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ON A SUFFICIENT CONDITIONS FOR
MULTIVALENTLY STARLIKENESS

By

Mamoru NUNOKAWA

Let $q\in N=\{1,2,3, \cdots\}$ and $A(q)$ denote the class of function

$f(z)=z^{q}+\sum_{n=q+1}^{\infty}a_{n}z^{n}$

which are analytic in the open disk $E=\{z:|z|<1\}$ .
A function $f(z)\in A(q)$ is called q-valently starlike with respect to the origin

if and only if

$Re\frac{zf^{\prime}(z)}{f(z)}>0$ in $E$ .

There are many papers in which various sufficient conditions for multi-
valently starlikeness were obtained, but almost these results were got by using

real part of some analytic functions.
Recently, Mocanu [3] obtained the following result by using the imaginary

part of $zf^{\prime\prime}(z)/f^{\prime}(z)$ .

THEOREM A. If $f(z)\in A(1)$ and

$|{\rm Im}\frac{zf^{\prime\prime}(z)}{f\prime(z)}|<\sqrt{3}$ in $E$ ,

then $f(z)$ is univalently starlike in $E$ .

We need the following lemma due to $[1, 2]$ .

LEMMA 1. Let $w(z)$ be analytic in $E$ and suppose that $w(O)=0$ . If $|w(z)|$

attains its maximum value on the circle $|z|=r<1$ at a point $z_{0}$ , then we can write

$z_{0}w^{\prime}(z_{0})=kw(z_{0})$

where $k$ is a real number and $k\geqq 1$ .
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Applying the same method as the proof of [4, Theorem 1], we can prove
the following lemma:

LEMMA 2. Let $p(z)$ be analytic in $E,$ $p(O)=q$ and suppose that there exists
a point $z_{0}\in E$ such that

(1) $Rep(z)>0$ for $|z|<|z_{0}|$

$Rep(z_{0})=0$ and $p(z_{0})=ia$ where $a$ is a real number and not zero.

Then we have

$\frac{z_{0}p^{J}(z_{0})}{p(z_{0})}=ik$

where

$k\geqq\frac{1}{2}(\frac{q^{2}+a^{2}}{a})\geqq q$ if $a>0$ ,

and

$k\leqq\frac{-1}{2}(\frac{q^{2}+a^{2}}{a})\leqq-q$ if $a<0$ .

PROOF. Let us put

(2) $\phi(z)=\frac{q-p(z)}{q+p(z)}$ .

Then we have that $\phi(0)=0,$ $|\phi(z)|<1$ for $|z|<|z_{0}|$ and $|\phi(z_{0})|=1$ . From (1),

(2) and Lemma 1, we have

$\frac{z_{0}\phi^{\prime}(z_{0})}{\phi(z_{0})}=-\frac{2_{Z_{0}}p^{\prime}(z_{0})}{q^{2}-p(z_{0})^{2}}=\frac{-2z_{0}p^{J}(z_{0})}{q^{2}+|p(z_{0})|^{2}}\geqq 1$ .

This shows that

$-z_{0}p^{\prime}(z_{0})\geqq\frac{1}{2}(q^{2}+|p(z_{0})|^{2})$

and $z_{0}p^{\prime}(z_{0})$ is a negative real number.
Applying the same method as the proof of [4, Theorem 1], for $a>0$, we

have

${\rm Im}\frac{z_{0}p^{\prime}(z_{0})}{p(z_{0})}\geqq\frac{1}{2}(\frac{q^{2}+a^{2}}{a})\geqq q$

and for $a<0$ , we have

${\rm Im}\frac{z_{0}p^{\prime}(z_{0})}{p(z_{0})}\leqq-\frac{1}{2}(\frac{q^{2}+a^{2}}{|a|})\leqq-q$ .

This completes our proof.
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Applying Lemma 2, we will obtain a generalized result of Theorem A.

MAIN THEOREM. Let $f(z)\in A(q)$ and suppose that

(3) $1+\frac{zf^{\prime\prime}(z)}{f\prime(z)}\neq ik$ in $E$ ,

where $k$ is a real number and $|k|\geqq\sqrt{3}q$ .

Then $f(z)$ is q-valently starlike in $E$ .

PROOF. Let us put

$p(z)=\frac{zf^{\prime}(z)}{f(z)}$

where $p(O)=q$ . From the assumption (3), we easily have

$p(z)\neq 0$ in $E$ .

In fact, if $p(z)$ has a zero of order $n$ at $z=\alpha\in E$ , then we can put

$p(z)=(z-\alpha)^{n}p_{1}(z)$ , $(n\in N)$

where $p_{1}(z)$ is analytic in $E$ and $p_{1}(\alpha)\neq 0$ .
Then we have

(4) $1+\frac{zf^{\prime\prime}(z)}{f\prime(z)}=\frac{zp^{\prime}(z)}{p(z)}+p(z)$

$=\frac{nz}{z-\alpha}+\frac{zp_{1}^{J}(z)}{p_{1}(z)}+(z-\alpha)^{n}p_{I}(z)$ .

But, the imaginary part of (4) can take any infinite values when $z$ ap-
proaches $\alpha$ .

This contradicts (3). Hence we have

$p(z)\neq 0$ in $E$ .
Therefore, if there exists a point $z_{0}\in E$ such that $Rep(z)>0$ for $|z|<|z_{0}|$ ,

$Rep(z_{0})=0$ and $p(z_{0})=ia$ ,
then we have

$p(z_{0})\neq 0$ and $a\neq 0$ .

From Lemma 2 and (4), for $a>0$ , we have

$1+\frac{z_{0}f^{\prime\prime}(z_{0})}{f\prime(z_{0})}=\frac{z_{0}p^{\prime}(z_{0})}{p(z_{0})}+p(z_{0})$

$=i({\rm Im}\frac{z_{0}p^{\prime}(z_{0})}{p(z_{0})}+{\rm Im} p(z_{0}))$
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and

${\rm Im}(\frac{z_{0}p^{\prime}(z_{0})}{p(z_{0})}+p(z_{0}))\geqq\frac{1}{2}(\frac{q^{2}+3a^{2}}{a})\geqq\sqrt{3}q$ .

For $a<0$, we have

$1+\frac{z_{0}f^{\prime\prime}(z_{0})}{f\prime(z_{0})}=i({\rm Im}\frac{z_{0}p^{J}(z_{0})}{p(z_{0})}+{\rm Im} p(z_{0}))$

and so

lm $(\frac{z_{0}p^{J}(z_{0})}{p(z_{0})}+p(z_{0}))\leqq-\frac{1}{2}(\frac{q^{2}+3a^{2}}{|a|})\leqq-\sqrt{3}q$ .

These contradict (3). Hence we have

$Rep(z)>0$ in $E$ .

This shows that $f(z)$ is q-valently starlike in $E$ .
This completes our proof.
From Main theorem, we easily have the following result.

COROLLARY. Let $f(z)\in A(q)$ and suppose that there exists a real number $R$

for which

$|\frac{zf^{\prime\prime}(z)}{f\prime(z)}-R|<\sqrt{(R+1)^{2}+3q^{2}}$ in $E$ .

Then $f(z)$ is q-valently starlike in $E$ .
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