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\S $0$ . Introduction.

Let $CP^{n}$ and $CH^{n}$ denote the complex projective n-space with constant
holomorphic sectional curvature 4, and the complex hyperbolic n-space with
constant holomorphic sectional curvature $-4$ , respectively. Let $M$ be a real
hypersurface of $CP^{n}$ or $CH^{n}$ . $M$ has an almost contact metric structure
$(\phi, \xi, \eta, g)$ induced from the complex structure $J$ of $CP^{n}$ or $CH^{n}$ . Real hyper-

surfaces in $CP^{n}$ and $CH^{n}$ have been studied by many authors (cf. [1], [2], [3],

[11], [12], [13], [14], [15] and [17]). For real hypersurfaces in $CP^{n}$ , Takagi
([16]) showed that all homogeneous real hypersurfaces in $CP^{n}$ are realized as
the tubes of constant radius over compact Hermitian symmetric spaces of rank
1 or 2 (cf. [2] and [5]). He proved that all homogeneous real hypersurfaces
in $CP^{n}$ could be classified into six types which are said to be of type $A_{1},$ $A_{2}$ ,

$B,$ $C,$ $D$ and E. Kimura ([5]) also proved that a real hypersurfaces $M$ in $CP^{n}$

is homogeneous if and only if $M$ has constant principal curvatures and $\xi$ is
principal. Other interesting results in real hypersurfaces of $CP^{n}$ are shown by
Kimura-Maeda ([8]) and Maeda-Udagawa ([10]):

THEOREM A ([8]). Let $M$ be a real hypersurface in $CP^{n}$ . Then the fol-
lowing inequality holds:

$\Vert\nabla S\Vert^{2}\geqq 1/(n-1)\{2n(h-\eta(A\xi)\phi+(\phi A\xi)h+trace((\nabla_{\xi}A)A\phi)\}^{2}$ ,

where $S$ is the Ricci tensor of $M$ and $k=trace$ A. Moreover, the equality holds

if and only if $M$ is locally congruent to a geodesic hypersphere of $CP^{n}$ .

Let $TCP^{n}$ be the tangent bundle of $CP^{n}$ . For a real hypersurface $M$ of
$CP^{n}$ , let $TM$ be the tangent bundle of $M$ . Then, $T^{O}M=\{X\in TM|X\perp\xi\}$ is a
subbundle of $TM$ . Thus each of $TM$ and $T^{o}M$ has a connection induced from
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$TCP^{\prime l}$ . The orthogonal complement of $T^{o}M$ in $TCl$) $ r\iota$ with respect to the
metric on $TCP^{n}$ is denoted by $N^{o}M$ , which is also a subbundle of $TCP^{n}$ with
the induced metric connection. Denote by V’ and $\nabla^{\perp}$ the connections of $T^{o}M$

and $N^{o}M$ , respectively. Let $A$ be the second fundamental form of $T^{o}M$ in
$TCP^{n}$ . Then, $A$ is a smooth section of $Hom(TM, Hom(T^{o}M, N^{o}M))$ . Set
A $=A|_{T^{o}M}$ . We say that $A^{O}$ is $\eta$ -parallel if $\nabla_{X}^{o}A^{\circ}\equiv 0$ for any $X\in T^{o}M$ .

THEOREM $B$ ([10]). Let $M$ be a real hypersurface of $CP^{n}$ . Assb me that
A is $\eta$ -parallel. Then $M$ is locally congment to one of the following:

(i) a geodesic hypersphere,
(ii) a tube over a totally geodesic $CP^{k}(1\leqq k\leqq n-2)$ ,

(iii) a tube over a complex quadric $Q_{n-1}$ ,

(iv) a real hypersurface in which $T^{O}M$ is integrable and its integral mani-

fold is a totally geodesic $CP^{n-1}$ (that is, $M$ is a ruled real hypersur-
face),

(v) a real $l\iota vpersurface$ in which $T^{O}M$ is integrable and its integral mani-
fold is a complex quadric $Q_{n-1}$ .

Note that the cases (i), (ii) and (iii) in Theorem $B$ are homogeneous but
(iv) and (v) are not homogeneous. Although as in ([16]), homogeneous real
hypersurfaces of $CP^{n}$ has been given a complete classification, it is still open
for the question of the classification of that of $CH^{n}$ .

Montiel ([12]) constructed five examples of homogeneous real hypersurfaces
in $CH^{n}$ using the techniques similar to Cecil and Ryan ([2]). Berndt ([1]) gives
a characterization of real hypersurface in $CH^{n}$ which corresponds to the result
in ([5]):

$\prime 1^{\backslash }HF_{r^{\backslash }}OR1_{\lrcorner}^{\grave{}}MC([1])$ . Let $M$ be a real hypersurface in $CH^{n}$ . Then $M$ has con-
stant principal curvatures and $\xi$ is principal if and only if $M$ is locally congruent

to one of the following:
(A) a horosphere in $CH^{fl}$ ,
(A) a geodesic hypersphere (that is, a tube over a point),

(A\’i) a tube over a complex hyperplane $CH^{n-1}$ ,

(A) a tube over a totally geodesic $CH^{h}(1\leqq k\leqq n-2)$ ,

(B) a tube over a totally real hyperbolic space $RH^{n}$ .

The purpose of this paper is to investigate the real hypersurfaces of $CH^{n}$

corresponding to the results in Theorem A and Theorem B. Namely, we first
show the following:
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THEOREM 1. Let $M$ be a real hypersurface in $CH^{n}$ . Then the following
inequality hold.

(2.30) $\Vert\nabla S\Vert^{2}\geqq 1/(n-1)\{2n(h-\eta(A\xi))+(\phi A\xi)\cdot h-$ trace $((\nabla_{\xi}A)A\phi)\}^{2}$ ,

where $S$ is the Ricci tensor of $M$ and $h=trace$ A. Moreover, equality of (2.30)

holds if and only if $M$ is locally congruent to one of type $(A_{0}),$ $(A_{1})$ or (A\’i).

Similarly as in $CP^{n}$ , we may define the $A^{O}$ and notion of $\eta$ -parallelism of
$A^{0}$ for a real hypersurface in $CH^{n}$ . Corresponding to Theorem $B$ , we obtained
the following result for $CH^{n}$ .

THEOREM 2. Let $M$ be a real hypersurface of $CH^{n}$ . Assume that A is $\eta-$

parallel. Then $M$ is locally congruent to one of type $(A_{0}),$ $(A_{1}),$ $(A_{1}^{\prime}),$ $(A_{2}),$ $(B)$ or
a ruled real hypersurface.

Finally the author would like to express his thanks to Professors M. Oku-
mura and M. Kimura for their valuable suggestions.

\S 1. Preliminaries

We begin with recalling fundamental formulas on real hypersurfaces of a
complex hyperbolic space $CH^{n}$ , endowed with the Bergman metric $g$ of con-
stant holomorphic sectional curvature $-4$ , and $J$ the complex structure of $CH^{n}$ .
Now, let $M$ be a real hypersurface of $CH^{n}$ and let $N$ be a unit normal vector
on $M$ . For any $X$ tangent to $M$ , we put

$JX=\phi X+\eta(X)N$

where $\phi X$ and $\eta(X)N$ are, respectively, the tangent and normal components of
$JX$ . Then $\phi$ is a $(1, 1)$-tensor and $\eta$ is a l-form. Moreover, $\eta(X)=g(X, \xi)$

with $\xi=-JN$ and $(\phi, \eta, \xi, g)$ determines an almost contact metric structure
on $M$ .

Then we have

(1.1) $\phi^{2}X=-X+\eta(X)\xi$ , $g(\xi, \xi)=1$ , $\phi\xi=0$ ,

(1.2) $(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi$ ,

(1.3) $\nabla_{X}\xi=\phi AX$ .
(1.2) and (1.3) follow from $\overline{\nabla}_{X}Y=\nabla_{x}Y+g(AX, Y)N$ and $\overline{\nabla}_{X}N=-AX$, where V
and $\nabla$ are, respectively, the Levi-Civita connections of $CH^{n}$ and $M$ , and $A$ is
the shape operator of $M$ . Let $R$ be the curvature tensor of $M$ . Then the
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Gauss and Codazzi equations are the following:

(1.4) $R(X, Y)Z=-g(Y, Z)X+g(X, Z)Y-g(\phi Y, Z)\phi X+g(\phi X, Z)\phi Y$

$+2g(\phi X, Y)\phi Z+g(AY, Z)AX-g(AX, Z)AY$ ,

(1.5) $(\nabla_{x}A)Y-(\nabla_{Y}A)X=-\eta(X)\phi Y+\eta(Y)\phi X+2g(\phi X, Y)\xi$ .

From (1.1), (1.3), (1.4) and (1.5), we get

(1.6) $SX=-(2n+1)X+3\eta(X)\xi+hAX-A^{2}X$ ,

(1.7) $(\nabla_{X}S)Y=3\{g(\phi AX, Y)\xi+\eta(Y)\phi AX\}+(X\cdot h)AY$

$+(hI-A)(\nabla_{x}A)Y-(\nabla_{X}A)AY$ ,

where $h=traceA,$ $S$ is the Ricci tensor of type (1.1) on $M$ and $I$ is the identity

map, respectively.

We here recall the notion of an $\eta$ -parallel Ricci tensor $S$ of $M$ , which is
defined by $g((\nabla_{X}S)Y, Z)=0$ for any $X,$ $Y$ and $Z$ orthogonal to $\xi$ . Also, we
consider similarly the $\eta$ -parallel shape operator $A$ of $M$ in $CH^{n}$ , which is de-
fined by $g((\nabla_{Y}A)Y, Z)=0$ for any $X,$ $Y$ and $Z$ orthogonal to $\xi$ . Now we state
the following theorems without proof for later use.

THEOREM $D([15])$ . Let $M$ be a real hypersurface of $CH^{n}$ . Then the Ricci
tensor of $M$ is $\eta$-parallel and $\xi$ is principal if and only if $M$ is locally congruent
to one of homogeneous real hypersurfaces of type $(A_{0}),$ $(A_{1}),$ $(A_{1}^{\prime}),$ $(A)$ and (B).

THEOREM $E([15])$ . Let $M$ be a real hypersurface of $CH^{n}$ . Then the shape
operator $A$ of $M$ in $CH^{n}$ is $\eta$ -parallel and $\xi$ is principal if and only if $M$ is
locally congruent to one of homogeneous real hypersurfaces of type $(A_{0}),$ $(A_{1}),$ $(A_{1}^{\prime})$ ,

(A) and (B).

It is easily seen that if the shape operator is $\eta$ -parallel, then so is the Ricci
tensor, under the condition such that $\xi$ is principal.

THEOREM $F([3])$ . Let $M$ be a real hypersurface of $CH^{n}$ . Then the follow-
ing are equivalent: (i) $M$ is locally congruent to one of homogeneous real hyper-

surfaces of type $(A_{0}),$ $(A_{1}),$ $(A_{1}^{\prime})$ and $(A_{2})$ .
(ii) $(\nabla_{X}A)Y=\eta(Y)\phi X+g(\phi X, Y)\xi$ for any $X,$ $Y\in TM$ .

PROPOSITION A([17]). Assume that $\xi$ is a principal curvature vector and the
corresponding principal curvature is $\alpha$ . If $AX=rX$ for $ X\perp\xi$ , then we have
$A\phi X=(\alpha r-2)/(2r-\alpha)\phi X$ .
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\S 2. Characterizations of real hypersurfaces of $CH^{n}$

in terms of Ricci tensor.

We have the following

PROPOSITION 1. Let $M$ be a real hypersurface of $CH^{n}(n\geqq 3)$ . If the Ricci
tensor $S$ of $M$ satisfies for some $\lambda$

(2.1) $(\nabla_{X}S)Y=\lambda\{g(\phi X, Y)\xi+\eta(Y)\phi X\}$ for any $X,$ $Y\in TM$ ,

then $\lambda$ is constant and $\xi$ is a principal vector.

PROOF. Suppose that the condition (2.1) holds. First of all we shall show
that $grad\lambda=3\lambda\phi A\xi$ . Erom (2.1), (1.2) and (1.3), we have

(2.2) $(\nabla_{W}(\nabla_{X}S))Y-(\nabla_{\nabla_{W}X}S)Y$

$=(W\cdot\lambda)\{g(\phi X, Y)\xi+\eta(Y)\phi X\}+\lambda\{\eta(X)g(AW, Y)\xi-2\eta(Y)g(AW, X)\xi$

$+g(\phi X, Y)\phi AW+g(\phi AW, Y)\phi X+\eta(X)\eta(Y)AW\}$ ,

from which we get

(2.3) $(\nabla_{X}(\nabla_{W}S))Y-(\nabla_{\nabla_{X}W}S)Y$

$=(X\cdot\lambda)\{g(\phi W, Y)\xi+\eta(Y)\phi W\}+\lambda\{\eta(W)g(AX, Y)\xi-2\eta(Y)g(AX^{\prime\prime}W)\xi$

$+g(\phi W, Y)\phi AX+g(\phi AX, Y)\phi W+\eta(W)\eta(Y)AX\}$ .
It follows from (2.2) and (2.3) that

(2.4) $(R(W, X)S)Y$

$=(W\cdot\lambda)\{g(\phi X, Y)\xi+\eta(Y)\phi X\}-(X\cdot\lambda)\{g(\phi W, Y)\xi+\eta(Y)\phi W\}$

$+\lambda\{\eta(X)g(AW, Y)\xi-\eta(W)g(AX, Y)\xi+g(\phi X, Y)\phi AW-g(\phi W, Y)\phi AX$

$+g(\phi AW, Y)\phi X-g(\phi AX, Y)\phi W+\eta(Y)(\eta(X)AW-\eta(W)AX)\}$ ,

where $R$ is the curvature tensor of $M$ .
Let $e_{1},$ $e_{2},$ $\cdots,$ $e_{2n-1}$ be local fields of orthonormal vectors on $M$ . From (2.4)

and (1.1), we find

(2.5) $\Sigma_{i=1}^{2n-1}g((R(e_{i}, X)S)Y,$ $e_{i}$ )

$=(e_{i}\cdot\lambda)\{g(\phi X, Y)g(\xi, e_{i})+\eta(Y)g(\phi X, e_{i})\}+\lambda\{\eta(X)g(AY, \xi)-g(AX, Y)$

$+g(\phi Y, \phi AX)-g(A\phi Y, \phi X)-\eta(Y)g(AX, \xi)+(traceA)\eta(X)\eta(Y)\}$ .
Exchanging $X$ and $Y$ in (2.5), we see
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(2.6) $\Sigma_{i=1}^{2n-1}g((R(e_{i}, Y)S)X,$ $e_{i}$ )

$=(e_{i}\cdot\lambda)\{g(\phi Y, X)g(\xi, e_{i})+\eta(X)g(\phi Y, e_{i})\}+\lambda\{\eta(Y)g(AX, \xi)-g(AY, X)$

$+g(\phi X, \phi AY)-g(A\phi X, \phi Y)-\eta(X)g(AY, \xi)+(traceA)\eta(X)\eta(Y)\}$ .

Here we see that

(the left hand side of $(2.5)$)$=\sum g(R(e_{i}, X)(SY),$ $e_{i}$ ) $-\sum g(R(e_{i}, X)Y,$ $Se_{i}$)

$=g(SX, SY)-\sum g(R(e_{i}, X)Y,$ $Se_{i}$ )
and

$-\sum g(R(e_{i}, X)Y,$ $Se_{i}$ ) $=\sum g(R(X, Y)e_{i},$ $Se_{i}$ ) $+\sum g(R(Y, e_{i})X,$ $Se_{i}$ )

$=trace(S\cdot R(X, Y))-\Sigma g(R(e_{i}, Y)X,$ $Se_{i}$ )

$=-\sum g(R(e_{i}, Y)X,$ $Se_{i}$ )

that is, the left hand side of (2.5) is symmetric with respect to $X,$ $Y$ . And
hence equations (2.5) and (2.6) yield

(2.7) $0=2(\xi\cdot\lambda)g(\phi X, Y)+(\phi X\cdot\lambda)\eta(Y)-(\phi Y\cdot\lambda)\eta(X)+3\lambda\{\eta(X)\eta(AY)-\eta(Y)\eta(AX)\}$ .

Putting $Y=\phi X$ in (2.7), we get

$0=2(\xi\cdot\lambda)g(\phi X, \phi X)-\{-X\cdot\lambda+\eta(X)\xi\cdot\lambda\}\eta(X)+3\lambda\eta(X)\eta(A\phi X)$ .
Contracting with respect to $X$ in the above equations, we have

$4(n-1)(\xi\cdot\lambda)=0$

thus
$\xi\cdot\lambda=0$

Putting $ Y=\xi$ in (2.7), we have

$\phi X\cdot\lambda+3\lambda\{\eta(X)\eta(A\xi)-\eta(AX)\}=0$ .

Putting $X=\phi X$ in above equation, we have

$X\cdot\lambda=3\lambda g(\phi A\xi, X)$ ,

that is,

(2.8) $grad\lambda=3\lambda\phi A\xi$ .

Using (2.8), we can write (2.4) in the following.

(2.9) $(R(W, X)S)Y=3\lambda\{g(\phi A\xi, W)(g(\phi X, Y)\xi+\eta(Y)\phi X)-g(\phi A\xi, X)(g(\phi W, Y)\xi$

$+\eta(Y)\phi W)\}+\lambda\{\eta(X)g(AW, Y)\xi-\eta(W)g(AX, Y)\xi$

$+g(\phi X, Y)\phi AW-g(\phi W, Y)\phi AX+g(\phi AW, Y)\phi X$

$-g(\phi AX, Y)\phi W+\eta(X)\eta(Y)AW-\eta(W)\eta(Y)AX\}$ .
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From (2.9),

(2.10) $\Sigma g((R(e_{t}, X)S)\xi,$ $\phi e_{i}$ ) $=3(2n-3)\lambda g(\phi A\xi, X)$ ,

(2.11) $\Sigma g((R(e_{i}, \phi e_{i})S)\xi,$ $X$) $=-6\lambda g(\phi A\xi, X)$ .

On the other hand by Gauss equation (1.4), the left hand side of (2.10) is

(2.12) $\Sigma g((R(e_{i}, X)S)\xi,$ $\phi e_{i}$ ) $=2ng(\phi S\xi, X)-g(A\phi AS\xi, X)+g(AS\phi A\xi, X)$ .

Similarly using Gauss equation (1.4), we see that the left hand side of (2.11) is

(2.13) $\sum g((R(e_{i}, \phi e_{i})S)\xi,$ $X$) $=4ng(\phi S\xi, X)-2g(A\phi AS\xi, X)+2g(SA\phi A\xi, X)$

From (2.10) and (2.12), we have

(2.14) $-3(2n-3)\lambda\phi A\xi=2n\phi S\xi-A\phi AS\xi+AS\phi A\xi$

From (2.11) and (2.13), we have

(2.15) $-3\lambda\phi A\xi=2n\phi S\xi-A\phi AS\xi+SA\phi A\xi$

From (2.14) and (2.15), we have

(2.16) $ 6\lambda(2-n)\phi A\xi=AS\phi A\xi-SA\phi A\xi$ .

On the other hand, from (1.6), we have $SX=-(2n+1)X+3\eta(X)\xi+hAX-A^{2}X$

and ASX–SAX $=3\eta(X)A\xi-3\eta(AX)\xi$ . Hence AS$(\phi A\xi)-SA(\phi A\xi)=0$ , which,

together with (2.16), implies that $(2-n)\lambda\phi A\xi=0$ . Therefore if $n\geqq 3$ we con-
clude that $\lambda\phi A\xi=0$ . This, together with (2.8), implies $\lambda$ is constant. If $\lambda$ is
not non-zero, we have $\phi A\xi=0$ , which is equivalent to that $\xi$ is a principal

vector. If $\lambda=0$ , then $\nabla S=0$ , which is impossible by [4]. Q. E. D.

Using Proposition 1, we have the following

PROPOSITION 2. Let $M$ be a real hypersurface of $CH^{n}$ . Then the following
are equivalent:

(1) The Ricci tensor $S$ of $M$ satisfies
(2.1) $(\nabla_{X}S)Y=\lambda\{g(\phi X, Y)\xi+\eta(Y)\phi X\}$

for any $X,$ $Y\in TM$ , where $\lambda$ is a function.
(2) $M$ is locally congruent to one of type the following:

(A) a horosphere,
(A) a geodesic hypersphere in $CH^{n}$ ,
$(A_{1}^{\prime})$ a tube over a complex hyperplane $CH^{n-1}$ .

PROOF. From proposition 1, we know that the $\xi$ is a principal vector satis-
fying (1). Moreover, equation (2.1) shows that the Ricci tensor of our real
hypersurfaces $M$ is $\eta$ -parallel. Therefore Theorem $D$ asserts that $M$ is one of
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the homogeneous real hypersurfaces of type $(A_{0}),$ $(A_{1}),$ $(A_{1}^{\prime}),$ $(A_{2})$ and (B).

Next we shall check (2.1) for real hypersurfaces above one by one.
Let $M$ be of type $(A_{0})$ :
Principal curvatures and their multiplicities of type $(A_{0})$ are given by the

following table.

principal curvatures 1 2

multiplicities $2n-2$ 1.

The shape operator $A$ is as

(2.17) $ AX=X+\eta(X)\xi$ for $X\in TM$ .
Substituting the condition (ii) in Theorem $F$ and (2.17) into (1.7), we can see
that our real hypersurface $M$ satisfies (2.1), that is,

(2.18) $(\nabla_{x}S)Y=2n\{g(\phi X, Y)+\eta(Y)\phi X\}$ .

Let $M$ be of type $(A_{1})$ :
Setting $t=\coth(\theta)$ . Then principal curvatures and their multiplicities of

type $(A_{1})$ are given by the following table.

principal curvatures $t$ $t+(1/t)$

multiplicities $2n-2$ 1.

The shape operator $A$ is as

(2.19) $ AX=tX+(1/t)\eta(X)\xi$ for $X\in TM$ .
Substituting the condition (ii) in Theorem $F$ and (2.19) into (1.7), we can see
that our real hypersurface $M$ satisfies (2.1), that is,

(2.20) $(\nabla_{X}S)Y=2nt\{g(\phi X, Y).\xi+\eta(Y)\phi X\}$ .
Let $M$ be of type (A\’i):

Setting $t=\tanh(\theta)$ . Then principal curvatures and their multiplicities of
type (A\’i) are given by the following table.

principal curvatures $t$ $t+(1/t)$

multiplicities $2n-3$ 1.

By a similar computation we can see that our real hypersurface $M$ satisfies
(2.1), that is,

(2.21) $(\nabla_{X}S)Y=2nt\{g(\phi X, Y)\xi+\eta(Y)\phi X\}$ .

Let $M$ be of type $(A_{2})$ :
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Setting $t=\tanh(\theta)$ . Then principal curvatures and their multiplicities of
type $(A_{2})$ are given by the following table.

principal curvatures $t$ $(1/t)$ $t+(1/t)$

multiplicities $2k$ $2(n-k-1)$ 1.

Now, we put $k=p,$ $n-k-1=q$ so, $p+q=n-1$ .
Let $X$ be a principal curvature vector orthogonal to $\xi$ with principal cur-

vature $t$ . Note that $A\phi X=t\phi X$ (cf, proposition A). Substituting the condition
(ii) in Theorem $F$ into (1.7), we find

(2.22) $(\nabla_{X}S)\phi X=\{(2p+2)t+2q(1/t)\}\xi$ .
On the other hand, let $X$ be a principal curvature vector orthogonal to $\xi$ with
principal curvature $(1/t)$ . By similar computations we see

(2.23) $(\nabla_{x}S)\phi X=\{2pt+(2q+2)(1/t)\}\xi$ .
From (2.22) and (2.20), we conclude that our manifold does not satisfy (2.1).

Let $M$ be of type (B):

Setting $t=\cos^{2}(2\theta)$ . Then principal curvatures and their multiplicities of
type (B) are given by the following table.

principal curvature $(\sqrt t-1)/(\sqrt t\overline{-1})$ $(\sqrt t^{-}+1)/(\sqrt{r-}1)$ 2 $\sqrt{t-1}/\sqrt{t}$

multipricities $n-1$ $n-1$ 1.

We put $(\sqrt{}^{\backslash }\overline{t}-1)/(\sqrt t-1)=r_{1},$ $(\sqrt{t}^{-}+1)/(\sqrt{t-1})=r_{2},2\sqrt{t-}1/c^{/}\overline{t}=\alpha$ .
From proposition A if $X$ be a principal curvature vector orthogonal to $\xi$

with principal curvature $r_{1}$ , then $A\phi X=r_{2}\phi X$ . With respect to such $X$ , the
next formula (cf. [6])

(2.24) $(\nabla_{X}A)\phi X=(\alpha-r_{2})r_{I}\xi$

being satisfied, we see

(2.25) $(\nabla_{X}A)A\phi X=(\alpha-r_{2})r_{1}r_{2}\xi$ .

With respect to this $X$ , substituting (2.24) and (2.25) into (1.7), we find

(2.26) $(\nabla_{x}S)\phi X=(3+h\cdot\alpha-h\cdot r_{2}-\alpha^{2}+r_{2}^{2})r_{1}\xi$ .
On the other hand, if $X$ be a corresponding principal curvature vector to prin-
cipal curvature $r_{2}$ , then from proposition A $A\phi X=r_{1}\phi X$ . With respect to this
$X$ , the next formula (cf. [6])

(2.27) $(\nabla_{X}A)\phi X=(\alpha-r_{1})r_{2}\xi$
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being satisfied, we see

(2.28) $(\nabla_{x}A)A\phi X=(\alpha-r_{1})r_{1}r_{2}\xi$ .

With respect to this $X$, substituting (2.27) and (2.28) into (1.7), we find

(2.29) $(\nabla_{x}S)\phi X=(3+h\cdot\alpha-h\cdot r_{1}-\alpha^{2}+r_{1}^{2})r_{2}\xi$

From (2.26) and (2.29) we conclude that our manifold does not satisfy (2.1).

Q. E. D.

Motivated by Proposition 2, we prove the following.

THEOREM 1. Let $M$ be a real hypersurface in $CH^{n}$ . Then the following
inequality hold.

(2.30) $\Vert\nabla S\Vert^{2}\geqq 1/(n-1)\{2n(h-\eta(A\xi))-(\phi A\xi)\cdot h$ -trace $((\nabla_{\xi}A)A\phi)\}^{2}$

where $S$ is the Ricci tensor of $M$ and $h=trace$ A. Moreover, the equality of (2.30)

holds if and only if $M$ is locally congruent to one of type $(A_{0}),$ $(A_{1}^{\prime})$ or $(A_{1})$ .

PROOF. We define a tensor $T$ on $M$ by the following:

$T(X, Y)=(\nabla_{X}S)Y-\lambda\{g(\phi X, Y)\xi+\eta(Y)\phi X\}$ .

Let $e_{1},$ $e_{2},$ $\cdots,$ $e_{2n-1}$ be local fields of orthonormal vector on $M$ . Now we cal-
culate the length of $T$ . From (1.1) we have

(2.31) $\Vert T\Vert^{8}=\Vert\nabla S\Vert^{2}-4\lambda\sum g((\nabla_{e_{i}}S)\xi, \phi e_{i})+4(n-1)\lambda^{2}\geqq 0$ .
Regarding (2.31) as quadratic inequality with respect to $\lambda$ , we calculate the

discriminant of the quadric equation and we have

(2.32) $1/(n-1)(\Sigma g((\nabla_{e}iS)\xi, \phi e_{i}))^{2}\leqq\Vert\nabla S\Vert^{2}$

It follows from (1.1), (1.5) and (1.7) that

$\Sigma g((\nabla_{e_{i}}S)\xi, \phi e_{i})$

$=3g(\phi Ae_{i}, \phi e_{i})-g(gradh, \phi A\xi)+h\cdot g((\nabla_{e_{i}}A)\xi, \phi e_{i})$

$-g(A(\nabla_{e_{i}}A)\xi, \phi e_{i})-g((\nabla_{e_{i}}A)A\xi, \phi e_{i})$

$=3g(A\phi e_{i}, \phi e_{i})-g(gradh, \phi A\xi)+(2n-2)\cdot h$ -trace $((\nabla_{\xi}A)A\phi)$

$-g(A\phi e_{i}, \phi e_{i})-2\eta(A\xi)+2g(A\xi, \xi)-(2n-2)\eta(A\xi)$

$=2n(h-\eta(A\xi))-(\phi A\xi)\cdot h-$ trace $((\nabla_{\xi}A)A\phi)$ ,

that is,

(2.33) $\sum g((\nabla_{e_{i}}S)\xi, \phi e_{i})=2n(h-\eta(A\xi))-(\phi A\xi)\cdot h$ -trace $((\nabla_{\xi}A)A\phi)$ .
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Therefore we substitute (2.33) into (2.32) and get inequality (2.30). And, Pro-
position 2 shows that the equality of (2.30) holds if and only if $M$ is locally
congruent to one of type $(A_{0}),$ $(A_{1})$ or (A\’i). Q. E. D.

COROLLARY 1 ([$4JJ$ There are no real hypersurfaces with parallel Ricci
tensor of complex hyperbolic space $CH^{n}$ .

PROOF. From Proposition 2, if $M$ is not type $(A_{0}),$ $(A_{1})$ or $(A_{1}^{\prime})$ , then $\Vert\nabla S\Vert^{2}$

$>0$ . Thus it follows $\nabla S\neq 0$ . If $M$ is type $(A_{0}),$ $(A_{1})$ or $(A_{I}^{\prime})$ then, from $\phi A=$

$A\phi,$ $\phi\xi=0$ and $\nabla_{\xi}A=0$ ,

$||\nabla S\Vert^{2}=1/(n-1)\{2n(h-\eta(A\xi))\}^{2}$

If $M$ be of type $(A_{0})$ , then

$\Vert\nabla S\Vert^{2}=16n^{2}(n-1)>0$ .
If $M$ be of type $(A_{I})$ , then

$\Vert\nabla S\Vert^{2}=16n^{2}(n-1)\coth^{2}(\theta)>0$ .

If $M$ be of type (A\’i), then

$\Vert\nabla S\Vert^{2}=16n^{2}(n-1)\tanh^{2}(\theta)>0$ .
Thus, it follows $\nabla S\neq 0$ . Q. E. D.

\S 3. Characterizations of real hypersurfaces in CH $n$

in terms of holomorphic distribution.

Now let $M$ be a real hypersurface of $CH^{n}$ . Let $TCH^{n}$ and $TM$ be the
tangent bundles of $CH^{n}$ and $M$ , respectively. Let $T^{o}M$ be a subbundle of $TM$

defined by $T^{o}M=\{X\in TM|X\perp\xi\}$ . Thus each of $TM$ and $T^{o}M$ has a connec-
tion induced from $TCH^{n}$ . The orthogonal complement of $T^{o}M$ in $TCH^{n}$ with
respect to the metric on $TCH^{n}$ is denoted by $N^{o}M$ , which is also a subbundle
of $TCH^{n}$ with the induced metric connection. Denote by V’ and $\nabla^{\perp}$ the con-
nections of $T^{o}M$ and $N^{o}M$ , respectively. We have

$\overline{\nabla}_{x}Y=\nabla_{X}^{o}Y+A^{o}(X, Y)$ for any $X,$ $Y\in T^{o}M$ .

Let $A$ be the second fundamental form of $T^{o}M$ in $TCH^{n}$ . $A$ is a smooth sec-
tion of $Hom(TM, Hom(T^{o}M, N^{o}M))$ . Set $A=A|_{T^{o}M}$ . The covariant derivative
of $A$ is defined by

$(\nabla_{X}A)(Y, Z):=\nabla_{X}^{\perp}(A^{o}(Y, Z))-A^{O}(\nabla_{X}Y, Z)-A^{o}(Y, \nabla_{\mathring{X}}Z)$

for any $X\in TM,$ $Y,$ $Z\in T^{o}M$ .



480 Tadashi TANIGUCHI

Now we prepare without proof the following fundamental relations.

PROPOSITION $B$ ([10]).

(i) A $(X, Y)=g(AX, Y)N-g(\phi AX, Y)\xi$ ,

(ii) $\nabla_{\mathring{X}}\phi=0$ ,

(iii) $\nabla_{X}^{\perp}\xi=g(AX, \xi)N$ ,

(iv) $\nabla_{X}^{\perp}N=-g(AX, \xi)\xi$ ,

where $X,$ $Y\in T^{o}M$ .

PROPOSITION $C$ ([10]). For any $X,$ $Y,$ $Z\in T^{O}M$ ,

$(\nabla_{\mathring{X}}A^{o})(YZ)=\Psi(X, Y, Z)N+\Psi(X, Y, \phi Z)\xi$ ,

where $\Psi$ is the trilinear tensor defined by

$\Psi(X, Y, Z)=g((\nabla_{x}A)Y, Z)-\eta(AX)g(\phi AY, Z)$

$-\eta(AY)g(\phi AX, Z)-\eta(AZ)g(\phi AX, Y)$ .

We show the following fundamental result.

PROPOSITION 3. Let $M$ be a real hypersurface of $CH^{n}$ . Then the following
are equivalent:

(i) The holomolphic distribution $T^{O}M=\{X\in TM|X\perp\xi\}$ is integrable,
(ii) $g((\phi A+A\phi)X, Y)=0$ for any $X,$ $Y\in T^{o}M$ .

PROOF. The distribution $T^{o}M$ is integrable

$-[X, Y]\in T^{o}M$ for any $X,$ $Y\in T^{o}M$

$-g([X, Y], \xi)=0$

$\leftarrow\rangle g(\nabla_{X}Y-\nabla_{Y}X, \xi)=0$

$-g(Y, \phi AX)-g(X, \phi AY)=0$

$-g((\phi A+A\phi)X, Y)=0$ for any $X,$ $Y\in T^{o}M$ .
Q. E. D.

Recall the definition of $\eta$ -parallel of $A$ . We say that $A^{o}$ is $\eta$ -parallel if
$\nabla_{X}^{o}A^{o}\equiv 0$ for any $X\in T^{o}M$ . Using the notions defined above, we obtained the
following result.

THEOREM 2. Let $M$ be a real hypersurface of $CH^{n}$ . Assume that $A^{o}$ is
$\eta$ -parallel. Then $M$ is locally congruent to $ond$ of type $(A_{0}),$ $(A_{1})$ , (A\’i), $(A_{2}),$ $(B)$
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or a ruled real hypersurface (that is, a real hypersurface in which $T^{o}M$ is inte-
grable and its integral manifold is totally geodesic $CH^{n-1}.$ )

PROOF. By proposition $C,$ $A^{0}$ is $\eta$ -parallel if and only if $\Psi(X, Y, Z)=0$

for any $X,$ $Y,$ $Z\in T^{o}M$ , that is,

(3.1) $g((\nabla_{X}A)Y, Z)=\eta(AX)g(\phi AY, Z)+\eta(AY)g(\phi AX, Z)+\eta(AZ)g(\phi AX, Y)$

for any $X,$ $Y,$ $Z\in T^{o}M$ . Since the Codazzi equation (1.5) tells us that $g((\nabla_{x}A)Y, Z)$

is symmetric for any $X,$ $Y,$ $Z\in T^{o}M$ , exchanging $X$ and $Y$ in (3.1), we obtain

(3.2) $\eta(AZ)g((A\phi+\phi A)X, Y)=0$ for any $X,$ $Y,$ $Z\in T^{o}M$ .
Now we assume that $\eta(AZ)=0$ for any $Z\in T^{o}M$, that is, $\xi$ is a principal cur-
vature vector. Then the equation (3.1) shows that $g((\nabla_{X}A)Y, Z)=0$ for any
$X,$ $Y,$ $Z\in T^{o}M$, that is, the shape operator $A$ of $M$ is $\eta$ -parallel. And hence
our real hypersurface $M$ is locally congruent to one of type $(A_{0}),$ $(A_{1}),$ $(A_{1}^{\prime}),$ $(A_{2})$

or (B) by Theorem E.
Next, if there exists $Z\in T^{o}M$ such that $\eta(AZ)\neq 0$ , that is, $\xi$ is not a prin-

cipal curvature vector. Then the equation (3.2) tells us that the holomorphic
distribution $T^{o}M$ is integrable (cf., Proposition 3) and the integral manifold $M^{o}$

of $T^{o}M$ is a complex hypersurface in $CH^{n}$ . Moreover, the second fundamental
form $A^{o}$ of $M^{o}$ is parallel. Therefore we conclude that $M^{o}$ is locally con-
gruent to $CH^{n-1}$ (cf. [9].) Q. E. D.
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