PROPERTIES OF NORMAL EMBEDDINGS CONCERNING STRONG SHAPE THEORY, II

By

Bernd Günther

Abstract

We show that any topological pair with normally embedded subspace has the strong shape of a pair, such that the inclusion map of the subspace into the total space is a cofibration. Furthermore we prove that a strong shape morphism of pairs is a strong shape equivalence if and only if it operates as strong shape equivalence of the total spaces and of the subspaces considered seperately.

Subject classification: Shape, strong shape, normal embeddings, topological pairs, ANR-spaces. 54C56, 55P55.

1. Preliminaries.

This paper is a continuation of [2] dealing with strong shape theory of pairs as defined by Lisica and Mardešić in [4]. One major property of strong shape theory is the existence of a functor $T: \mathbf{s s h}^{2} \rightarrow \mathbf{H T o p}{ }^{2}$ right adjoint to the strong shape functor $\eta: \mathbf{H T o p}^{2} \rightarrow \mathbf{s s h}^{2}$. The authors do not state this explicitly, but in case of spaces it is a consequence of [5, theorem 6, p. 371]. We only give a brief description of T :

To a given pair (X, A) we choose a resolution in ANR-pairs $\left\{f_{\lambda}\right\}:(X, A)$ $\rightarrow\left\{g_{\lambda}^{\mu}:\left(P_{\mu}, Q_{\mu}\right) \rightarrow\left(P_{\lambda}, Q_{\lambda}\right) \mid \mu \geqq \lambda \in \Lambda\right\}$ and form the simplicial complex \mathcal{K}, whose vertices are the indices $\lambda \in \Lambda$, and whose simplices are the finite, linearly ordered subsets of Λ. For a finite subcomplex $\mathcal{L} \cong \mathcal{K}$ we denote by $\mathcal{L}_{\lambda} \subseteq \mathcal{L}$ the full subcomplex spanned by all vertices μ with $\mu \leqq \lambda$ and consider the subspace

$$
\tilde{P}_{\mathcal{L}} \subseteq \prod_{\lambda \in \Lambda}\left\{\omega_{\lambda}:\left|\mathcal{L}_{\lambda}\right| \rightarrow P_{\lambda}\right\}
$$

consisting of all families of maps on the geometric realizations $\left|\mathcal{L}_{\lambda}\right|$ subject to the condition $g_{\lambda}^{\mu} \omega_{\mu}=\omega_{\lambda}$ on $\left|\mathcal{L}_{\mu}\right|$ for $\mu \geqq \lambda$. By replacing P_{λ} with Q_{λ} we get a closed subspace $\widetilde{Q}_{\mathcal{L}} \subseteq \widetilde{P}_{\perp}$. The pairs ($\left.\widetilde{P}_{\mathcal{L}}, \widetilde{Q}_{\perp}\right)$ form an inverse system over a cofinite directed index set, whose bonding maps are the restriction maps
$r_{\perp}^{\mathscr{H}}:\left(\widetilde{P}_{\mathscr{A}}, \widetilde{Q}_{\mathscr{M}}\right) \rightarrow\left(\tilde{P}_{\perp}, \tilde{Q}_{\perp}\right)$. We set $T(X, A):=\lim \left(\tilde{P}_{\perp}, \tilde{Q}_{\perp}\right)$, and it follows directly from the definitions that there is a natural equivalence

$$
\operatorname{ssh}^{2}(-,-; X, A) \approx \mathbf{H T o p}^{2}(-,-; T(X, A))
$$

This allows the definition of induced mappings turning T into a right adjoint functor,

We need to take a closer look at the restriction maps $\begin{aligned} M_{1}\end{aligned} ;\left(\widetilde{P}_{\mathcal{M}}, \widetilde{Q}_{\mathcal{M}}\right) \rightarrow$ ($\widetilde{P}_{\mathcal{L}}, \widetilde{Q}_{\mathcal{L}}$) in the particular case, where \mathscr{M} is obtained from \mathcal{L} by attaching one additional simplex σ with boundary $\dot{\sigma} \subseteq \mathcal{L}$. If λ is the lowest element of σ we have a pullback diagram:

similarly for $\tilde{Q}_{\mathcal{M}}$. We see that $r_{\mathcal{M}}^{M}: \tilde{P}_{S M} \rightarrow \tilde{P}_{\perp}$ and $r_{L}^{S H}: \tilde{Q}_{\mathcal{M}} \rightarrow \tilde{Q}_{\perp}$ are fibrations, and by induction on the number of elements of \mathcal{L} observing [1, Lemma 3.6] we see that $\tilde{P}_{\mathcal{L}}$ and $\widetilde{Q}_{\mathcal{L}}$ are ANR-spaces.

2. Strong shape equivalences of pairs.

Lemma 1. We suppose that $\left\{f_{\lambda}\right\} ; X \rightarrow\left\{g_{\lambda}^{\mu}: X_{\mu} \rightarrow X_{\lambda}\right\}$ is a strong expansion and that $\pi: E \rightarrow B$ is a fibration between ANR-spaces.
a) If we are given maps $\alpha: X \rightarrow E$ and $\beta: X_{\lambda} \rightarrow B$ for some index λ, and a homotopy $H: \pi \alpha \cong \beta f_{\lambda}$, then we can find some index $\mu \geqq \lambda$, a map $\gamma: X_{\mu} \rightarrow E$ with $\pi \gamma=\beta g_{\lambda}^{\mu}$ and a homotopy $G: \alpha \cong \gamma f_{\mu}$ with $\pi G=H$.
b) If two maps $\alpha_{0}, \alpha_{1}: X_{\lambda} \rightarrow E$ and two homotopies $\Gamma: \pi \alpha_{0} \cong \pi \alpha_{1}$ and $C: \alpha_{0} f_{\lambda}$ $\cong \alpha_{1} f_{\lambda}$ with $\pi C=\Gamma\left(f_{\lambda} \times \mathrm{id}\right)$ are given, then for a suitable index $\mu \geqq \lambda$ there is a homotopy $\Sigma: \alpha_{0} g_{\lambda}^{\mu} \cong \alpha_{1} g_{\lambda}^{\mu}$ with $\pi \Sigma=\Gamma\left(g_{\lambda}^{\mu} \times \mathrm{id}\right)$ and $\Sigma\left(f_{\mu} \times \mathrm{id}\right) \cong C$ relative $X \times \dot{I}$ and relative π.

Pooof. a) At first we take a map $\gamma^{\prime}: X_{\nu} \rightarrow E$ and a homotopy $\Gamma: \gamma^{\prime} f_{\nu} \cong \alpha$ for some suitable index $\nu \geqq \lambda$. This provides us with two maps $\pi \gamma^{\prime}, \beta g_{\lambda}^{\prime}: X_{\nu} \rightarrow B$, whose compositions with f_{ν} are connected by the homotopy $\pi \Gamma \circ H: \pi \gamma^{\prime} f_{\nu} \cong \beta f_{\lambda}$. We conclude the existence of a homotopy $\Sigma: \pi \gamma^{\prime} g_{\lambda}^{\mu} \cong \beta g_{\lambda}^{\mu}$ for some $\mu \geqq \nu$ with $\Sigma\left(f_{\mu} \times \mathrm{id}\right) \cong \pi \Gamma \circ H$ relative $X \times I$. The fibration property of π ensures the existence of a homotopy $\Omega: X_{\mu} \times I \rightarrow E$ with $\Omega_{0}=\gamma^{\prime} g_{\lambda}^{\mu}$ and $\pi \Omega=\Sigma$. If we set $\gamma:=\Omega_{1}$ then we have $\pi \gamma=\beta g_{\lambda}^{\mu}$, and there is a homotopy $G^{\prime}:=\Gamma^{-1} \circ \Omega\left(f_{\mu} \times \mathrm{id}\right)$:
$\alpha \cong \gamma f_{\mu}$ with $\pi G^{\prime} \cong H$ relative $X \times \dot{I}$. Using the fibration property of π again we can replace G^{\prime} with another homotopy $G: \alpha \cong \gamma f_{\mu}$ with $\pi G=H$.

To prove (b) we take a look at the following diagram, where the square is formed as pullback diagram:

It is elementary to check that $\vartheta: E^{I} \rightarrow Z$ is a fibration, and by [1, Lemma 3.6] Z is an ANR-space. Therefore we can replace the fibration π in (a) by ϑ, and this proves (b). q.e.d.

REMARK. If the fibration π in Lemma 1.a has the form either of the zero map from an ANR-space P to a one point space or of the restriction map $P^{I} \rightarrow P^{i}$, then we rediscover the defining conditions of a strong expansion (c) and (d) in part 1 of this paper. Therefore Lemma 1.a characterizes strong expansions.

We consider a pair (X, A) consisting of an arbitrary topological space X and a normally embedded subspace A.

As usual $\Delta^{n}=\left\{\left(t_{0}, \cdots t_{n}\right) \in I^{n+1} \mid \sum_{k=0}^{n} t_{k}=1\right\}$ is the topological standard- n-simplex with its faces $\Delta_{k}^{n}=\left\{\left(t_{0}, \cdots t_{n}\right) \in \Delta^{n} \mid t_{k}=0\right\}$; by $k \in \Delta^{n}$ we mean the vertex determined by $t_{k}=1$.

We set:

$$
\begin{aligned}
& Y:=X \times \Delta_{0}^{2} \cup A \times \Delta^{2} \\
& Y_{1}:=X \times\{1\} \cup A \times \Delta_{2}^{2} \subseteq Y \\
& Y_{2}:=A \times \Delta_{1}^{2} \subseteq Y \\
& Y_{3}:=A \times\{0\}=Y_{1} \cap Y_{2} .
\end{aligned}
$$

The space Y carries the weak topology determined by the subspaces $X \times \Delta_{0}^{2}$ and $A \times \Delta^{2}$.

An ANR-pair is a topological pair consisting of two ANR-spaces such that the subspace is closed. A fibration between ANR-pairs $\pi:\left(E, E_{0}\right) \rightarrow\left(B, B_{0}\right)$ is a map between these two ANR-pairs such that $\pi: E \rightarrow B$ and its restriction $\pi^{\prime}: E_{0} \rightarrow B_{0}$ are Hurewicz-fibrations.

Lemma 2. a) For any fibration of ANR-pairs $\pi:\left(E, E_{0}\right) \rightarrow\left(B, B_{0}\right)$ the following lifting problem has a solntion:

b) If in (a) two maps $h_{0}, h_{1}:\left(Y, Y_{2}\right) \rightarrow\left(E, E_{0}\right)$ and two homotopies $H: h_{0} i \cong h_{1} i$ and $G: \pi h_{0} \cong \pi h_{1}$ (as maps of pairs!) with $\pi H=C(i \times \mathrm{id})$ are prescribed, then there exists $\Gamma: h_{0} \cong h_{1}$ with $\Gamma(i \times \mathrm{id})=H$ and $\pi \Gamma=G$.

Proof. a) There is a deformation $D: B \times I \rightarrow B$ relative B_{0} with $D_{0}=$ id and a neighborhood V of B_{0} in B with $D_{1}(V) \cong B_{0}$. Since B is a normal space the set $U_{1}:=\{x \in X \mid g(x, 2) \in V\}$ is a normal neighborhood of A in X. We observe that by corollary 2.5 in part 1 of this paper the system of normal neighborhoods of A in X forms a strong expansion of A and apply Lemma 1.a to the maps $\alpha:=f_{1 A \times(0)}: A \rightarrow E_{0}, \beta:=D_{1} g_{\mid U_{1} \times(2)}: U_{1} \rightarrow B_{0}$ and the homotopy $H:=g_{1 A \times \Delta_{1}^{2}}$; we get a normal neighborhood U_{2} of A in X contained in U_{1}, a map $\gamma: U_{2} \times\{2\}$ $\rightarrow E_{0}$ with $\pi \gamma=D_{1} g_{U_{2} \times(2)}$ and a homotopy $G: A \times \Delta_{1}^{2} \rightarrow E_{0}$ with $G=f$ on $A \times\{0\}$, $G=\gamma$ on $A \times\{2\}$ and $\pi G=g$ on $A \times \Delta_{1}^{2}$.

We set $g^{\prime}:=g_{\mid U_{2} \times(2)}: U_{2} \rightarrow B$ and consider the homotopy $D\left(g^{\prime} \times \mathrm{id}\right): U_{2} \times I$ $\rightarrow B$; it is stationary on $A \times I$ and ends at $\pi \gamma$. Since the fibration $\pi: E \rightarrow B$ has a metrizable base space it is regular and we can find a homotopy $\Phi: U_{2} \times I$ $\rightarrow E$ with $\Phi_{1}=\gamma$ and $\pi \Phi=D\left(g^{\prime} \times \mathrm{id}\right)$, which is stationary on $A \times I$. In particular we have $\Phi_{0}=\gamma$ on A and $\pi \Phi_{0}=g^{\prime}$.

Since the inclusion map $A \times\left(\Delta_{1}^{2} \cup \Delta_{2}^{2}\right) \hookrightarrow A \times \Delta^{2}$ is a cofibration and a nomotopy equivalence we can find a map $\Psi: A \times \Delta^{2} \rightarrow E$ with $\Psi=f$ on $A \times \Delta_{2}^{2}, \Psi=G$ on $A \times \Delta_{1}^{2}$ and $\pi \Psi=g$ on $A \times \Delta^{2}$. Applying Lemma 1.b to the maps $\alpha_{0}:=f_{\left(U_{2} \times(1)\right.}$: $U_{2} \rightarrow E$, and $\alpha_{1}:=\Phi_{0}: U_{2} \rightarrow E$ and the homotopies $\Gamma:=g_{\mid U_{2} \times \Delta_{0}^{2}}$ and $C:=\Psi_{1 A \times \Delta^{2}}$ we get a normal neighborhood U_{3} of A in X contained in U_{2} and a homotopy $\Sigma: U_{3} \times \Delta_{0}^{2} \rightarrow E$ with $\Sigma=f$ on $U_{3} \times\{1\}, \Sigma=\Phi_{0}$ on $U_{3} \times\{2\}, \pi \Sigma=g$ on $U_{3} \times \Delta_{0}^{2}$ and $\Sigma_{1 A \times \Delta_{0}^{2}} \cong \Psi_{1 A \times \Delta_{0}^{2}}$ relative $A \times \partial \Delta_{0}^{2}$ and relative π. The last condition allows to replace Ψ with a map $\Psi^{\prime}: A \times \Delta^{2} \rightarrow E$ with $\Psi^{\prime}=f$ on $A \times \Delta_{2}^{2}, \Psi^{\prime}=G$ on $A \times \Delta_{1}^{2}$, $\Psi^{\prime}=\Sigma$ on $A \times \Delta_{0}^{2}$ and $\pi \Psi^{\prime}=g$ on $A \times \Delta^{2}$.

We now take an Urysohn function $\varphi: X \rightarrow I$ with $\varphi=1$ on A and $\varphi=0$ on $X \backslash U_{3}$ and set $\psi:=\min (1,2(1-\varphi))$; furthermore we consider the map $\omega: X \times \Delta_{0}^{2}$
$\rightarrow E$ and the homotopy $\Omega: X \times \Delta_{0}^{2} \times I \rightarrow B$ given by

$$
\begin{gathered}
\omega\left(x, 0, t_{1}, t_{2}\right):= \begin{cases}f(x, 0,1,0) & \text { for } \varphi(x) \leqq 1 / 2 \\
\sum\left(x, 0, t_{1}+t_{2} \psi(x), t_{2}(1-\psi(x))\right) & \text { for } \varphi(x) \geqq 1 / 2,\end{cases} \\
\Omega\left(x, 0, t_{1}, t_{2}, s\right):=g\left(x, 0, t_{1}+s t_{2} \psi(x), t_{2}(1-s \psi(x))\right)
\end{gathered}
$$

We observe: $\Omega_{1}=\pi \omega$, and Ω is stationary on $\left(X \times\{1\} \cup A \times \Delta_{0}^{2}\right) \times I$. Since the fibration $\pi: E \rightarrow B$ is regular there is a homotopy $\Theta: X \times \Delta_{0}^{2} \times I \rightarrow E$ with $\Theta_{1}=\omega$ and $\pi \Theta=\Omega$, which is stationary on $\left(X \times\{1\} \cup A \times \Delta_{0}^{2}\right) \times I$. In particular we have $\pi \Theta_{0}=g_{1 X \times \Delta_{0}^{2}}, \Theta_{0}=f$ on $X \times\{1\}$ and $\Theta_{0}=\Psi^{\prime}$ on $A \times \Delta_{0}^{2}$. Therefore we can define a map $h: Y \rightarrow E$ meeting all requirements by $h:=\Theta_{0}$ on $X \times \Delta_{0}^{2}$ and $h:=\Psi^{\prime}$ on $A \times \Delta^{2}$.
(b) is deduced from (a) by replacing the fibration $\pi:\left(E, E_{0}\right) \rightarrow\left(B, B_{0}\right)$ with $\vartheta:\left(E^{I}, E_{0}^{I}\right) \rightarrow\left(Z, Z_{0}\right)$, constructed as in the proof of Lemma 1.b. q.e.d.

Proposition 1. We consider a map of pairs $f:(Y, \tilde{Y}) \rightarrow(Z, \tilde{Z})$, such that $f: Y \rightarrow Z$ and the restricted map $\tilde{f}: \tilde{Y} \rightarrow \tilde{Z}$ are homotopy equivalences. If (X, A) is a pair such that the inclusion map $i: A \hookrightarrow X$ is a cofibration, then $f_{*}: \mathbf{H T o p}^{2}(X, A ; Y, Y) \rightarrow \mathbf{H T o p}^{2}(X, A ; Z, \tilde{Z})$ is bijective.

Proof. In this proof a homotopy of the form $H\left(g \times \operatorname{id}_{I}\right)$ will simply be denoted $H g$, and homotopies between homotopies will always be understood relative to the boundary. Furthermore we will repeatedly make use of the following two statements, taken from [6]:
i) For any homotopy equivalence $f: Y \rightarrow Z$ there exist a map $g: Z \rightarrow Y$ and homotopies $\Phi: f g \cong \mathrm{id}, \Psi: g f \cong \mathrm{id}$ with $f \Psi \cong \Phi f$. (" f is a strong homotopy equivalence.")
ii) Suppose we are given maps $\alpha_{0}, \alpha_{1}: Y \rightarrow Z, \beta_{0}, \beta_{1}: Z \rightarrow T$ and homotopies $A: \alpha_{0} \cong \alpha_{1}, B: \beta_{0} \cong \beta_{1}$. Then: $\beta_{0} A \circ B \alpha_{1} \cong B \alpha_{0} \circ \beta_{1} A$. ("Godement interchange law" or "commutativity lemma".)

Now we consider a map $f:(Y, \tilde{Y}) \rightarrow(Z, \tilde{Z})$ with the property stated in the proposition. By (i) we can find maps and homotopies as follows:

$$
\begin{array}{cc}
g: Z \longrightarrow Y & \tilde{g}: \tilde{Z} \longrightarrow \tilde{Y} \\
\Phi: f g \cong \mathrm{id} & \tilde{\Phi}: \tilde{f} \tilde{g} \cong \mathrm{id} \\
\Psi: g f \cong \mathrm{id} & \tilde{\Psi}: \tilde{g} \tilde{f} \cong \mathrm{id} \\
f \Psi \cong \Phi f & \tilde{f} \tilde{\Psi} \cong \tilde{\Phi} \tilde{f} .
\end{array}
$$

Let $j: \tilde{Y} \hookrightarrow Y$ and $k: \tilde{Z} \hookrightarrow Z$ be the inclusion maps. We observe $f j=k \tilde{f}$ and define a homotopy:

$$
G:=\Psi^{-1} j \tilde{g} \circ g k \tilde{\Phi}: j \tilde{g} \cong g k
$$

Applying (ii) to the homotopies $\tilde{\Phi}: \tilde{f} \tilde{g} \cong \mathrm{id}$ and $\Phi k: f g k \cong k$ we get $f g k \tilde{\Phi} \circ \Phi k$ $\cong \Phi k \tilde{f} \tilde{g} \circ k \tilde{\Phi}=\Phi f j \tilde{g} \circ k \tilde{\Phi} \cong f \Psi j \tilde{g} \circ k \tilde{\Phi}$ and hence:

$$
f G \cong g \widetilde{\Phi} \cdot \Phi^{-1} k
$$

Then we apply (ii) to the homotopies $\tilde{\Psi}: \tilde{g} \tilde{f} \cong$ id and $\Psi j: g f j \cong j$ and conclude $\Psi j \tilde{g} \tilde{f} \circ j \tilde{\Psi} \cong g f j \tilde{\Psi} \circ \Psi j=g k \tilde{f} \tilde{\Psi} \circ \Psi j \cong g k \tilde{\Phi} \tilde{f} \circ \Psi j$ and therefore :

$$
G \tilde{f} \cong j \tilde{\Psi} \circ \Psi^{-1} j
$$

Now we consider our pair (X, A) with cofibration inclusion $i: A \subset X$, and we suppose that a map of pairs $\alpha:(X, A) \rightarrow(Z, \tilde{Z})$ is prescribed. Let $\tilde{\alpha}: A \rightarrow \tilde{Z}$ be the restricted map and observe: $k \tilde{\alpha}=\alpha i$. The cofibration property allows the construction of a homotopy $H: X \times I \rightarrow Y$ with $H_{1}:=g \alpha$ and $H_{1 A \times I}=G \tilde{\alpha}$. This means in particular $H_{0}=j \tilde{g} \tilde{\alpha}$ on A, so that $\beta:=H_{0}$ may be considered as map of pairs $\beta:(X, A) \rightarrow(Y, \tilde{Y})$, and we claim $f \beta \cong \alpha$. Forgetting the subspaces for the moment these two maps are connected by the homotopy $\Gamma^{\prime}:=f H_{\circ} \Phi \alpha$: $f \beta \cong \alpha$; but on $A \times I$ we have $\Gamma^{\prime} i=f G \tilde{\alpha} \circ \Phi k \tilde{\alpha} \cong k \tilde{\Phi} \tilde{\alpha}{ }^{\circ} \Phi^{-1} k \tilde{\alpha}^{\circ} \Phi k \tilde{\alpha} \cong k \tilde{\Phi} \tilde{\alpha}$, and the cofibration property ensures the existence of a homotopy $\Gamma: f \beta \cong \alpha, \Gamma \cong \Gamma^{\prime}$, with $\Gamma=k \tilde{\Phi}_{\tilde{\alpha}}$ on $A \times I$, in particular $\Gamma(A \times I) \subseteq \tilde{Z}$. This proves f_{*} to be surjective.

Let us suppose two maps $\alpha, \beta:(X, A) \rightarrow(Y, \tilde{Y})$ and a homotopy $H: f \alpha \cong f \beta$ with $H(A \times I) \subseteq \tilde{Z}$ are given; we denote by $\tilde{\alpha}, \tilde{\beta}: A \rightarrow \tilde{Y}$ and $\tilde{H}: A \times I \rightarrow \tilde{Z}, \widetilde{H}$: $\tilde{f} \tilde{\alpha} \cong \tilde{f} \tilde{\beta}$, the restrictions and observe: $\alpha i=j \tilde{\alpha}, \beta i=j \tilde{\beta}$ and $H i=k \tilde{H}$. On the total space we can define a homotopy $\Gamma^{\prime}: \alpha \cong \beta$ by $\Gamma^{\prime}:=\Psi^{-1} \alpha \circ g H \circ \Psi \beta$; then we have on $A \times I: \Gamma^{\prime} i=\Psi^{-1} j \tilde{\alpha}^{\circ} \circ k \tilde{H}_{\circ} \Psi_{j} \tilde{\beta}$. We apply (ii) to the homotopies $\tilde{H}: \tilde{f} \tilde{\alpha} \cong \tilde{f} \tilde{\beta}$ and $G: j \tilde{g} \cong g k$ and get $j \tilde{g} \tilde{H} \circ G \tilde{f} \tilde{\beta} \cong G \tilde{f} \tilde{\alpha} \circ g k \tilde{H}$, hence $j \tilde{g} \tilde{H} \circ j \tilde{\Psi} \tilde{\beta} \circ$ $\Psi^{-1} j \tilde{\beta} \cong j \tilde{\Psi} \tilde{\alpha}^{\circ} \tilde{\Psi}^{-1} j \tilde{\alpha}^{\circ} g k \tilde{H}$ and finally $\Gamma^{\prime} i \cong j\left(\tilde{\Psi}^{-1} \tilde{\alpha} \circ \tilde{g} \tilde{H} \circ \tilde{\Psi} \tilde{\beta}\right)$. The cofibration property allows us to replace Γ^{\prime} by a homotopy $\Gamma: \alpha \cong \beta$ with $\Gamma i=j\left(\tilde{\Psi}^{-1} \tilde{\alpha} \circ \tilde{g} \tilde{H}\right.$ $\left.{ }^{\circ} \tilde{\Psi} \tilde{\beta}\right)$ and in particular $\Gamma(A \times I) \subseteq \tilde{Y}$. This shows that f_{*} is injective. q.e.d.

Let (X, A) be a topological pair with normally embedded subspace and consider the space $X \times\{1\} \cup A \times I$ with the mapping cylinder topology. In general the projection map $p:(X \times\{1\} \cup A \times I, A \times\{0\}) \rightarrow(X, A)$ is not a homotopy equivalence of pairs, although it operates as homotopy equivalence on the total spaces and as homeomorphism of the subspaces. From Lemma 2.9 in part 1 of our paper we know that the situation improves in the ordinary shape category,
and the following theorem extends this result to the strong shape category :
Theorem 1. If A is normally embedded in X then $p:(X \times\{1\} \cup A \times I, A \times$ $\{0\}) \rightarrow(X, A)$ is a strong shape equivalence of pairs.

Corollary 1. Every topological pair with normally embedded subspace has the strong shape of a pair (Y, B), such that the inclution map $B \leftrightarrows Y$ is a closed cofibration.

Proof of Theorem 1. We consider our spaces Y, Y_{1}, Y_{2}, Y_{3} constructed above. The natural projection $\operatorname{map} q:\left(Y, Y_{2}\right) \rightarrow(X, A)$ is a homotopy equivalence of pairs, because $j:(X, A) \rightarrow\left(Y, Y_{2}\right), j(x):=(x, 2)$ is an inverse up to homotopy. The pair $\left(Y_{1}, Y_{3}\right)$ coincides with the mapping cylinder $(X \times\{1\} \cup A \times I, A \times\{0\})$, and the restriction of $q:\left(Y, Y_{2}\right) \rightarrow(X, A)$ to $\left(Y_{1}, Y_{3}\right)$ equals $p:(X \times\{1\} \cup A \times I$, $A \times\{0\}) \rightarrow(X, A)$. Hence it suffices to show that the inclusion map $i:\left(Y_{1}, Y_{3}\right)$ $\hookrightarrow\left(Y, Y_{2}\right)$ is a strong shape equivalence of pairs, wherefore we make use of the right adjoint functor $T: \mathbf{s s h}^{2} \rightarrow \mathbf{H T o p}^{2}$ described in the introduction. We have to show that for every topological pair (Z, C) the induced map $i^{*}: \boldsymbol{H T o p}^{2}\left(Y, Y_{2} ; T(Z, C)\right) \rightarrow \mathbf{H T o p}^{2}\left(Y_{1}, Y_{3} ; T(Z, C)\right.$) is bijective. We recall that $T(Z, C)$ is the limit of an inverse system of pairs $T(Z, C)=\lim \left(\widetilde{P}_{\mathscr{H}}, \widetilde{Q}_{\mathscr{M}}\right)$ and consider a map $g:\left(Y_{1}, Y_{3}\right) \rightarrow \lim \left(\widetilde{P}_{\mathcal{M}}, \widetilde{Q}_{\mathscr{M}}\right)$. We are going to construct a family of maps $h_{\mathscr{M}}:\left(Y, Y_{2}\right) \rightarrow\left(\tilde{P}_{\mathscr{M}}, \tilde{Q}_{\mathscr{M}}\right)$ with $r_{\mathscr{M}} h_{\mathscr{M}}=h_{\mathcal{L}}$ for $\mathscr{M} \supseteq \mathcal{L}$ and $h_{\mathscr{M}}=r_{\mathscr{M}} g$ on $\left(Y_{1}, Y_{3}\right), r_{\mathscr{M}}: \lim \left(\tilde{P}_{\mathscr{M}}, \tilde{Q}_{\mathscr{M}}\right) \rightarrow\left(\tilde{P}_{\mathscr{M}}, \tilde{Q}_{\mathscr{M}}\right)$ being the projection map. The induction is by number of simplices of \mathscr{M}, where we distinguish two cases: If \mathscr{M} does not contain a largest proper subcomplex, then \mathscr{M} equals the union of all its proper subcomplexes \mathcal{L} and therefore $\left(\widetilde{P}_{\mathscr{M}}, \tilde{Q}_{\mathscr{M}}\right)=\lim \left(\tilde{P}_{\mathcal{L}}, \widetilde{Q}_{\mathcal{L}}\right)$ and $h_{\mathscr{M}}=\lim h_{\mathcal{L}}$. If on the other hand there is a largest subcomplex \mathcal{L}, then we have to apply Lemma 2, a to the fibration of ANR-pairs $r_{\mathcal{M}}^{\mathcal{M}}:\left(\widetilde{P}_{\mathcal{H}}, \tilde{Q}_{\mathcal{M}}\right) \rightarrow\left(\widetilde{P}_{\mathcal{L}}, \tilde{Q}_{\mathcal{L}}\right)$ to get $h_{\mathcal{H}}$. This completes the induction and determines a map $h:\left(Y, Y_{2}\right) \rightarrow \lim \left(\widetilde{P}_{\mathscr{M}}, \widetilde{Q}_{\mathscr{M}}\right)$ with $r_{\mathscr{M}} h=h_{\mathscr{M}}$; and we necessarily have $h i=g$. This shows that $i^{*}: \mathbf{H T o p}^{2}\left(Y, Y_{2} ; T(Z, C)\right) \rightarrow \mathbf{H T o p}^{2}\left(Y_{1}, Y_{3} ; T(Z, C)\right)$ is surjective. In a similar way, using Lemma 2.b instead of Lemma 2.a, we see that i^{*} is injective.
q.e.d.

It is obvious that every morphism in the homotopy category of pairs $[f] \in$ $\mathbf{H T o p}^{2}(X, A ; Y, B)$ determines a morphism between the total spaces $\left[f_{1}\right] \in$ $\operatorname{HTop}(X, Y)$ and another one between the relative spaces $\left[f_{2}\right] \in \mathbf{H T o p}(A, B)$. We are going to explain that this carries over to the strong shape category, provided the subspaces are normally embedded. Let $\left\{f_{\lambda}\right\}:(X, A) \rightarrow\left\{g_{\lambda}^{\mu}:\left(P_{\mu}, Q_{\mu}\right)\right.$
$\left.\rightarrow\left(P_{\lambda}, Q_{\lambda}\right) \mid \mu \geqq \lambda \in \Lambda\right\}$ be a resolution of (X, A) in ANR-pairs; if A is normally embedded in X then $\left\{f_{\lambda}\right\}: X \rightarrow\left\{g_{\lambda}^{\mu}: P_{\mu} \rightarrow P_{\lambda}\right\}$ and $\left\{f_{\lambda}^{\prime}\right\}: A \rightarrow\left\{g_{\lambda}^{\prime \mu}: Q_{\mu} \rightarrow Q_{\lambda}\right\}$ are ANR-resolutions. Hence for every strong shape morphism $\alpha \in \operatorname{ssh}^{2}(X, A ; Y, B)$ between pairs with normally embedded subspaces there are unique strong shape morphisms $\alpha_{1} \in \operatorname{ssh}^{2}(X, \varnothing ; Y, \varnothing)$ and $\alpha_{2} \in \operatorname{ssh}^{2}(A, A ; B, B)$ fitting commutatively into the following diagram:

α_{1} is called the total part of α, α_{2} is the relative part; we observe that these two morphisms can be identified with strong shape morphisms $\alpha_{1} \in \operatorname{ssh}(X, Y)$ and $\alpha_{2} \in \mathbf{s s h}(A, B)$ in an obvious way. The uniqueness statement made above implies in particular that the assignments $\alpha \mapsto \alpha_{1}$ and $\alpha \mapsto \alpha_{2}$ are functorial.

Theorem 2. A strong shape morphism $\boldsymbol{\alpha} \in \operatorname{ssh}^{2}(X, A ; Y, B)$ between pairs with normally embedded subspace is a strong shape equivalence of pairs if and only if its total part $\alpha_{1} \in \mathbf{s s h}(X, Y)$ and its relative part $\alpha_{2} \in \mathbf{s s h}(A, B)$ are strong shape equivalences.

Proof. Clearly the condition is necessary; we show that it is also sufficient. Our right adjoint functor $T: \mathbf{s s h}^{2} \rightarrow \mathbf{H T o p}^{2}$ transforms the diagram above into the following form:

We observe that $T\left(i_{1}\right)$ and $T\left(j_{1}\right)$ induce homotopy equivalences of the total spaces and that $T\left(i_{2}\right)$ and $T\left(j_{2}\right)$ induce homotopy equivalences of the subspaces. If α_{1} and α_{2} are strong shape equivalences, then $T\left(\alpha_{1}\right)$ and $T\left(\alpha_{2}\right)$ are homotopy equivalences and therefore $T(\alpha)$ operates as homotopy equivalence on the total spaces and of the relative spaces of the pairs $T(X, A)$ and $T(Y, B)$. Proposition 1 implies that for every pair (Z, C), such that the inclusion map $C \hookrightarrow Z$ is is a cofibration, the induced function $T(\alpha)_{*}: \mathbf{H T o p}^{2}(Z, C: T(X, A)) \rightarrow$ $\mathbf{H T o p}^{2}(Z, C ; T(Y, B))$ is bijective, and hence that $\alpha_{*}: \mathbf{s s h}^{2}(Z, C ; X, A) \rightarrow$
$\boldsymbol{s s h}^{2}(Z, C ; Y, B)$ is bijective. By corollary $1(X, A)$ and (Y, B) have the strong shape of pairs, such that the inclusion maps of the relative space into the total space are cofibrations, and therefore α must be a strong shape equivalence.
q.e.d.

Corollary 2. A continuous map $f:(X, A) \rightarrow(Y, B)$ between pairs with normally embedded subspace is a strong shape equivalence if and only if $f: X \rightarrow Y$ and the restricted mapping $f^{\prime}: A \rightarrow B$ have the properties (a) and (b) from the introduction to part 1 of this paper. A pointed map $f:(X, *) \rightarrow(Y, *)$ is a strong shape equivalence if and only if the unpointed map $f: X \rightarrow Y$ is a strong shape equivalence.

Corollary 3. Let (X, A) be a pair with normally embedded subspace A, such that A has the strong shape of a point. Then the quotient map $p: X \rightarrow X / A$ is a strong shape equivalence.

Remark. By [3] a space has the strong shape of a point if and only if it has the ordinary shape of a point.

Corollary 4. For every pair (X, A) with normally embedded subspace and every homology or cohomology theory H factoring over the strong shape category the quotient map $p:(X, A) \rightarrow(X / A, *)$ induces isomorphisms of the homology respectively cohomology groups $H(p): H(X, A) \rightarrow H(X / A, *)$.

Proof of Corollary 3. Since A has strong shape of a point it cannot be empty, so choose a point $a \in A$. By corollary 2 the inclusion map $i:(X, a)$ $\hookrightarrow(X, A)$ is a strong shape equivalence of pairs and therefore the induced function $i^{*}: \mathbf{H T o p}^{2}(X, A ; T(Y, B)) \rightarrow \mathbf{H T o p}^{2}(X, a ; T(Y, B))$ is bijective for every pair (Y, B). From the description of $T(Y, B)$ given in the preliminaries it is readily seen that for a pointed space $(Y, *)$ the classifying space $T(Y, *)$ can be chosen to be a pointed space too. Then the function $p^{*}: \mathbf{H T o p}^{2}(X / A, * ; T(Y, *)) \rightarrow$ $\mathbf{H T o p}^{2}(X, A ; T(Y, *))$ is bijective, and the same holds for the composed function $(p i)^{*}: \operatorname{HTop}^{2}(X / A, * ; T(Y, *)) \rightarrow \mathbf{H T o p}^{2}(X, a ; T(Y, *))$. Making use of the right adjoint property this shows that $\eta(p i)^{*}: \operatorname{ssh}^{2}(X / A, * ; Y, *) \rightarrow \operatorname{ssh}^{2}(X, a ; Y, *)$ is a bijection. Since $(Y, *)$ was arbitrary $p i:(X, a) \rightarrow(X / A, *)$ must be strong shape equivalence and hence $p:(X, A) \rightarrow(X / A, *)$ is a strong shape equivalence.
q.e.d.

Corollary 4 follows from 3 applied to the pair $(X \cup C A, C A)$.

References

[1] J. Dydak and S. Nowak, Strong shape for topological spaces, Trans. Amer. Math. Soc., 323 (1991), 765-796.
[2] B. Günther, Properties of normal embeddings concerning strong shape theory, I. Tsukuba J. Math., 15 (1991), 261-274.
[3] A. Koyama, S. Mardešić and T. Watanabe, Spaces which admit AR-resolutions, Proc. Amer. Math. Soc., 102 (1988), 749-752.
[4] Ju T. Lisica and S. Mardešić, Coherent prohomotopy and strong shape for pairs, Glasnik Mathematički, 20(40) (1985), 419-343.
[5] Ju T. Lisica and S. Mardešić, Coherent prohomotopy and strong shape theory, Glasnik Matematički, 19(39) (1984), 335-399.
[6] R.M. Vogt, A note on homotopy equivalences, Proc. Amer. Math. Soc., 32 (1972), 627-629.

Fachbereich Mathematik
Johann Wolfgang Goethe-Universität
Robert-Mayer-StraBe 6-10
6000 Frankfurt
Germany

