CHARACTERIZATIONS OF REAL HYPERSURFACES OF A COMPLEX HYPERBOLIC SPACE IN TERMS OF RICCI TENSOR AND HOLOMORPHIC DISTRIBUTION

By
Tadashi TANIGUCHI

§ 0. Introduction.

Let $\boldsymbol{C} P^{n}$ and $\boldsymbol{C H} H^{n}$ denote the complex projective n-space with constant holomorphic sectional curvature 4 , and the complex hyperbolic n-space with constant holomorphic sectional curvature -4 , respectively. Let M be a real hypersurface of $\boldsymbol{C} P^{n}$ or $\boldsymbol{C H} H^{n} . \quad M$ has an almost contact metric structure (ϕ, ξ, η, g) induced from the complex structure J of $\boldsymbol{C} P^{n}$ or $\boldsymbol{C H} H^{n}$. Real hypersurfaces in $\boldsymbol{C} P^{n}$ and $\boldsymbol{C H}{ }^{n}$ have been studied by many authors (cf. [1], [2], [3], [11], [12], [13], [14], [15] and [17]). For real hypersurfaces in $\boldsymbol{C} P^{n}$, Takagi ([16]) showed that all homogeneous real hypersurfaces in $\boldsymbol{C} P^{n}$ are realized as the tubes of constant radius over compact Hermitian symmetric spaces of rank 1 or 2 (cf. [2] and [5]). He proved that all homogeneous real hypersurfaces in $\boldsymbol{C} P^{n}$ could be classified into six types which are said to be of type A_{1}, A_{2}, $\mathrm{B}, \mathrm{C}, \mathrm{D}$ and E. Kimura ([5]) also proved that a real hypersurfaces M in $\boldsymbol{C P} P^{n}$ is homogeneous if and only if M has constant principal curvatures and ξ is principal. Other interesting results in real hypersurfaces of $\boldsymbol{C} P^{n}$ are shown by Kimura-Maeda ([8]) and Maeda-Udagawa ([10]):

THEOREM A ([8]). Let M be a real hypersurface in $\boldsymbol{C P}^{n}$. Then the following inequality holds:

$$
\|\nabla S\|^{2} \geqq 1 /(n-1)\left\{2 n\left(h-\eta(A \xi) \phi+(\phi A \xi) h+\operatorname{trace}\left(\left(\nabla_{\xi} A\right) A \phi\right)\right\}^{2}\right.
$$

where S is the Ricci tensor of M and $k=$ trace A. Moreover, the equality holds if and only if M is locally congruent to a geodesic hypersphere of $\boldsymbol{C} P^{n}$.

Let $T \boldsymbol{C P} P^{n}$ be the tangent bundle of $\boldsymbol{C} P^{n}$. For a real hypersurface M of $C P^{n}$, let $T M$ be the tangent bundle of M. Then, $T^{\circ} M=\{X \in T M \mid X \perp \xi\}$ is a subbundle of $T M$. Thus each of $T M$ and $T^{\circ} M$ has a connection induced from
$T \boldsymbol{C} P^{n}$. The orthogonal complement of $T^{\circ} M$ in $T \boldsymbol{C} P^{n}$ with respect to the metric on $T \boldsymbol{C} P^{n}$ is denoted by $N^{\circ} M$, which is also a subbundle of $T \boldsymbol{C} P^{n}$ with the induced metric connection. Denote by ∇° and ∇^{\perp} the connections of $T^{\circ} M$ and $N^{\circ} M$, respectively. Let A be the second fundamental form of $T^{\circ} M$ in $T \boldsymbol{C} P^{n}$. Then, A is a smooth section of $\operatorname{Hom}\left(T M, \operatorname{Hom}\left(T^{\circ} M, N^{\circ} M\right)\right.$). Set $A^{\circ}=\left.A\right|_{T \circ M}$. We say that A° is η-parallel if $\nabla_{X}^{\circ} A^{\circ} \equiv 0$ for any $X \in T^{\circ} M$.

Theorem B ([10]). Let M be a real hypersurface of $\boldsymbol{C} P^{n}$. Assume that A° is η-parallel. Then M is locally congruent to one of the following :
(i) a geodesic hypersphere,
(ii) a tube over a totally geodesic $\boldsymbol{C} P^{k}(1 \leqq k \leqq n-2)$,
(iii) a tube over a complex quadric Q_{n-1},
(iv) a real hypersurface in which $T^{\circ} M$ is integrable and its integral manifold is a totally geodesic $\boldsymbol{C} P^{n-1}$ (that is, M is a ruled real hypersurface),
(v) a real hypersurface in which $T^{\circ} M$ is integrable and its integral manifold is a complex quadric Q_{n-1}.

Note that the cases (i), (ii) and (iii) in Theorem B are homogeneous but (iv) and (v) are not homogeneous. Although as in ([16]), homogeneous real hypersurfaces of $\boldsymbol{C} P^{n}$ has been given a complete classification, it is still open for the question of the classification of that of $\boldsymbol{C H}$.

Montiel ([12]) constructed five examples of homogeneous real hypersurfaces in $\boldsymbol{C} H^{n}$ using the techniques similar to Cecil and Ryan ([2]). Berndt ([1]) gives a characterization of real hypersurface in $\boldsymbol{C} H^{n}$ which corresponds to the result in ([5]):

Theorem C([1]). Let M be a real hypersurface in $\boldsymbol{C H} H^{n}$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following:
$\left(\mathrm{A}_{0}\right)$ a horosphere in $\boldsymbol{C} H^{n}$,
(A_{1}) a geodesic hypersphere (that is, a tube over a point),
(A_{1}^{\prime}) a tube over a complex hyperplane $\boldsymbol{C H}^{n-1}$,
(A_{2}) a tube over a totally geodesic $\boldsymbol{C H} H^{k}(1 \leqq k \leqq n-2)$,
(B) a tube over a totally real hyperbolic space $\boldsymbol{R} H^{n}$.

The purpose of this paper is to investigate the real hypersurfaces of $\boldsymbol{C} \boldsymbol{H}^{n}$ corresponding to the results in Theorem A and Theorem B. Namely, we first show the following:

Theorem 1. Let M be a real hypersurface in $\boldsymbol{C H}^{n}$. Then the following inequality hold.

$$
\begin{equation*}
\|\nabla S\|^{2} \geqq 1 /(n-1)\left\{2 n(h-\eta(A \xi))+(\phi A \xi) \cdot h-\operatorname{trace}\left(\left(\nabla_{\xi} A\right) A \phi\right)\right\}^{2}, \tag{2.30}
\end{equation*}
$$

where S is the Ricci tensor of M and $h=$ trace A. Moreover, equality of (2.30) holds if and only if M is locally congruent to one of type $\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right)$ or $\left(\mathrm{A}_{1}^{\prime}\right)$.

Similarly as in $\boldsymbol{C} P^{n}$, we may define the A° and notion of η-parallelism of A° for a real hypersurface in $\boldsymbol{C} H^{n}$. Corresponding to Theorem B, we obtained the following result for $\boldsymbol{C} H^{n}$.

Theorem 2. Let M be a real hypersurface of $\boldsymbol{C H} H^{n}$. Assume that A° is η parallel. Then M is locally congruent to one of type $\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{1}^{\prime}\right),\left(\mathrm{A}_{2}\right),(\mathrm{B})$ or a ruled real hypersurface.

Finally the author would like to express his thanks to Professors M. Okumura and M. Kimura for their valuable suggestions.

§ 1. Preliminaries

We begin with recalling fundamental formulas on real hypersurfaces of a complex hyperbolic space $\boldsymbol{C} H^{n}$, endowed with the Bergman metric g of constant holomorphic sectional curvature -4 , and J the complex structure of $\boldsymbol{C} H^{n}$. Now, let M be a real hypersurface of $\boldsymbol{C H} H^{n}$ and let N be a unit normal vector on M. For any X tangent to M, we put

$$
J X=\phi X+\eta(X) N
$$

where ϕX and $\eta(X) N$ are, respectively, the tangent and normal components of $J X$. Then ϕ is a (1, 1)-tensor and η is a 1 -form. Moreover, $\eta(X)=g(X, \xi)$ with $\xi=-J N$ and (ϕ, η, ξ, g) determines an almost contact metric structure on M.

Then we have

$$
\begin{gather*}
\phi^{2} X=-X+\eta(X) \xi, \quad g(\xi, \xi)=1, \quad \phi \xi=0, \tag{1.1}\\
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{1.2}
\end{gather*}
$$

$$
\begin{equation*}
\nabla_{X} \xi=\phi A X \tag{1.3}
\end{equation*}
$$

(1.2) and (1.3) follow from $\bar{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) N$ and $\bar{\nabla}_{X} N=-A X$, where $\bar{\nabla}$ and ∇ are, respectively, the Levi-Civita connections of $\boldsymbol{C} H^{n}$ and M, and A is the shape operator of M. Let R be the curvature tensor of M. Then the

Gauss and Codazzi equations are the following:

$$
\begin{align*}
R(X, Y) Z= & -g(Y, Z) X+g(X, Z) Y-g(\phi Y, Z) \phi X+g(\phi X, Z) \phi Y \tag{1.4}\\
& +2 g(\phi X, Y) \phi Z+g(A Y, Z) A X-g(A X, Z) A Y \tag{1.5}
\end{align*}
$$

From (1.1), (1.3), (1.4) and (1.5), we get

$$
\begin{align*}
S X= & -(2 n+1) X+3 \eta(X) \xi+h A X-A^{2} X, \tag{1.6}\\
\left(\nabla_{X} S\right) Y= & 3\{g(\phi A X, Y) \xi+\eta(Y) \phi A X\}+(X \cdot h) A Y \tag{1.7}\\
& +(h I-A)\left(\nabla_{X} A\right) Y-\left(\nabla_{X} A\right) A Y,
\end{align*}
$$

where $h=\operatorname{trace} A, S$ is the Ricci tensor of type (1.1) on M and I is the identity map, respectively.

We here recall the notion of an η-parallel Ricci tensor S of M, which is defined by $g\left(\left(\nabla_{X} S\right) Y, Z\right)=0$ for any X, Y and Z orthogonal to ξ. Also, we consider similarly the η-parallel shape operator A of M in $\boldsymbol{C H} H^{n}$, which is defined by $g\left(\left(\nabla_{Y} A\right) Y, Z\right)=0$ for any X, Y and Z orthogonal to ξ. Now we state the following theorems without proof for later use.

Theorem $\mathrm{D}([15])$. Let M be a real hypersurface of $\boldsymbol{C H} H^{n}$. Then the Ricci tensor of M is η-parallel and ξ is principal if and only if M is locally congruent to one of homogeneous real hypersurfaces of type $\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{1}^{\prime}\right),(\mathrm{A})$ and (B).

ThEOREM $\mathrm{E}([15])$. Let M be a real hypersurface of $\boldsymbol{C H} H^{n}$. Then the shape operator A of M in $\boldsymbol{C} H^{n}$ is η-parallel and ξ is principal if and only if M is locally congruent to one of homogeneous real hypersurfaces of type $\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{1}^{\prime}\right)$, $\left(\mathrm{A}_{2}\right)$ and (B).

It is easily seen that if the shape operator is η-parallel, then so is the Ricci tensor, under the condition such that ξ is principal.

Theorem $\mathrm{F}([3])$. Let M be a real hypersurface of $\boldsymbol{C} H^{n}$. Then the following are equivalent: (i) M is locally congruent to one of homogeneous real hypersurfaces of type $\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{1}^{\prime}\right)$ and $\left(\mathrm{A}_{2}\right)$.
(ii) $\left(\nabla_{X} A\right) Y=\eta(Y) \phi X+g(\phi X, Y) \xi$ for any $X, Y \in T M$.

Proposition $\mathrm{A}([17])$. Assume that ξ is a principal curvature vector and the corresponding principal curvature is α. If $A X=r X$ for $X \perp \xi$, then we have $A \phi X=(\alpha r-2) /(2 r-\alpha) \phi X$.

§ 2. Characterizations of real hypersurfaces of $\boldsymbol{C} H^{n}$ in terms of Ricci tensor.

We have the following
Proposition 1. Let M be a real hypersurface of $\boldsymbol{C} H^{n}(n \geqq 3)$. If the Ricci tensor S of M satisfies for some λ

$$
\begin{equation*}
\left(\nabla_{X} S\right) Y=\lambda\{g(\phi X, Y) \xi+\eta(Y) \phi X\} \quad \text { for any } X, Y \in T M \tag{2.1}
\end{equation*}
$$

then λ is constant and ξ is a principal vector.
Proof. Suppose that the condition (2.1) holds. First of all we shall show that $\operatorname{grad} \lambda=3 \lambda \phi A \xi$. Erom (2.1), (1.2) and (1.3), we have

$$
\begin{align*}
&\left(\nabla_{W}\left(\nabla_{X} S\right)\right) Y-\left(\nabla_{\nabla_{W} X} S\right) Y \tag{2.2}\\
&=(W \cdot \lambda)\{g(\phi X, Y) \xi+\eta(Y) \phi X\}+\lambda\{\eta(X) g(A W, Y) \xi-2 \eta(Y) g(A W, X) \xi \\
&+g(\phi X, Y) \phi A W+g(\phi A W, Y) \phi X+\eta(X) \eta(Y) A W\}
\end{align*}
$$

from which we get

$$
\begin{align*}
& \left(\nabla_{X}\left(\nabla_{W} S\right)\right) Y-\left(\nabla_{\nabla_{X^{W}}} S\right) Y \tag{2.3}\\
& \quad=(X \cdot \lambda)\{g(\phi W, Y) \xi+\eta(Y) \phi W\}+\lambda\left\{\eta(W) g(A X, Y) \xi-2 \eta(Y) g\left(A X^{\prime \prime} W\right) \xi\right. \\
& \quad+g(\phi W, Y) \phi A X+g(\phi A X, Y) \phi W+\eta(W) \eta(Y) A X\} .
\end{align*}
$$

It follows from (2.2) and (2.3) that

$$
\begin{align*}
&(R(W, X) S) Y \tag{2.4}\\
&=(W \cdot \lambda)\{g(\phi X, Y) \xi+\eta(Y) \phi X\}-(X \cdot \lambda)\{g(\phi W, Y) \xi+\eta(Y) \phi W\} \\
&+\lambda\{\eta(X) g(A W, Y) \xi-\eta(W) g(A X, Y) \xi+g(\phi X, Y) \phi A W-g(\phi W, Y) \phi A X \\
&+g(\phi A W, Y) \phi X-g(\phi A X, Y) \phi W+\eta(Y)(\eta(X) A W-\eta(W) A X)\},
\end{align*}
$$

where R is the curvature tensor of M.
Let $e_{1}, e_{2}, \cdots, e_{2 n-1}$ be local fields of orthonormal vectors on M. From (2.4) and (1.1), we find

$$
\begin{align*}
& \sum_{i=1}^{2 n-1} g\left(\left(R\left(e_{i}, X\right) S\right) Y, e_{i}\right) \tag{2.5}\\
&=\left(e_{i} \cdot \lambda\right)\left\{g(\phi X, Y) g\left(\xi, e_{i}\right)+\eta(Y) g\left(\phi X, e_{i}\right)\right\}+\lambda\{\eta(X) g(A Y, \xi)-g(A X, Y) \\
&+g(\phi Y, \phi A X)-g(A \phi Y, \phi X)-\eta(Y) g(A X, \xi)+(\text { trace } A) \eta(X) \eta(Y)\} .
\end{align*}
$$

Exchanging X and Y in (2.5), we see

$$
\begin{align*}
& \sum_{i=1}^{2 n-1} g\left(\left(R\left(e_{i}, Y\right) S\right) X, e_{i}\right) \tag{2.6}\\
&=\left(e_{i} \cdot \lambda\right)\left\{g(\phi Y, X) g\left(\xi, e_{i}\right)+\eta(X) g\left(\phi Y, e_{i}\right)\right\}+\lambda\{\eta(Y) g(A X, \xi)-g(A Y, X) \\
&+g(\phi X, \phi A Y)-g(A \phi X, \phi Y)-\eta(X) g(A Y, \xi)+(\text { trace } A) \eta(X) \eta(Y)\} .
\end{align*}
$$

Here we see that
(the left hand side of $(2.5))=\Sigma g\left(R\left(e_{i}, X\right)(S Y), e_{i}\right)-\Sigma g\left(R\left(e_{i}, X\right) Y, S e_{i}\right)$

$$
=g(S X, S Y)-\Sigma g\left(R\left(e_{i}, X\right) Y, S e_{i}\right)
$$

and

$$
\begin{aligned}
-\Sigma g\left(R\left(e_{i}, X\right) Y, S e_{i}\right) & =\Sigma g\left(R(X, Y) e_{i}, S e_{i}\right)+\Sigma g\left(R\left(Y, e_{i}\right) X, S e_{i}\right) \\
& =\operatorname{trace}(S \cdot R(X, Y))-\Sigma g\left(R\left(e_{i}, Y\right) X, S e_{i}\right) \\
& =-\Sigma g\left(R\left(e_{i}, Y\right) X, S e_{i}\right)
\end{aligned}
$$

that is, the left hand side of (2.5) is symmetric with respect to X, Y. And hence equations (2.5) and (2.6) yield
(2.7) $0=2(\xi \cdot \lambda) g(\phi X, Y)+(\phi X \cdot \lambda) \eta(Y)-(\phi Y \cdot \lambda) \eta(X)+3 \lambda\{\eta(X) \eta(A Y)-\eta(Y) \eta(A X)\}$.

Putting $Y=\phi X$ in (2.7), we get

$$
0=2(\xi \cdot \lambda) g(\phi X, \phi X)-\{-X \cdot \lambda+\eta(X) \xi \cdot \lambda\} \eta(X)+3 \lambda \eta(X) \eta(A \phi X) .
$$

Contracting with respect to X in the above equations, we have

$$
4(n-1)(\xi \cdot \lambda)=0
$$

thus

$$
\xi \cdot \lambda=0
$$

Putting $Y=\xi$ in (2.7), we have

$$
\phi X \cdot \lambda+3 \lambda\{\eta(X) \eta(A \xi)-\eta(A X)\}=0 .
$$

Putting $X=\phi X$ in above equation, we have

$$
X \cdot \lambda=3 \lambda g(\phi A \xi, X),
$$

that is,

$$
\begin{equation*}
\operatorname{grad} \lambda=3 \lambda \phi A \xi \tag{2.8}
\end{equation*}
$$

Using (2.8), we can write (2.4) in the following.

$$
\begin{align*}
(R(W, X) S) Y= & 3 \lambda\{g(\phi A \xi, W)(g(\phi X, Y) \xi+\eta(Y) \phi X)-g(\phi A \xi, X)(g(\phi W, Y) \xi \tag{2.9}\\
& +\eta(Y) \phi W)\}+\lambda\{\eta(X) g(A W, Y) \xi-\eta(W) g(A X, Y) \xi \\
& +g(\phi X, Y) \phi A W-g(\phi W, Y) \phi A X+g(\phi A W, Y) \phi X \\
& -g(\phi A X, Y) \phi W+\eta(X) \eta(Y) A W-\eta(W) \eta(Y) A X\} .
\end{align*}
$$

From (2.9),

$$
\begin{gather*}
\sum g\left(\left(R\left(e_{i}, X\right) S\right) \xi, \phi e_{i}\right)=3(2 n-3) \lambda g(\phi A \xi, X), \tag{2.10}\\
\sum g\left(\left(R\left(e_{i}, \phi e_{i}\right) S\right) \xi, X\right)=-6 \lambda g(\phi A \xi, X) . \tag{2.11}
\end{gather*}
$$

On the other hand by Gauss equation (1.4), the left hand side of (2.10) is

$$
\begin{equation*}
\sum g\left(\left(R\left(e_{i}, X\right) S\right) \xi, \phi e_{i}\right)=2 n g(\phi S \xi, X)-g(A \phi A S \xi, X)+g(A S \phi A \xi, X) \tag{2.12}
\end{equation*}
$$

Similarly using Gauss equation (1.4), we see that the left hand side of (2.11) is

$$
\begin{equation*}
\Sigma g\left(\left(R\left(e_{i}, \phi e_{i}\right) S\right) \xi, X\right)=4 n g(\phi S \xi, X)-2 g(A \phi A S \xi, X)+2 g(S A \phi A \xi, X) \tag{2.13}
\end{equation*}
$$

From (2.10) and (2.12), we have

$$
\begin{equation*}
-3(2 n-3) \lambda \phi A \xi=2 n \phi S \xi-A \phi A S \xi+A S \phi A \xi \tag{2.14}
\end{equation*}
$$

From (2.11) and (2.13), we have

$$
\begin{equation*}
-3 \lambda \phi A \xi=2 n \phi S \xi-A \phi A S \xi+S A \phi A \xi \tag{2.15}
\end{equation*}
$$

From (2.14) and (2.15), we have

$$
\begin{equation*}
6 \lambda(2-n) \phi A \xi=A S \phi A \xi-S A \phi A \xi . \tag{2.16}
\end{equation*}
$$

On the other hand, from (1.6), we have $S X=-(2 n+1) X+3 \eta(X) \xi+h A X-A^{2} X$ and $A S X-S A X=3 \eta(X) A \xi-3 \eta(A X) \xi$. Hence $A S(\phi A \xi)-S A(\phi A \xi)=0$, which, together with (2.16), implies that $(2-n) \lambda \phi A \xi=0$. Therefore if $n \geqq 3$ we conclude that $\lambda \phi A \xi=0$. This, together with (2.8), implies λ is constant. If λ is not non-zero, we have $\phi A \xi=0$, which is equivalent to that ξ is a principal vector. If $\lambda=0$, then $\nabla S=0$, which is impossible by [4].
Q.E.D.

Using Proposition 1, we have the following
Proposition 2. Let M be a real hypersurface of $\boldsymbol{C} H^{n}$. Then the following are equivalent:
(1) The Ricci tensor S of M satisfies
(2.1) $\left(\nabla_{X} S\right) Y=\lambda\{g(\phi X, Y) \xi+\eta(Y) \phi X\}$
for any $X, Y \in T M$, where λ is a function.
(2) M is locally congruent to one of type the following:
(A_{0}) a horosphere,
$\left(\mathrm{A}_{1}\right)$ a geodesic hypersphere in $\boldsymbol{C} H^{n}$,
(A_{1}^{\prime}) a tube over a complex hyperplane $\boldsymbol{C} H^{n-1}$.
Proof. From proposition 1, we know that the ξ is a principal vector satisfying (1). Moreover, equation (2.1) shows that the Ricci tensor of our real hypersurfaces M is η-parallel. Therefore Theorem D asserts that M is one of
the homogeneous real hypersurfaces of type $\left(A_{0}\right),\left(A_{1}\right),\left(A_{1}^{\prime}\right),\left(A_{2}\right)$ and (B).
Next we shall check (2.1) for real hypersurfaces above one by one.
Let M be of type (A_{0}):
Principal curvatures and their multiplicities of type $\left(\mathrm{A}_{0}\right)$ are given by the following table.

principal curvatures	1	2
multiplicities	$2 n-2$	1.

The shape operator A is as

$$
\begin{equation*}
A X=X+\eta(X) \xi \quad \text { for } X \in T M \tag{2.17}
\end{equation*}
$$

Substituting the condition (ii) in Theorem F and (2.17) into (1.7), we can see that our real hypersurface M satisfies (2.1), that is,

$$
\begin{equation*}
\left(\nabla_{X} S\right) Y=2 n\{g(\phi X, Y)+\eta(Y) \phi X\} . \tag{2.18}
\end{equation*}
$$

Let M be of type $\left(\mathrm{A}_{1}\right)$:
Setting $t=\operatorname{coth}(\theta)$. Then principal curvatures and their multiplicities of type $\left(\mathrm{A}_{1}\right)$ are given by the following table.

principal curvatures	t	$t+(1 / t)$
multiplicities	$2 n-2$	1.

The shape operator A is as

$$
\begin{equation*}
A X=t X+(1 / t) \eta(X) \xi \quad \text { for } X \in T M \tag{2.19}
\end{equation*}
$$

Substituting the condition (ii) in Theorem F and (2.19) into (1.7), we can see that our real hypersurface M satisfies (2.1), that is,

$$
\begin{equation*}
\left(\nabla_{X} S\right) Y=2 n t\{g(\phi X, Y) \xi+\eta(Y) \phi X\} . \tag{2.20}
\end{equation*}
$$

Let M be of type (A_{1}^{\prime}):
Setting $t=\tanh (\theta)$. Then principal curvatures and their multiplicities of type (A_{1}^{\prime}) are given by the following table.

principal curvatures	t	$t+(1 / t)$
multiplicities	$2 n-3$	1.

By a similar computation we can see that our real hypersurface M satisfies (2.1), that is,

$$
\begin{equation*}
\left(\nabla_{X} S\right) Y=2 n t\{g(\phi X, Y) \xi+\eta(Y) \phi X\} . \tag{2.21}
\end{equation*}
$$

Let M be of type $\left(\mathrm{A}_{2}\right)$:

Setting $t=\tanh (\theta)$. Then principal curvatures and their multiplicities of type $\left(\mathrm{A}_{2}\right)$ are given by the following table.

principal curvatures	t	$(1 / t)$	$t+(1 / t)$
multiplicities	$2 k$	$2(n-k-1)$	1.

Now, we put $k=p, n-k-1=q$ so, $p+q=n-1$.
Let X be a principal curvature vector orthogonal to ξ with principal curvature t. Note that $A \phi X=t \phi X$ (cf, proposition A). Substituting the condition (ii) in Theorem F into (1.7), we find

$$
\begin{equation*}
\left(\nabla_{X} S\right) \phi X=\{(2 p+2) t+2 q(1 / t)\} \xi \tag{2.22}
\end{equation*}
$$

On the other hand, let X be a principal curvature vector orthogonal to ξ with principal curvature $(1 / t)$. By similar computations we see

$$
\begin{equation*}
\left(\nabla_{X} S\right) \phi X=\{2 p t+(2 q+2)(1 / t)\} \xi . \tag{2.23}
\end{equation*}
$$

From (2.22) and (2.20), we conclude that our manifold does not satisfy (2.1).
Let M be of type (B):
Setting $t=\cos ^{2}(2 \theta)$. Then principal curvatures and their multiplicities of type (B) are given by the following table.

$$
\begin{array}{lccc}
\text { principal curvature } & (\sqrt{t}-1) /(\sqrt{t-1}) & (\sqrt{ } t+1) /(\sqrt{t-1}) & 2 \sqrt{t-1} / \sqrt{t} \\
\text { multipricities } & n-1 & n-1 & 1 .
\end{array}
$$

We put $(\sqrt{t}-1) /(\sqrt{t-1})=r_{1},(\sqrt{t}+1) /(\sqrt{t-1})=r_{2}, 2 \sqrt{t-1} / \sqrt{t}=\alpha$.
From proposition A if X be a principal curvature vector orthogonal to ξ with principal curvature r_{1}, then $A \phi X=r_{2} \phi X$. With respect to such X, the next formula (cf. [6])

$$
\begin{equation*}
\left(\nabla_{X} A\right) \phi X=\left(\alpha-r_{2}\right) r_{1} \xi \tag{2.24}
\end{equation*}
$$

being satisfied, we see

$$
\begin{equation*}
\left(\nabla_{X} A\right) A \phi X=\left(\alpha-r_{2}\right) r_{1} r_{2} \xi . \tag{2.25}
\end{equation*}
$$

With respect to this X, substituting (2.24) and (2.25) into (1.7), we find

$$
\begin{equation*}
\left(\nabla_{X} S\right) \phi X=\left(3+h \cdot \alpha-h \cdot r_{2}-\alpha^{2}+r_{2}^{2}\right) r_{1} \xi . \tag{2.26}
\end{equation*}
$$

On the other hand, if X be a corresponding principal curvature vector to principal curvature r_{2}, then from proposition $\mathrm{A} A \phi X=r_{1} \phi X$. With respect to this X, the next formula (cf. [6])

$$
\begin{equation*}
\left(\nabla_{X} A\right) \phi X=\left(\alpha-r_{1}\right) r_{2} \xi \tag{2.27}
\end{equation*}
$$

being satisfied, we see

$$
\begin{equation*}
\left(\nabla_{X} A\right) A \phi X=\left(\alpha-r_{1}\right) r_{1} r_{2} \xi . \tag{2.28}
\end{equation*}
$$

With respect to this X, substituting (2.27) and (2.28) into (1.7), we find

$$
\begin{equation*}
\left(\nabla_{X} S\right) \phi X=\left(3+h \cdot \alpha-h \cdot r_{1}-\alpha^{2}+r_{1}^{2}\right) r_{2} \xi \tag{2.29}
\end{equation*}
$$

From (2.26) and (2.29) we conclude that our manifold does not satisfy (2.1).

> Q. E. D.

Motivated by Proposition 2, we prove the following.
Theorem 1. Let M be a real hypersurface in $\boldsymbol{C} H^{n}$. Then the following inequality hold.

$$
\begin{equation*}
\|\nabla S\|^{2} \geqq 1 /(n-1)\left\{2 n(h-\eta(A \xi))-(\phi A \xi) \cdot h-\operatorname{trace}\left(\left(\nabla_{\xi} A\right) A \phi\right)\right\}^{2} \tag{2.30}
\end{equation*}
$$

where S is the Ricci tensor of M and $h=$ trace A. Moreover, the equality of (2.30) holds if and only if M is locally congruent to one of type $\left(\mathrm{A}_{0}\right)$, $\left(\mathrm{A}_{1}^{\prime}\right)$ or $\left(\mathrm{A}_{1}\right)$.

Proof. We define a tensor T on M by the following:

$$
T(X, Y)=\left(\nabla_{X} S\right) Y-\lambda\{g(\phi X, Y) \xi+\eta(Y) \phi X\}
$$

Let $e_{1}, e_{2}, \cdots, e_{2 n-1}$ be local fields of orthonormal vector on M. Now we calculate the length of T. From (1.1) we have

$$
\begin{equation*}
\|T\|^{2}=\|\nabla S\|^{2}-4 \lambda \Sigma g\left(\left(\nabla_{e_{i}} S\right) \xi, \phi e_{i}\right)+4(n-1) \lambda^{2} \geqq 0 \tag{2.31}
\end{equation*}
$$

Regarding (2.31) as quadratic inequality with respect to λ, we calculate the discriminant of the quadric equation and we have

$$
\begin{equation*}
1 /(n-1)\left(\sum g\left(\left(\nabla_{e_{i}} S\right) \xi, \phi e_{i}\right)\right)^{2} \leqq\|\nabla S\|^{2} \tag{2.32}
\end{equation*}
$$

It follows from (1.1), (1.5) and (1.7) that

$$
\begin{aligned}
\Sigma & g\left(\left(\nabla_{e_{i}} S\right) \xi, \phi e_{i}\right) \\
= & 3 g\left(\phi A e_{i}, \phi e_{i}\right)-g(\operatorname{grad} h, \phi A \xi)+h \cdot g\left(\left(\nabla_{e_{i}} A\right) \xi, \phi e_{i}\right) \\
& -g\left(A\left(\nabla_{e_{i}} A\right) \xi, \phi e_{i}\right)-g\left(\left(\nabla_{e_{i}} A\right) A \xi, \phi e_{i}\right) \\
= & 3 g\left(A \phi e_{i}, \phi e_{i}\right)-g(\operatorname{grad} h, \phi A \xi)+(2 n-2) \cdot h-\operatorname{trace}\left(\left(\nabla_{\xi} A\right) A \phi\right) \\
& -g\left(A \phi e_{i}, \phi e_{i}\right)-2 \eta(A \xi)+2 g(A \xi, \xi)-(2 n-2) \eta(A \xi) \\
= & 2 n(h-\eta(A \xi))-(\phi A \xi) \cdot h-\operatorname{trace}\left(\left(\nabla_{\xi} A\right) A \phi\right),
\end{aligned}
$$

that is,

$$
\begin{equation*}
\Sigma g\left(\left(\nabla_{e_{i}} S\right) \xi, \phi e_{i}\right)=2 n(h-\eta(A \xi))-(\phi A \xi) \cdot h-\operatorname{trace}\left(\left(\nabla_{\xi} A\right) A \phi\right) \tag{2.33}
\end{equation*}
$$

Therefore we substitute (2.33) into (2.32) and get inequality (2.30). And, Proposition 2 shows that the equality of (2.30) holds if and only if M is locally congruent to one of type $\left(A_{0}\right),\left(A_{1}\right)$ or $\left(A_{1}^{\prime}\right)$.
Q.E.D.

Corollary 1 ([4]). There are no real hypersurfaces with parallel Ricci tensor of complex hyperbolic space $\boldsymbol{C} H^{n}$.

Proof. From Proposition 2, if M is not type $\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right)$ or $\left(\mathrm{A}_{1}^{\prime}\right)$, then $\|\nabla S\|^{2}$ >0. Thus it follows $\nabla S \neq 0$. If M is type $\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right)$ or $\left(\mathrm{A}_{1}^{\prime}\right)$ then, from $\phi A=$ $A \phi, \phi \xi=0$ and $\nabla_{\xi} A=0$,

$$
\|\nabla S\|^{2}=1 /(n-1)\{2 n(h-\eta(A \xi))\}^{2} .
$$

If M be of type (A_{0}), then

$$
\|\nabla S\|^{2}=16 n^{2}(n-1)>0 .
$$

If M be of type $\left(\mathrm{A}_{1}\right)$, then

$$
\|\nabla S\|^{2}=16 n^{2}(n-1) \operatorname{coth}^{2}(\theta)>0 .
$$

If M be of type (A_{1}^{\prime}), then

$$
\|\nabla S\|^{2}=16 n^{2}(n-1) \tanh ^{2}(\theta)>0 .
$$

Thus, it follows $\nabla S \neq 0$.
Q. E. D.

§ 3. Characterizations of real hypersurfaces in $\mathbf{C H}^{n}$ in terms of holomorphic distribution.

Now let M be a real hypersurface of $\boldsymbol{C} H^{n}$. Let $T \boldsymbol{C} H^{n}$ and $T M$ be the tangent bundles of $\boldsymbol{C} H^{n}$ and M, respectively. Let $T^{\circ} M$ be a subbundle of $T M$ defined by $T^{\circ} M=\{X \in T M \mid X \perp \xi\}$. Thus each of $T M$ and $T^{\circ} M$ has a connection induced from $T \boldsymbol{C} H^{n}$. The orthogonal complement of $T^{\circ} M$ in $T \boldsymbol{C} H^{n}$ with respect to the metric on $T \boldsymbol{C} H^{n}$ is denoted by $N^{\circ} M$, which is also a subbundle of $T \boldsymbol{C H} H^{n}$ with the induced metric connection. Denote by ∇° and ∇^{\perp} the connections of $T^{\circ} M$ and $N^{\circ} M$, respectively. We have

$$
\bar{\nabla}_{X} Y=\nabla_{X}^{\circ} Y+A^{\circ}(X, Y) \quad \text { for any } X, Y \in T^{\circ} M
$$

Let A be the second fundamental form of $T^{\circ} M$ in $T \boldsymbol{C} H^{n} . A$ is a smooth section of $\operatorname{Hom}\left(T M, \operatorname{Hom}\left(T^{\circ} M, N^{\circ} M\right)\right.$). Set $A=\left.A\right|_{T \circ M}$. The covariant derivative of A is defined by

$$
\begin{array}{r}
\left(\nabla_{X} A\right)(Y, Z):=\nabla_{\frac{1}{X}}\left(A^{\circ}(Y, Z)\right)-A^{\circ}\left(\nabla_{X} Y, Z\right)-A^{\circ}\left(Y, \nabla_{X}^{\circ} Z\right) \\
\text { for any } X \in T M, Y, Z \in T^{\circ} M .
\end{array}
$$

Now we prepare without proof the following fundamental relations.
Proposition B ([10]).
(i) $A^{\circ}(X, Y)=g(A X, Y) N-g(\phi A X, Y) \xi$,
(ii) $\nabla_{X}^{\circ} \phi=0$,
(iii) $\nabla \frac{1}{x} \xi=g(A X, \xi) N$,
(iv) $\nabla_{\frac{1}{X}} N=-g(A X, \xi) \xi$,
where $X, Y \in T^{\circ} M$.

Proposition C ([10]). For any $X, Y, Z \in T^{\circ} M$,

$$
\left(\nabla_{X}^{\circ} A^{\circ}\right)(Y Z)=\Psi(X, Y, Z) N+\Psi(X, Y, \phi Z) \xi,
$$

where Ψ is the trilinear tensor defined by

$$
\begin{aligned}
\Psi(X, Y, Z)= & g\left(\left(\nabla_{X} A\right) Y, Z\right)-\eta(A X) g(\phi A Y, Z) \\
& -\eta(A Y) g(\phi A X, Z)-\eta(A Z) g(\phi A X, Y)
\end{aligned}
$$

We show the following fundamental result.
Proposition 3. Let M be a real hypersurface of $\boldsymbol{C} H^{n}$. Then the following are equivalent:
(i) The holomolphic distribution $T^{\circ} M=\{X \in T M \mid X \perp \xi\}$ is integrable,
(ii) $g((\phi A+A \phi) X, Y)=0$ for any $X, Y \in T^{\circ} M$.

Proof. The distribution $T^{\circ} M$ is integrable

$$
\begin{aligned}
& \longleftrightarrow[X, Y] \in T^{\circ} M \quad \text { for any } X, Y \in T^{\circ} M \\
& \longleftrightarrow g([X, Y], \xi)=0 \\
& \longleftrightarrow g\left(\nabla_{X} Y-\nabla_{Y} X, \xi\right)=0 \\
& \longleftrightarrow g(Y, \phi A X)-g(X, \phi A Y)=0 \\
& \longleftrightarrow g((\phi A+A \phi) X, Y)=0 \quad \text { for any } X, Y \in T^{\circ} M .
\end{aligned}
$$

Q. E. D.

Recall the definition of η-parallel of A. We say that A° is η-parallel if $\nabla_{X}^{\circ} A^{\circ} \equiv 0$ for any $X \in T^{\circ} M$. Using the notions defined above, we obtained the following result.

Theorem 2. Let M be a real hypersurface of $\boldsymbol{C H}^{n}$. Assume that A° is η-parallel. Then M is locally congruent to ond of type $\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{1}^{\prime}\right),\left(\mathrm{A}_{2}\right),(\mathrm{B})$
or a ruled real hypersurface (that is, a real hypersurface in which $T^{\circ} M$ is integrable and its integral manifold is totally geodesic $\boldsymbol{C} H^{n-1}$.)

Proof. By proposition C, A° is η-parallel if and only if $\Psi(X, Y, Z)=0$ for any $X, Y, Z \in T^{\circ} M$, that is,

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) Y, Z\right)=\eta(A X) g(\phi A Y, Z)+\eta(A Y) g(\phi A X, Z)+\eta(A Z) g(\phi A X, Y) \tag{3.1}
\end{equation*}
$$

for any $X, Y, Z \in T^{\circ} M$. Since the Codazzi equation (1.5) tells us that $g\left(\left(\nabla_{X} A\right) Y, Z\right)$ is symmetric for any $X, Y, Z \in T^{\circ} M$, exchanging X and Y in (3.1), we obtain

$$
\begin{equation*}
\eta(A Z) g((A \phi+\phi A) X, Y)=0 \quad \text { for any } X, Y, Z \in T^{\circ} M \tag{3.2}
\end{equation*}
$$

Now we assume that $\eta(A Z)=0$ for any $Z \in T^{\circ} M$, that is, ξ is a principal curvature vector. Then the equation (3.1) shows that $g\left(\left(\nabla_{X} A\right) Y, Z\right)=0$ for any $X, Y, Z \in T^{\circ} M$, that is, the shape operator A of M is η-parallel. And hence our real hypersurface M is locally congruent to one of type $\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{1}^{\prime}\right),\left(\mathrm{A}_{2}\right)$ or (B) by Theorem E.

Next, if there exists $Z \in T^{\circ} M$ such that $\eta(A Z) \neq 0$, that is, ξ is not a principal curvature vector. Then the equation (3.2) tells us that the holomorphic distribution $T^{\circ} M$ is integrable (cf., Proposition 3) and the integral manifold M° of $T^{\circ} M$ is a complex hypersurface in $\boldsymbol{C H} H^{n}$. Moreover, the second fundamental form A° of M° is parallel. Therefore we conclude that M° is locally congruent to $\boldsymbol{C H} H^{n-1}$ (cf. [9].)
Q.E.D.

References

[1] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141.
[2] T.E. Cecil and P.J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 488-499.
[3] B. Y. Chen, G. D. Ludden and S. Montiel, Real submanifolds of a Kaehler manifold, Algebraic, Groups and Geometries, 1 (1984), 174-216.
[4] U.H.Ki, Real hypersurfaces with parallel Ricci tensor of a complex space form, Tsukuba J. Math. 13 (1989), 73-81.
[5] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
[6] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), 299-311.
[7] M. Kimura and S. Maeda, Characterizations of geodesic hyperspheres in a complex projective space in terms of Ricci tensors, Yokohama Math. J. 40 (1992), 35-43.
[8] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space III, Hokkaido Math. J. 22 (1993), 63-78.
[9] M. Kon, On some complex submanifolds in Kaehler manifolds, Ganad. J. Math. 26 (1974), 1442-1449.
[10] S. Maeda and S. Udagawa, Real hypersurfaces of a complex projective space in terms of holomorphic distribution, Tsukuba J. Math. 14-1 (1990), 39-52.
11] Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan, 28-3 (1976), 529-540.
[12〕 S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan. 137-3 (1985), 515-535.
[13] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata 20 (1986), 245-261.
[14] M. Okumura, On some real hypersufaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
[15] Y.J. Suh, On real hypersurfaces of a complex space form with r_{j}-parallel Ricci tensor, Tsukuba J. Math. 14-1 (1990), 27-37.
[16] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516.
[17] M. H. Vernon, Contact hypersurfaces of a complex hyperbolic space, Tohoku Math. J. 39 (1987), 215-222.

Department of Mathematics
Fauculty Science and Technology
Keio University
3-14-1 Hiyoshi Kohoku-ku
Yokohama 223, Japan

