CYCLIC-PARALLEL REAL HYPERSURFACES OF QUATERNIONIC PROJECTIVE SPACE

By

Juan de Dios Pérez

Abstract. We classify cyclic-parallel real hypersurfaces of quaternionic projective space.

1. Introduction.

Let M be a connected real hypersurface of a quaternionic projective space QP^m , $m\geq 2$, endowed with the metric of constant quaternionic sectional curvature 4. If ζ denotes the unit local normal vector field and $\{J_1, J_2, J_3\}$ a local basis of the quaternionic structure of QP^m (see [2]), then $U_i=-J_i\zeta$, i=1, 2, 3, are vector fields tangent to M.

It is known, [4], that there do not exist parallel real hypersurfaces of QP^m , $m \ge 2$. A real hypersurface of QP^m is called cyclic-parallel if it satisfies

(1.1)
$$\sigma(g((\nabla_X A)Y, Z)) = 0$$

for any X, Y, Z tangent to M, where A denotes the Weingarten endomorphism of M and σ the cyclic sum.

Our purpose is to classify such real hypersurfaces by mean of the following

THEOREM. A real hypersurface M of QP^m , $m \ge 2$, is cyclic-parallel if and only if it is congruent to an open subset of a tube of radius r, $0 < r < \Pi/2$, over QP^k , $k \in \{0, \dots, m-1\}$.

In the Theorem, QP^* is considered canonically and totally geodesically embedded in QP^m .

2. Preliminaries.

Let X be a vector field tangent to M. We write $J_iX = \phi_iX + f_i(X)\zeta$, i=1, 2, 3, where ϕ_iX denotes the tangent component of J_iX and $f_i(X) = g(X, U_i)$. From this, see [3], we have

Received April 20, 1992.

Include: Research partially supported by DCICYT Grant PB90-0014-C03-02.

(2.1)
$$g(\phi_i X, Y) + g(X, \phi_i Y) = 0, \quad \phi_i U_i = 0, \quad \phi_j U_k = -\phi_k U_j = U_t$$

for any X, Y tangent to M, i=1, 2, 3, (j, k, t) being a circular permutation of (1, 2, 3).

From the expression of the curvature tensor of QP^m (see [2]) the equation of Codazzi is given by

$$(2.2) (\nabla_X A)Y - (\nabla_Y A)X = \sum_{i=1}^{3} \{ f_i(X)\phi_i Y - f_i(Y)\phi_i X + 2g(X, \phi_i Y)U_i \}$$

for any X and Y tangent to M. Moreover

$$\nabla_X U_i = q_k(X)U_i - q_i(X)U_k + \phi_i AX$$

for any X tangent to M, (i, j, k) being a circular permutation of (1, 2, 3) and q_i , i=1, 2, 3, certain local 1-forms on M (see [2]).

In the following we shall denote by $\mathfrak{D}^{\perp}=\operatorname{Span}\{U_1,\,U_2,\,U_3\}$ and by \mathfrak{Q} its orthogonal complement in TM.

3. Proof of Theorem.

From (1.1) and applying twice (2.2) we find

(3.1)
$$(\nabla_X A)Y = -\sum_{i=1}^3 \{ f_i(Y) \phi_i X + g(Y, \phi_i X) U_i \}.$$

From (3.1), (2.1) and (2.3) we have for any X, Y, Z tangent to M

(3.2)
$$(\nabla_{Z}(\nabla_{X}A))Y - (\nabla_{\nabla_{Z}X}A)Y = -\sum_{i=1}^{3} \{g(\phi_{i}X, Y)\phi_{i}AZ + g(Y, \phi_{i}AZ)\phi_{i}X + f_{i}(X)g(AZ, Y)U_{i} - 2f_{i}(Y)g(AX, Z)U_{i} + f_{i}(Y)f_{i}(X)AZ\}.$$

If we exchange Z and X, from (3.2) we obtain

(3.3)
$$(R(Z, X)A)Y = -\sum_{i=1}^{3} \{f_i(X)g(AZ, Y)U_i - f_i(Z)g(AX, Y)U_i + g(\phi_i X, Y)\phi_i AZ - g(\phi_i Z, Y)\phi_i AX + g(\phi_i AZ, Y)\phi_i X - g(\phi_i AX, Y)\phi_i Z + f_i(Y)f_i(X)AZ - f_i(Y)f_i(Z)AX\}.$$

Let now $\{E_j, j=1, \dots, 4m-1\}$ be an orthonormal frame on M. From (3.3) we have

(3.4)
$$\sum_{j=1}^{4m-1} g((R(E_j, X)A)Y, E_j) = -\sum_{i=1}^{3} \{f_i(X)f_i(AY) - g(\phi_i X, Y) \operatorname{trace}(A\phi_i) - 2f_i(Y)f_i(AX) - g(A\phi_i Y, \phi_i X) + \operatorname{trace}(A)f_i(Y)f_i(X)\}.$$

But the left hand side of (3.4) is symmetric respect to X and Y. This gives

(3.5)
$$-3\sum_{i=1}^{3} f_i(X)f_i(AY) = -3\sum_{i=1}^{3} f_i(Y)f_i(AX) + 2\sum_{i=1}^{3} g(\phi_i Y, X)\operatorname{trace}(A\phi_i).$$

From (2.1) it is easy to see that $trace(A\phi_i)=0$. This implies

(3.6)
$$\sum_{i=1}^{3} f_i(X) f_i(AY) = \sum_{i=1}^{3} f_i(Y) f_i(AX)$$

for any X, Y tangent to M. From (3.6) we obtain that $g(A\mathfrak{D}, \mathfrak{D}^{\perp}) = \{0\}$. Thus, [1], M is congruent to an open subset of either a tube of radius r, $0 < r < \Pi/2$, over QP^k $k \in \{0, \dots, m-1\}$ or a tube of radius r, $0 < r < \Pi/4$ over CP^m .

If we consider the second case, the principal curvatures of M are, [3], $\cot(r)$, $-\tan(r)$, $2\cot(2r)$, $-2\tan(2r)$ with respective multiplicities 2(m-1), 2(m-1), 1 and 2. If X is a unit vector field such that $AX = -\tan(r)X$, from (2.3) the \mathfrak{D} -component of $(\nabla_X A)U_2$ is $-\tan(r)(-2\tan(2r)-\cot(r))\phi_2 X$. But if M is cyclic-parallel from (3.1) $(\nabla_X A)U_2$ must be equal to $-\phi_2 X$. This implies that $\cot^2(r) = -1$ which is impossible.

On the other hand it is easy to prove that the tubes over QP^k are cyclic-parallel and this finishes the proof.

References

- [1] J. Berndt, Real hypersurfaces in quaternionic space forms, J. reine angew. Math., 419 (1991), 9-26.
- [2] S. Ishihara, Quaternion Kählerian manifolds, J. Differential Geom., 9 (1974), 483-500.
- [3] A. Martínez and J. D. Pérez, Real hypersurfaces in quaternionic projective space, Ann. di Mat., 145 (1986), 355-384.
- [4] J.S. Pak, Real hypersurfaces in quaternionic Kaehlerian manifolds with constant Q-sectional curvature, Kodai Math. Sem. Rep., 29 (1977), 22-61.

Departmento de Geometría y Topología Facultad de Ciencias Universidad de Granada 18071-GRANADA, SPAIN