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A RELATION BETWEEN k-th UV*"' GROUPS AND
k-th STRONG SHAPE GROUPS

By

Naotsugu CHINEN

1. Introduction

Compacta X and Y are UV "-equivalent provided that there exist sequences
{E}1sism and {F;}osism Oof compacta and sequences {f;}isism and {g:}izism Of
UV™maps f,: E;—F;,_, and g;: E,—F;, where F,=X and F,=Y. Replacing
UV™maps with CE-maps, we have the definition of CFE-equivalence.
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X=F, F, Fn_, Fn=Y

It is well known that finite-dimensional CFE-equivalent compacta are shape
equivalent (see [D-S]). The first example that shows the gap between shape
equivalence and CE-equivalence was found by Ferry [Fel]. In [Fe3], it was
shown that UV ™-equivalent n-dimensional compacta are shape equivalent. Next
Daverman and Venema constructed an n-dimensional LC™ *-continuum
which is shape equivalent but not UV " '-equivalent to S'. Mrozik [Mrl] ob-
tained a method to have continua which are shape equivalent but not UV!-
equivalent to each other. Moreover Mrozik [Mr2] improved the method and
had a strategy to construct a LC"-continuum Y from any LC"*!'-continuum X
with 7,(X) infinite such that they are shape equivalent but not UV "*'-equivalent.
As a criterion of UV ™-equivalence he introduced the notions of UV "-component
7, (X) [Mrl], k-th UV ™-homotopy group 7™ (X) and k-th CE-homotopy group
7:°E(X) [Mr2]. Venema [Ve] investigated the groups and showed that 7, **?(X)
=7, %" X)= .- =7,°E(X) for every continuum X and that 7,(Y)=0 for every
UV ™-continuum Y.

In this paper we consider a relation between z,**(X) and the k-th strong
shape group z,(X) [Q]. We define a natural homomorphism s;: m;**"(X)—
7:(X) and show that, if pro-z,(X) is profinite, s, is an isomorphism. As its
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consequence we have that if pro-m,(X) is profinite, and z,V(X)={X} and
7, **Y(X)=0 for k=1, ---, n, then a continuum X is UV™.

2. Definitions and lemmas.

By the Hilbert cube @, we mean the countable product of closed unit in-
tervals /=[0, 1]. By S* and D*, we denote the k-sphere and the k-ball, re-
spectively. For each k=N, a compactum X is a UV *-compactum provided that
for every embedding i: X—M of X into an ANR M and every neighborhood U
of #(X) in M, there is a neighborhood V of #(X) in M such that UDV and the
homomorphism 7 ,(V)—r,U) induced by the inclusion is trivial for j<k. For
each compacta X and Y, a surjective map f: X—Y is UV* provided that each
point preimage f~'(y) is a UV *-compactum. For a subspace Z of X and x<X,
by d(x, Z) we denote the number inf{d(x, z)|z€Z}, and set N(Z)={x=X|
d(x, Z)<eg}.

If X and Y are compact metric spaces and j:Y —W is an embedding into
a compact AR W, then an approaching map f: X—Y is a pair (f, j), where f
is a map f: XX[0, co)=W such that for each neighborhood U of j(Y), there is
an meN such that f(XX[m, «))CU. Two approaching maps [, g: X=>Y (f=
(f, 1), g=(g, 1)) are homotopic through approaching maps, if there is an appro-
aching map H: XXI-Y (H=(H, j)) such that H| XX {0}=f and H|XX {1}=g
[Fez].

Let i: X—Y be a map and let /: X—Q and j:Y—Q be embeddings. De-
fine an embedding /: X—Q X Q by [(x)=(j-h(x), i(x)) and the projection proj: Q
XQ—Q by proj(a, b)=a. We assume that XCQXQ by the above embedding
[, and projlX=h. We take the metric on QX to be the supremum of the
metrics on two factors,

LEMMA 1. Let h: X—Y be a UV*-map as above. If P is a finite k-dimen-
sional polyhedron, S is a subpolyhedron of P, f=(f, j): P—Y is an approaching
map, and g=(g, l): S—X is an approaching map with projeg=f|SX[0, o), then
there is an extension g*: PX[0, c0)—=QXQ of g such that (g*, ) is an approach-
ing map and that [ and (projeg*, j) are homotopic through approaching maps.

Proor. By Corollary 1.2 of [Fe3], we get a sequence {0.}..o Of positive
numbers satisfying :
(1) 0,<min{0,_,, 1/2"} for n=1, d,<1 and
(2) for any finite (k+1)-dimensional polyhedron K, subpolyhedron L of K,
map a: K—N;,(Y) and map a,: L—N;,(X) with projeay=a| L, there
exists an extension a*: K—N;,_(X) of a, such that projea*=a.
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Since [/ is an approaching map, there is a monotone increasing sequence {in}n-:
with f(PX[i,, ©)CNs,.(X) for n=1. For each neN set f,=f|1PX[in, tps1].
By (2) we get an extension g,: PX[in. tni1]—Nsu(X) of g|SX[i,, 10y ] with
projeg,=f,. For each n&N, define H,: PXI—N;,(Y) by H.(x, D=F(X, tnsr)
for each xeP and t<1I, and H, ,: PX {0, 1} >N;o(X) by H, ox, 0)=gn(x, tns1),
H, «(x, D)=gn.(x, i,,,) for each x=P. And by (2) there exists an extension
H*,: PXI—>N;,_(X) of H,, with projeH*,=H,. Define g*,: PX[in, tny1]—
QXQ as

ga(x, 1=20)in+2tin,,)  if t<[0, 1/2]
gi(x, <1~t>z'n+tz'nﬂ>:{

H*,(x, 2t—1) if tel1/2, 1]

Then g*=\Unpeny g%n: PX[7;, ©0)—QXQ is a desired extension of g and the
proof is finished.

For each pointed compactum (X, x,) and each k=1, let UV™,(X, x,) be the
class of all triples A=(C, a, B), where C isa UV™ compactum and a: S*'—C,
B:C—X are maps with Be-a(S* )= {x,}. Given two such triples A=(C, «, B)
and A’=(C’, a’, B’), we write A’=A if there exists a map 7: C’—C such that
commutativity holds in each triangle of the following diagram.

a’ C’ B’
s lr\
I /,9’

Let = denote the equivalence relation generated by = (i.e. A’=A iff there
exists a sequence of triples A,=A, A,, -+ Ay,.1=A4A" in UV™,(X, x,) such that
Api=Apiey, =1, ---, 7) and let 7, ™(X, x,)=UV™,(X, x,)/=. The equivalence
class of A=(C, a, B) in 7, (X, x,) will be denoted by [A]=[C, a, 8].

Let x: S*'—(S*1 %)\/(S*°!, %) denote the usual comultiplication map on
the H-cogroup S*' and pu: (X, x,)V(X, x,)—X the folding map. For [A;]=
[Cy, a;, Bilem, ™ (X, x,), 1=1, 2, define a multiplication by

$) LA J[AJ=[(Cy, ai(x))V(Cs, as(*)), (a1 Vas) K, ,u"(/gl\/ﬁz)] .

Obviously this is a group multiplication on #,‘™ (X, x,): The neutral ele-

X
C

ment is Ax,=[ {*}, const, const], where const is the constant map. An inverse
for [A]=[C, a, B] is given by [A~!], where A'=(C, a-y, 8) and y: S*'—>S*!
is the usual homotopy inverse on the H-cogroup S*-' (see [Mr2]).

LEMMA 2. Let (X, x,) be a pointed compactum and k=1. Then for each
(C, a, Bler,** (X, x,), there exists a [C’, a’, B’len, **V(X, x,) such that
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(1) a’:S*'C’ is an embedding,
(2) dim C’'<k+2 and
3 [C, a, BI=[C", a’, B'].

PrRoOF. By Theorem 2.1.9 of [Be], there exists a compactum C* with
dim C*<k+2, and a UV**''-map f:C*->C. Since C is UV**' (C* is UV**!,
Let 7: C*—Q and j: C—@ be embeddings. Define [: C*—Q X Q by [(x)=(j° f(x),
7(x)). For convenience we may assume that proj|C*=/f as before. Moreover
define ¢: S*'X[0, «0)—Q by ¢(x, t)=a(x) for each xS* ' and t=[0, ). By
the proof of there exists a map ¢*: S*7'X[0, ©)—QX Q@ such that
(p*, 1) is an approaching map and proje¢*=¢. The mapping cylinder M(p*) of
¢* is the space obtained from (S*7'X[0, co)X NP(p*(S* X [0, co)\JC*) by
identifying for each ye@*(S*~'X[0, o)) the set (¢* '(y)X {1})U{y} to a single
point. Identifying of C* and S*7'X[0, o)X[0, 1) as subspaces of M(¢*), we
set

M*p*)=C*U{[x, s, s/(1+s)JeM(p*) | x&S*!, s&[0, co)}.

Then M*(p*) is UV**. Let r: M(p)—@*(S*'X[0, o)) UC* be the natural
retraction of the mapping cylinder and define an embedding a’: S*~'—M*(p*)
by a’(x)=[x, 0, 0]. Since we can obtain a commutative diagram :

’ M*( *) .
a ¢ Beproj-r
/
Sk-1 lprojor\x X

we infer [M*(¢*), a’, Beprojor | M*(p*)]1=[C, a, Blerm, **V(X, x,).

If X and Y are compact metric ANR’s, a map p: X—Y is said to have the
approximate homotopy lifting property (AHLP) with respect to a compact space
Z if for every homotopy f: ZXI—=Y,map F,: Z—X with p-F,=f|ZXx {0}, and
¢>0 there is a map F: ZXI—-X such that F,=F|Z X {0} and d(p-F(z, t), f(z, t))
<e for each (z, ) eZx 1. We will call p an AF"*-map if p has the AHLP for
all n-dimensional compacta.

For a finite or infinite inverse sequence {(X;, f;)} of compacta, CMap*((X, f,))
is defined by S. Ferry, (Definition 5.2, [Fe2Z]). We remark that the inverse
limit lim (X,, f;) is regarded a subspace of CMap*((X,, f;)) and that if the spaces
X.’s are ANR’s, then CMap*((X;, f;)) is an AR.

Next we shall define a homomorphism ¢,: 7.(X, xo)—m,**P(X, x,). For
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each [Blen(X, x,), where B: D*—X is a map with B(S* )= {x,}, define #,([8])
=[D*, incl, 8]. Here, incl: S*"'—D* is the inclusion map [Mr2],

LEMMA 3. If X=lm(K,, f;), where each K; is a finite polyhedron and each
fi is an AF*-map, then the homomorphism t,: m (X, xo)—m,**(X, x,) s iso-
morphic for each k=1.

PROOF. a) Injectivity. Let 8 be a map B: D*—X such that t,([8])=[D*,
incl, f]1=0xr,**(X, x,). By the proof of Theorem 2.7 in [Mr2], there exist
UV **'_compactum C and maps satisfying the following commutative diagram :

Dk
incl B
Ir
Sk-1 C — C B > X
kjr/const

Define y: S*—~C by 7|the upper hemisphere =7,, y|the lower hemisphere =7_.
Let 7: C—Q be an embedding. Since C is UV**!, we get a map y*: D**!X
[0, 0)—@Q such that (y*, 7) is an approaching map and 7*(x, t)=7(x) for each
x&S*, te[0, ). There is an extension B**: Q—CMap*(K;, f.) of B*. By
Corollary 5.5 of [Fe2], there exists a map g*: D**'x[0, co]>CMap*((K;, f+))
such that g*(x, co)=pf*.7(x) for each x=S*, and that g*(S*X {o})CX. Since
[g*|S*X {eo} J=[B*er]=[Blem (X, x,), [BI=0.

b) Surjectivity. Let [C, a, Bl **V(X, x,). By we may as-
sume that dim C<k+2 and a is an embedding. Since C is UV*, we get a map
¢: D*X[0, ©)—Q such that ¢(x, t)=a(x) for each x&S** and t=[0, =), and
that (¢, 7) is an approaching map, where 7: C—Q is an embedding. The map-
ping cylinder M(¢) of ¢ is the space obtained from (S*~'X[0, o)X I)@(¢(D* X
[0, ) UC) by identifying for each yep(DFX[0, o)) the set (¢* '(y)X {1})U
{y} to a single point. Identifying of C and D*X[0, )X[0, 1) as subspaces of
M(¢p), we set

M**()y=C\U{[x, s, s/1+s)]eM(p)| xD*, s€[0, o)} DM*(p)
(see Lemma 2).

Let j: M**¢)—@ be an embedding. We will construct a map ¢: M**(p) X
[0, o0)—Q with (¢, 7) an approaching map satisfying the following condition :
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(#) d(x, t)=x for each xeM*(¢) and t<[0, o).

For a while, we assume that there exists a map ¢ as above. Let 8*: Q—
CMap*((K;, f:)) be an extension of fB satisfying B8*([x, s, s/(1+s)])=p(x) for
each x&S* ! and s=[0, =) and apply Corollary 5.5 of to B*-¢, then
there exists a map ¢*: M**(¢p)—X with ¢*|M*(p)=*|M*(p). Identifying D*
with {[x, 0, 0JeM(p)| x=D*}, and from the following commutative diagram :

/’1\,,

-t s M**(p) —>
NG e
Dk

and the fact that M**(¢) and C are shape equivalent, we have ¢,([¢*|D*])=
[C, a, B]. Therefore it is sufficient to construct a map ¢ with the condition (#).

Since C and M*(¢) are shape equivalent, M*(¢) is UV**'. There exists a
sequence {U,},._, of neighborhoods of M*(¢) in @ such that

(1) U,DU,,, for each n=—2, and

(2) for each n=—2, [<k+1 and map a: S'—U,.,, there exists an exten-

sion a*: D'*'—-U, of a.

Since M(p)DM*(¢), there exists a monotone sequence {Sn}m.o Of positive num-
bers such that D*X {sn}={[x, sm, Sa/(I+sn)]EeM(p)|x€D*} CU,pn,, for each
m=0. By (2), there exists a map a,: D*—U;zn,; with a,(x)=[x, 0, 0JeM*(p)
for each x=S*~'. Identifying D*X[0, s»] with {[x, s, s/(1+s)]eM(p)| xe D*,
s€[0, s»]}, by (2) we have a map ¢n: D*X[0, sp]—Usn such that ¢n(x, 0)=
an(x) for each x& D*, and ¢n(x, )=[x, ¢, t/(1+1)] for each (x, H)eS* ' X[O0, s, ]
UD®X {sn}. Since ¢’ n(D*X{0})UG 0 1(D*X{0})TUsn, by (2) there exists a
map @¢”,: D**'—U,, , with ¢”,|the upper hemisphere =¢’,|D*x {0} and
¢” »|the lower hemisphere =¢’,,,|D*X {0}. Applying (2) to D*X[sm, Sms:1]C
Usn.1, and three maps ¢’,, ¢'»., and ¢”,, then we get a map @*, . : D*X
[0, sm]X[m, m+1]—U,n,_, satisfying that

¢*m,m+l(x, t; m):¢/m(xy t) if (x’ t)EDkX[()’ Sm:l,
S*m. mar(x, t, m)=[x, ¢, t/A+1)]  if (x, DED*X[sm, sm+.] and
¢*m,m+1(x, ¢ m+l)=¢,m+l(x’ t) if ()C, t)EDkX[O, Sm] .

For each m =0 define p,: {D*X[sm, )UC}X [m, m+1] — M**(¢p) by
Pulx, t, s)=1[x,t, t/(1+t)] for each (x,t, s)&E D*X[sn, ©)X[m, m+1], and
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puly, s)=v for each (v, s)eC x[m, m+1]. We set
¢m,m+1:¢*m.m+lupm: M**“D)X[mr m+1] —_ U3m—2; and
¢:UmGN ¢m,m+1: M**((/))X[O, oo) > U—2 .

Clearly by the construction as above, the map ¢ satisfies the condition (#).

3. Main results

The k-th homotopy pro-group, the k-th shape group and the strong shape
group of a space X are denoted pro-z;(X), m:(X) and z.(X), respectively. We
will construct a homomorphism s;: 7, **"(X, x,)—zx:(X, x,). Let [C, a, Bl
"X, x,) and let 7: C—Q be an embedding. Since C is UV **!, there exists
a map ¢o: D*X[0, 0)—Q such that @e(x, t)=a(x) for each x=S*! and te
[0, ), and that (¢, 7) is an approaching map. Suppose that X=lim(K;, f:),
where K;’s are finite polyhedra, then there exisits a map B*: Q—CMap*((K;, f1))
which is an extension of 8. Define s;: 7, **V(X, xo)—zx:(X, xo) by s:([C, @, 8])
=[B*¢c]. Since C is UV**!, the definition as above is independent of a choice
of ¢c. By the proof of Theorem 2.7 in [Mr2], if [C, a, B1=[C’, a’, B’], there
. exists the following commutative diagram:

M(a) ———————) C

L

Sklc > C”

\Jr-% g

M@y —> C’

> kv‘m

Here 7, and 7. are embeddings and [C”, a”, B”]l=n;**V(X, x,). By the com-
mutative diagram as above,

[Bepcl=[Bereucay]=[B"Pc" 1=[ 7" Picary ]=[B G JET (X, xo).

s, turns out to be well-defined. Clearly s, is a homomorphism.

An inverse sequence {G;, h;} of groups and homomorphisms is profinite if
for each 7 there is a j>7 such that im h;,° - «h(G,)CG; is finite. A con-
tinuum X has pro-m,(X) profinite if whenever X is written as an inverse limit
X=lim(K;, a;) of finite CW complexes, the system {7,(K;), @:s} is profinite.

MAIN THEOREM. If (X, x,) is a pointed continuum with pro-m(X) profinite,
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then m,**V(X, x,) and z(X, x,) are isomorphic for each k=1.

PrOOF. We will show that s, is an isomorphism.

First we may consider a special case that f; is an AF‘-map for each 7=>1.
Then we will construct a homomorphism u,: zx(X, x,)—m:**V(X, x,). Let
¢: S¥X[0, c0)—CMap*((K;, fi)) such that ¢({s¢} X[0, c0))={x,}, Where s, is the
basepoint of S*, and such that (¢, 7) is an approaching map, where ;:X—
CMap*((K;, f:)) is the inclusion. By Corollary 5.5 of [FeZ], there exists a map
¢’ : S*—X such that defining ¢”:S*X[0, 0)—X by ¢”(x, t)=¢’(x) for each
x&S* and te[0, ), [¢”]=[¢plezr(X, xo). Define u,: z(X, xo)—m: **(X, x,)
by u.([¢])=[D*, incl, ¢’-p], where incl: S¥*~'—D* is the inclusion and p: D*—
D#/S*¥-1=S*% is the projection. Because of Corollary 5.5 of and [Mr2],
u, is well-defined. It is clear that s,ou,=:id. Since t;: (X, xo)—m, **V(X, x,)
is an isomorphism by Lemma 3|, for each [C, a, fler,**V(X, x,) there exists
a map 7: D*—X such that y(S*')={x,} and [C, a. B1=[D*, incl, y], where
incl: S¥'—>D* is the inclusion. Because wu,°s,([D*, incl, y1)=[D*, incl, 7],
uros,=id. That is, s, is an isomorphism.

Next we consider the general case. Since pro-z,(X) is profinite, by Theorem
3’ and Lemma 3.2 of [Fe2], there exists a continuum X’ such that X’ and X
are shape equivalent and X’=lim(K’;, f’;), where K;’s are finite polyhedra and
fi’s are AF*maps. Moreover, by Theorem 2 of [Fe3], X’ and X are UV™-
equivalent for each n=0. There exist a compactum X” and UV**'-maps
& X"—X, &: X"-X’'. Let x",€X” with &,(x”,)=x,.

2%
ﬁk(k+l)(X, x0> Tt'k(k+l)(X/', xllo) > 7tk<k+l)(X/, E”2(x”0))

Sk Sk”l . Sk’l

§1* §2*

Te(X”, x7y) ———— m(X’, §7(x")).

(X, %)
By Theorem 1.6 of [Mr2], &« and &,« are isomorphisms, and by [Lemma I, &

and &,. are isomorphisms. Since this diagram is commutative and s.’ is an
isomorphism, so is s,.

A space X will be called UV ™-connected provided that for any two points
x, x’X there exist a UV"-compactum C and a map 7: C—X with x, x'
7(X). By a UV™component of X we mean a maximal UV "-connected subspace
of X. Denote m,*(X) the set of all UV "-components of X.

LEMMA 4. Let X be a continuum. If m,P(X)={X}, then zm,(X, x,)=0 for
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each x,=X.

PROOF. Let x,&X be an arbitrary point. Since 7,¥(X)=0, for each x,&€X
there exist a UV'-compactum C and a map y: C—X with x,, x,€7(C). Let
M and M’ be AR’s, i: C—M and j: X—M’ be embeddings and y*: M—M’ be
an extension of y. Taking points y,, yv,€C with r*(y,)=x,, 7*(y,)=x,, since
C is UV, there exists a map ¢: IX[0, o)—M such that (@, /) is an approach-
ing map and ¢(9, )=y, for each t=[0, o) and d= {0, 1}. Since (r*-¢, ;) is an
approaching map, z.(X, x,)=0.

COROLLARY. Let X be a continuum with pro-n(X) profinite. If m,¥(X)=
{X} and 7, **Y(X, x,)=0 for each x,=X and k=1, 2, ---, n, then X is UV ™.

PrOOF. It follows from Main theorem and that mx(X, x,)=0 for
each x,€X and k=0, 1, ---, n. By lm*(pro-m, . 1(X, x%0)=0=m (X, x,).
Moreover by Theorem 11 and of Theorem 12 in §6.2 [M-S], pro-
(X, x,)=0 for each x,=X and k=1, 2, ---, n. Since X is connected, X is UV .

4. Remarks and problems.

Mrozik [Mr2] and Venema gave fundamental properties of k-th UV "-
groups for an arbitrary continuum X: 7,V (X)=r,?(X)= - =7, * " (X)=0 and
T ¥ (X)=r, **»(X)= - =n,°%(X). Thus the groups have some meaning only
in the cases n=+% and k+1. Moreover Venema showed that, for every UV"-
compactum X, 7, (X)=0. Considering and Venema’s result, we
have a natural problem:

PROBLEM 1. Is a continuum X with n,®*(X)=0 for k=1, ---, n, a UV™-
compactum ?

On the other hand, we clearly have a natural homomorphism hg, z.q:
T FO(X, x0)—m, P (X, x,) as follows: for each [C, a, Bler,**V(X, x,) where
C is UV**!, and a: S*¥*'—-C and B: C—X, define

hk.k+l([c’ a, B]):[Cr a! }8] *

However, we do not have any information about A, ,.;. It is obvious that if
A% »+1 iS @ monomorphism, Problem 1 has the affirmative answer. Therefore
we pose the following problem:

PROBLEM 2. When is the homomorphism h, ., a monomorphism ? In parti-
cular, consider the case that pro-m,(X) is profinite.
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