})^{2}(p)$

$>(h_{1212}-h_{2323})^{2}(p)+2(h_{1212}-\frac{1}{2}t_{12})(h_{2323}-\frac{1}{2}t_{23})(p)-c_{4}\epsilon+\cdots$

$=(h_{1212}-h_{2323})^{2}(p)+2(h_{2121}-\frac{1}{2}t_{21})(h_{3232}-\frac{1}{2}t_{32})(p)-c_{4}\epsilon+\cdots$

$=(h_{1212}-h_{2323})^{2}(p)+\{(h_{2121}-\frac{1}{2}t_{21})+(h_{3232}-\frac{1}{2}t_{32})\}^{2}(p)-c_{4}\epsilon+\cdots$

$\geqq(h_{1212}-h_{2323})^{2}(p)-c_{4}\epsilon$

for some positive integer $c_{4}=c_{4}(S, c)$ .
Accordingly we need next the estimate of the lower bound of the first term

of the above relation. We notice that $\Sigma h_{ijk^{2}}\geqq 6h_{123^{2}}$ . Moreover we get by

(1.10) and (3.7)

(3.16) $\sum_{i,j}h_{ij2^{2}}(p)<2h_{123^{2}}(p)+\frac{7}{9}c_{1^{2}}\epsilon^{2}\leqq-\frac{1}{3}S(S+3c)+\frac{7}{9}c_{1^{2}}\epsilon^{2}$ .

Differentiating $S=\sum h_{ij^{2}}$ twice, we have $\Sigma_{i}\lambda_{i}h_{iikk}+\Sigma_{i.j}h_{ijk^{2}}=0$ for $k=1.2,3$ .
So there exists a positive constant $c_{6}=c_{6}(S, c)$ such that
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$\sum_{i,j}h_{ij2^{2}}(p)>\sqrt{\frac{S}{2}}(h_{1122}-h_{3322})(p)-c_{6}\epsilon$ ,

because $|\nabla^{2}\alpha|$ is bounded, from which together with (3.16) it follows that there
is a positive constant $c_{7}=c_{7}(S, c, \epsilon)$ such that

$(h_{1122}-h_{322})(p)<-\frac{\sqrt{2S}}{3}(S+3c)+c_{7}\epsilon$ .

Furthermore, by (3.11) we have a constant $c_{s}=c_{s}(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, S, c)=c_{8}(S, c, \epsilon)$

such that

$ t_{2},(p)>-c\sqrt{\frac{S}{2}}+c_{8}\epsilon$ .

Thus, combining above two inequalities we have

(3.17) $(h_{1212}-h_{2S2S})(p)=(h_{1212}-h_{S2S2})(p)-t_{2S}(p)<-\frac{\sqrt{2S}}{6}(2S+3c)+c_{9}\epsilon$

for a certain constant $c_{9}=c_{9}(c_{7}, c_{8})=c_{9}(S, c, \epsilon)$ . Because of $2S+3c>0$ , we can
suppose that the right hand side of the above inequality is negative for a suf-
ficiently small positive number $\epsilon$ . Thus we can get the lower bound of the
first term of the right hand side of (3.15). Combining some results obtained
above, we can show the existence of the zero point of the function $f_{3}$ . In
fact, from (3.14), (3.15) and the above equation (3.17) we have

$ S(S+6c)(19S+42c)>-c_{10}\epsilon$

for a certain constant $c_{10}=c_{10}(c_{3}, c_{4}, c_{9})$ and any positive number $\epsilon$ , that is,

$S(S+6c)(19S+42c)\geqq 0$ ,

which shows $S\leqq-42c/19$ , a contradiction. Thus there is a point $q$ such that
$f_{3}(q)=0$ .

Before proving the theorem we give some formulas at the point $q$ . First,
the values of principal curvatures at that point are given by

$\lambda_{1}=-\sqrt{\frac{S}{2}}$ , $\lambda_{2}=0$ , $\lambda_{3}=\sqrt{\frac{S}{2}}$ .

Similar to (3.4) we have $\Sigma_{i}h_{iik}=0$ and $\Sigma_{i}\lambda_{i}h_{iik}=0$ at the point $q$ . The fol-
lowing relations can be verified from these equations and the value of principal
curvatures at that point:

(3.18) $h_{11i}=h_{33k}$ , $h_{22i}=-2h_{11i}$

for every $k$ . By substituting (3.18) into $\sum h_{\ell jt^{2}}$ , it gives

(3.19) $\Sigma h_{ijk^{2}}=6h_{123^{2}}+16h_{111^{2}}+\frac{5}{2}h_{222^{2}}+16h_{333^{2}}=-S(S+3c)$ .
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Furthermore we see

(3.20) $\sum_{i,j}h_{ij2^{2}}\geqq-\frac{1}{3}S(S+3c)$ .

In order to prove (3.20), it suffices to notice that

$\sum_{i,f}h_{ij2^{2}}=2h_{123^{2}}+8h_{111^{2}}+\frac{3}{2}h_{222^{2}}+8h_{333^{2}}$ .

From (3.19) and the last equation we have

(3.21) $\sum_{i,j}h_{ij2^{2}}\leqq-\frac{3}{5}S(S+3c)$ .

We are now in position to prove the theorem. Since $f_{3}(q)=0$ , we have

(3.22) $\Sigma h_{ijkl^{2}}\geqq 3\sum_{i\neq j}(h_{ijij}-\frac{1}{2}t_{ij})^{2}+\frac{3}{4}S(S^{2}+4cS+6c^{2})$

by (3.12) and (3.13). By (1.13) and $f_{4}=(1/2)S^{2}$ we obtain $2A+B=-(1/2)S^{2}(S+3c)$ ,

from which combining with (1.11) it follows that

$\Sigma h_{ijkl^{2}}=S(S+3c)(S+9c)-3(A-2B)$

$=S(S+3c)(S+9c)-4(2A+B)+5(A+2B)$

$=3S(S+3c)^{2}+5(A+2B)$ .

Thus we have

(3.23) $3S(S+3c)^{2}+5(A+2B)\geqq 3\sum_{i\neq j}(h_{ijij}-\frac{1}{2}t_{ij})^{2}+\frac{3}{4}S(S^{2}+4cS+6c^{2})$ .

Since we have

(3.24) $t_{12}=t_{23}=-\sqrt{\frac{S}{2}}c$

at that point $q$ , we can estimate the first term in the right hand side of (3.23)

by the similar method to that by which the estimation of (3.15) is given and
we have

(3.25) $\sum_{i\neq j}(h_{ijij}-\frac{1}{2}t_{ij})^{2}\geqq(h_{1212}-h_{2323})^{2}$ ,

where we used (3.24). Differentiating $S=\sum h_{ij^{2}}$ , we have $\sum_{i}\lambda_{i}h_{iikk}+\sum_{i.j}h_{ijk^{2}}$

$=0$ for $k=1,2,3$ . Substituting the value of principal curvatures into the above
equation we obtain

(3.26) $\sqrt{\frac{S}{2}}(h_{11kk}-h_{33kk})=\sum_{i,j}h_{ijk^{2}}$

for $k=1,2,3$ . In particular, by (3.21) we have
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$\sqrt{}\frac{S}{2}(h_{1122}-h_{3322})=\sum_{i,j}h_{ij2^{2}}\leqq-\frac{3}{5}S(S+3c)$ .

Thus we have

$h_{1212}-h_{2323}=h_{1212}-h_{3232}-t_{23}\leqq-\frac{\sqrt{2S}}{10}(6S+13c)$ .

By assumption, $6S+13c>0$ . Since the right hand side is negative, it follows
from (3.23), (3.24) and (3.26) that

(3.27) $3S(S+3c)^{2}+5(A+2B)\geqq 3\{\frac{\sqrt{2S}}{10}(6S+13c)\}^{2}+\frac{3}{4}S(S^{2}+4cS+6c^{2})$ .

We shall next estimate the second term of the left hand side in (3.27).

Since we get

$A+2B=\sum\lambda_{i^{2}}h_{ijk^{2}}+2\Sigma\lambda_{i}\lambda_{j}h_{ijk^{2}}=\frac{1}{3}\Sigma(\lambda_{i}+\lambda_{j}+\lambda_{k})^{2}h_{ijk^{2}}$

$=\frac{1}{3}\{\sum_{i\neq j\neq k\neq i}(\lambda_{i}+\lambda_{j}+\lambda_{k})^{2}h_{ijk^{2}}+3\sum_{i\neq k}(2\lambda_{i}+\lambda_{k})^{2}h_{iik^{2}}+9\sum\lambda_{i^{2}}h_{iit^{2}}\}$

$=\sum_{i\neq k}(2\lambda_{i}+\lambda_{k})^{2}h_{iik^{2}}+3\Sigma\lambda_{i^{2}}h_{iit^{2}}$ ,

we have by (3.18) $A+2B=S(4h_{111^{2}}+h_{222}^{2}+4h_{333^{2}})$ , and hence we obtain

$A+2B\leqq\frac{2}{5}S(16h_{111^{2}}+\frac{5}{2}h_{222^{2}}+16h_{333^{2}})$ .

It follows from the last inequality together with (3.19) that we have

$A+2B\leqq-\frac{2}{5}S^{2}(S+3c)$ .

By (3.27) and this inequality we have

$S(191S^{2}+36cS-1236c^{2})\leqq 0$ ,

which shows that the range of $S$ is contained in $[0, -k_{0}c]$ , where $-k_{0}c$ is a
positive root of the equation of order 3 and $k_{0}=2.64$ . This is a contradiction.

Therefore the function $f_{3}$ is constant and hence, by the first discussion,
the theorem is completely proved. $\square $

REMARK. In their paper [7] Ki, Kim and Nakagawa proved recently the
following theorem: Let $M$ be an n-dimensional complete maximal space-like
hypersurface in an anti-de Sitter space $H_{1}^{n+1}(c)$ . If the scalar curvature of $M$

is constant, then there exists a positive number $k$ which is depending on only

the dimension such that if $-kc<S\leqq-3c$ , then $M$ is congruent to the hyper-
bolic cylinder $H^{1}(c_{1})\times H^{n-1}(c_{2})$ . In the case of $n=3$ in the above theorem we
see $k=2.98$ .
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