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ORTHOCOMPACTNESS IN PRODUCTS

By

Nobuyuki KEMOTO and Yukinobu YAJIMA

Abstract. This paper contains two main results. One is to prove
the orthocompactness of products with a metric-like factor. Another
is to characterize the orthocompnct products of spaces of ordinals.
In particular, from this characterization, we can obtain the equi-
valence with the normality of these products.
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1. Introduction.

In product spaces, it is known that “orthocompactness versus metacompact-

ness” behaves like as “normality versus paracompactness”, see [Ao, Sl, S2, S3].

Scott [S1] proved that if $X$ is an orthocompact $P(\kappa)$-space (in the sense of
Morita), then $X\times Y$ is orthocompact for every subspace $Y$ of the Tychonoff
product of countably many discrete spaces of cardinality $\kappa$ . He also conjectured

that $X\times Y$ is orthocompact for every metric space $Y$ of $weight\leqq\kappa$ iff $X$ is an
orthocompact $P(\kappa)$-space. In this connection, we consider the orthocompactness
of products with a metric-like factor. One of our results will show that the
“if” part of his conjecture is true.

Next, he [S2] proved that $\alpha\times\beta$ is normal iff it is orthocompact for any
ordinals $\alpha$ and $\beta$ . Recently, Kemoto, Ohta and Tamano [KOT] have charac-
terized the normality of a product $A\times B$ , where $A$ and $B$ are space of ordinals
with the subspace topology of the usual order topology. Moreover Yajima
[Y1] has introduced the concept of suborthocompactness as a generalized ortho-
compactness, and he has proved some related results in [Yl, Y2].

In this paper, we introduce the concept of weak suborthocompactness as a
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further generalization of suborthocompactness, and we prove a characterization
theorem for the orthocompactness of such a product $A\times B$ . This gives the
equivalence between the normality and the orthocompactness of $A\times B$ . We
also prove a characterization theorem for the paracompactness of $A\times B$ .

2. Notations and definitions.

Throughout this paper, $\alpha,$ $\beta,$ $\gamma,$ $\cdots$ denote ordinals and $\kappa$ denotes a cardinal.
The cofinality of $\alpha$ is denoted by cfa. Intervals $(\alpha, \beta),$ $(\alpha, \beta$ ] and $[\alpha, \beta]$ de-
note the open, half-open and closed, respectively, intervals with the end points
$\alpha$ and $\beta$ . Note that $\alpha<\beta$ and $\alpha\in\beta$ are equivalent. Let $X$ be a set. We de-
note by $P(X)$ the collection of all subsets of $X$ . We denote by $[X]<\kappa$ the col-
lection $\{Y\in P(X):|Y|<\kappa\}$ , where $|Y|$ denotes the cardinality of $Y$ . We
analogously define $[X]\leqq\kappa$ and $[X]^{\kappa}$ . For any sets $X$ and $Y,$ $X^{Y}$ denotes the
collection of all functions from $Y$ into $X$, and $ x<\kappa$ denotes the set $\bigcup_{a\in\kappa}X^{\alpha}$ .
For every $cU\subset P(X)$ and $x\in X,$ $(^{(}U)_{x}$ denotes $\{U\in qj;x\in U\}$ . Let $\subset U$ be a cover
of $X(i.e., \cup^{c}U=X)$ . We say that $\mathcal{V}\subset P(X)$ is a weak refinement of $qj$ if

each member of $\mathcal{V}$ is contained in some member of $cU$ . Furthermore, such a
$\mathcal{V}$ is a refinement of $cU$ if it is a cover of $X$ .

Let $X$ be a space and $\mathcal{V}$ a collection of open sets in $X$ . We say that $\mathcal{V}$

is interior preserving if $\cap \mathcal{V}^{\prime}$ is open for every $\mathcal{V}^{\prime}\subset \mathcal{V}$ . A space $X$ is ortho-
compact if every open cover of $X$ has an interior preserving open refinement.
It is easy to show that a space $X$ is orthocompact iff, for every open cover $cU$

of $X$, there is an open refinement $\mathcal{V}$ of $cU$ such that $\cap(\mathcal{V})_{x}$ is a neighborhood

of $x$ for each $x\in X$ .
A space $X$ is said to be (weakly) suborthocompact if, for every open cover

$cU$ of $X$, there is a sequence $\{\mathcal{V}_{n} : n\in\omega\}$ of (weak) open refinements of $cU$ such
that, for each $x\in X$, there is an $ n\in\omega$ such that $\cap(\mathcal{V}_{n})_{x}$ is a neighborhood of
$x$ . Such a sequence $\{\mathcal{V}_{n} ; n\in\omega\}$ is said to be a (weak) c-sequence for $cU$ . A
space $X$ is $\sigma$ -orthocompact if, for every open cover $ c\cup$ of $X$, there is a sequence
$\{\mathcal{V}_{n} ; n\in\omega\}$ of interior preserving open weak refinements of $cu$ such that

$\bigcup_{n\in\omega}\mathcal{V}_{n}$ covers $X$ . The following implications are obvious from their defini-
tions.

, $\sigma$ -orthocompact
$\sim$

orthocompact weakly suborthocompact
$\sim suborthocompact$ ’

In the last section, weak suborthocompactness plays an important role.
Here, we give some equivalent conditions for it.
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PROPOSITION 2.1. The following are equivalent for a space $X$ .
(1) $X$ is weakly suborthocompact.
(2) For every open cover $cU$ of $X$, there is a sequence $\{\mathcal{V}_{n} ; n\in\omega\}$ of weak

open refinements of $CU$ such that, for each $x\in X$, there is an $ n\in\omega$ with $ x\in$

$\cap(\mathcal{V}_{n})_{x}\in \mathcal{V}_{n}$ .
(3) For every open cover $cUoJX$, there is a cover $\bigcup_{n\in\omega}W_{n}$ of $X$ such that,

for each $x\in X$, there are an $ n\in\omega$ and a $U_{x}\in^{c}U$ such that $\cap(q\mu_{n})_{x}$ is a neigh-
borhood of $x$ and is contained in $U_{x}$ .

PROOF. The implications (2) $\rightarrow(1)\rightarrow(3)$ are obvious. We show (3) $\rightarrow(2)$ . Let
$\subset U$ be an open cover of $X$ . Let $\bigcup_{n\in\omega}\psi_{n}$ be a cover of $X$ described in (3). For
each $ n\in\omega$ , let $X_{n}=\{x\in X:\cap(clt^{1_{n}})_{x}$ is a neighborhood of $x$ and is contained in
some $U_{x}\in^{c}U$ }. For each $x\in X_{n},$ $ n\in\omega$ , let $V_{n}(x)=int(\cap(\wp)_{x})$ . Put $\mathcal{V}_{n}=$

$\{V_{n}(x):x\in X_{n}\}$ for each $ n\in\omega$ . Then each $\mathcal{V}_{n}$ is a weak open refinement of
$cU$ . Pick any $x\in X$. Since $\{X_{n} : n\in\omega\}$ covers $X$ , choose some $ n\in\omega$ with $x\in X_{n}$ .
For each $y\in X_{n}$ with $x\in V_{n}(y)$ , we have $V_{n}(x)\subset V_{n}(y)$ . In fact, $x\in\cap(q\nu_{n})_{y}$

implies $(\psi_{n})_{x}\supset(q\mu_{n})_{y}$ . So it follows that $\cap(\mathcal{V}_{n})_{x}=\cap\{V_{n}(y):y\in X_{n}$ with $ x\in$

$V_{n}(y)\}\supset V_{n}(x)$ . This implies that $\cap(\mathcal{V}_{n})_{x}=V_{n}(x)\in \mathcal{V}_{n}$ .

Unfortunately, a similar characterization for suborthocompactness is still
not obtained.

3. Products with a metric-like factor.

Throughout this section, $\kappa$ denotes an infinite cardinal. The following is
easy to show.

LEMMA 3.1. Let $qj_{\alpha}$ be an interior preserving collection of open sets in a
space $X$ for each $\alpha$ in an index set $\Omega$ . If $\{V_{\alpha} : \alpha\in\Omega\}$ is a point-finite collection

of open sets in a space $Y$, then { $U\times V_{\alpha}$ : $U\in\epsilon U_{\alpha}$ and $\alpha\in\Omega$ } is interior preserv-
ing in $X\times Y$ .

THEOREM 3.2. Let $X$ be an orthocompact space and $Y$ a space with a $\sigma-$

point-finite base. If the product $X\times Y$ is countably paracompact, then it is ortho-
compact.

PROOF. Let $q$] be an open cover of $X\times Y$ . Without loss of generality, we
may assume that $\mathscr{Q}=\bigcup_{n\in\omega}\mathscr{Q}_{n}$ is a base for $Y$ such that

1) each $\mathscr{Q}_{n}$ is point-finite,
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2) $\mathscr{D}_{n}\subset 9_{n+1}$ for each $ n\subset\omega$ ,

3) each $\mathscr{Q}_{n}$ is closed under finite intersections.
For each $U\subset X\times Y$ and each $B\in 9$ , let

$ G(B, U)=\cup$ { $G:G$ is an open set in $X$ such that $G\times B\subset U$ }.

Let $G(B)=()\{G(B, U):U\in W\}$ for each $B\in \mathscr{Q}$ , and let $P_{n}=\cup\{G(B)\times B:B\in 9_{n}\}$

for each $ n\in\omega$ . By 2), $\{P_{n} : n\in\omega\}$ is an increasing open cover of $X\times Y$ . Since
$X\times Y$ is countably paracompact, there is an increasing open cover $\{Q_{n} : n\in\omega\}$

of $X\times Y$ such that cl $Q_{n}\subset P_{n}$ for each $ n\in\omega$ . Pick an $ n\in\omega$ and a $B\in B_{n}$ . Let
$F(B)=c1G(B, Q_{n})$ . For each $y\in B$ , let $B_{y}=\cap(B_{n})_{y}$ . By 3), we have $ B_{y}\in$

$(9_{n})_{y}$ . Since $F(B)\times\{y\}\subset c1Q_{n}\subset P_{n}$ , it follows that $F(B)\times\{y\}\subset\cup\{G(B^{\prime})\times B^{\prime}$ :
$B^{\prime}\in(9_{n})_{y}\}$ . Since $B{}_{y}CB$ whenever $B^{\prime}\in(9_{n})_{y}$ , we have $G(B^{\prime})\subset G(B_{y})$ . Thus
we obtain

4) $F(B)\times\{y\}\subset G(B_{y})\times B_{y}$ for each $y\in B$ .
Next, for any $y$ and $y^{\prime}$ in $B$ , define $y\cong y^{\prime}$ by $B_{y}=B_{y^{\prime}}$ . $7I^{\backslash }hen\cong$ is clearly an
equivalence relation on $B$ . Let $ B/\cong$ be the quotient of $B$ by $\cong$ . Furthermore,

for $ E\in B/\cong$ define $B_{E}=B_{y}$ $(\in \mathscr{Q}_{n})$ for some (in fact, any) $y\in E$ . Then
$\{B_{B} : E\in B/\cong\}$ is a point-finite open cover of $B$ , all members of which are
distinct and belong to $\mathscr{Q}_{n}$ . Moreover, it follows from 4) that $F(B)\subset G(B_{E})$

for each $ E\in B/\cong$ . Hence $F(B)\subset\cup\{G(B_{E}, U):U\in W\}$ . Since $F(B)$ is closed
in $X$, and hence orthocompact, for each $ E\in B/\cong$ , there is an interior pre-
serving collection $CW(E)=\{W(B_{E}, U):U\in v\}$ of open sets in $X$ such that
$W(B_{E}, U)\subset G(B_{E}, U)$ for each $U\in cU$ and $F(B)\subset\cup q\psi(E)$ . Put $ct\nu_{n}=\{W(B_{E}, U)$

$\times B_{E}$ : $E\in B/\cong,$ $B\in 9_{n}$ and $U\in^{c}u$ } for each $ n\in\omega$ , and put $cw=\bigcup_{n\in\omega^{C}}W_{n}$ . Then
it follows from Lemma 3.1 that each $\mathscr{U}_{n}$ is interior preserving. Since $W(B_{E}, U)$

$\times B_{E}\subset G(B_{E}, U)\times B_{E}\subset U\in qj$ , each $ct\nu_{n}$ is a weak open refinement of $cU$ . To
show $cW$ is a cover of $X\times Y$ , pick a point $\langle x, y\rangle$ in $X\times Y$ . Then there is an
$ m\in\omega$ with $\langle x, y\rangle\in Q_{m}$ . Since $\sim\oplus$ is a base for $Y$ and $Q_{m}$ is open in $X\times Y$ ,

there are an open set $G$ in $X$ and a $B\in g$ such that $\langle x, y\rangle\in G\times B\subset Q_{m}$ . By
2), we may assume $B\in B_{n}$ with $m\leqq n$ . Then $x\in G\subset G(B, Q_{n})\subset F(B)$ . Picking
$E$ in $ B/\cong$ with $y\in B_{E}$ , we have $\langle x, y\rangle\in F(B)\times\{y\}\subset(\cup\tau\nu(E))\times B_{E}$ . So there
is a $U\in cU$ such that $x\in W(B_{E}, U)$ . This means $\langle x, y\rangle\in W(B_{E}, U)\times B_{E}\in W_{n}$ .
Hence $cW$ covers $X\times Y$ . This argument concludes that $X\times Y$ is $\sigma$ -orthocompact.

Here notice that $\sigma$ -orthocompact, countably metacompact spaces are orthocom-
pact, see [Sl, Proposition 0.1]. Since $X\times Y$ is countably metacompact, it is
orthocompact.

Since $X\times M$ is normal iff it is countably paracompact whenever $X$ is normal
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and $M$ is a non-discrete metric space (cf. [RS]), Theorem 3.2 yields the fol-
lowing.

COROLLARY 3.3. The normal product of an orthocompact space and a metric
space is orthocompact.

Next we consider the product of an orthocompact P-space and a metric-like
space.

LEMMA 3.4. If a space $Y$ has a $\sigma- point- finite$ base of $ cardinality\leqq\kappa$ , then
it has a base $\mathscr{Q}=\bigcup_{n\in\omega}\mathscr{Q}_{n}$ , satisfying;

(1) $B_{n}=\{B(p):p\in\kappa^{n}\}$ for each $ n\in\omega$ ,

(2) each $\mathscr{Q}_{n}$ is point-finite,
(3) $B(p)=\cup\{B(p)\cup\{\langle n, \alpha\rangle\}):\alpha\in\kappa\}$ for each $p\in\kappa^{n}$ , where we consider

$p\in\kappa^{n}$ as the set $\{\langle i, p(i)\rangle : i\in n\}$ ,

(4) for each $y\in Y$ , there is a $\tilde{y}\in\kappa^{\omega}$ such that $\{B(\tilde{y}|n);n\in\omega\}$ is a neigh-
borhood base at $y$ , where $\tilde{y}|n$ denotes the restriction of $\tilde{y}$ to $n$ (thus $\tilde{y}|n\in\kappa^{n}$ ).

PROOF. Let $\mathscr{Q}^{\prime}=\bigcup_{n\in\omega}\mathscr{Q}_{n}^{\prime}$ be a base of $Y$ such that $|\mathscr{Q}^{\prime}|\leqq\kappa$ , and each $B_{n}^{\prime}$

is point-finite in $Y$ . We may assume that $X\in \mathscr{D}_{n}^{\prime}$ and $\mathscr{Q}_{n}^{\prime}$ is closed under finite
intersections for each $ n\in\omega$ . Let $\mathscr{Q}_{n}^{\prime}=\{B_{\alpha}^{n} : \alpha\in\kappa\}$ , where $B_{0}^{n}=X$. Note that
some $B_{\alpha}^{n}$ may be empty. For each $p\in\kappa^{<\omega}$ , let $B(p)=\cap\{B_{a}^{i} : \langle i, \alpha\rangle\in p\}$ . Put
$B_{n}=\{B(p):p\in\kappa^{n}\}$ for each $ n\in\omega$ . Then $\mathscr{D}=\bigcup_{n\in\omega}B_{n}$ satisfies the desired
conditions.

DEFINITION. A space $X$ is called a $P(\kappa)$-space (in the sense of Morita [Mo])

if, for every collection $\{U(p):p\in\kappa^{<\omega}\}$ of open sets in $X$ such that $U(p)\subset U(q)$

for any $p,$ $q\in\kappa^{<\omega}$ with $p\subset q$ , there is a collection $\{F(p):p\in\kappa^{<\omega}\}$ of closed sets
in $X$, satisfying

1) $F(p)\subset U(p)$ for any $p\in\kappa^{<\omega}$ ,

2) if $f\in\kappa^{\omega}$ with $\bigcup_{n\in\omega}U(f|n)=X$, then $\bigcup_{n\in\omega}F(f|n)=X$.
In case $X$ is a $P(\kappa)$-space for any cardinal $\kappa,$

$X$ is called a P-space.

LEMMA 3.5. The product $X\times Y$ of an orthocompact $P(\kappa)$-space $X$ and a
space $Y$ with a $\sigma- point- fimte$ base of $ cardinality\leqq\kappa$ is $\sigma$ -orthocompact.

PROOF. Let $CU$ be an open cover of $X\times Y$ and $B=\bigcup_{n\in\omega}B_{n}$ a base for $Y$

described in Lemma 3.4. We use the same notation $G(B, U)$ as in the proof of
Theorem 3.2. Let $G(p)=\cup\{G(B(p), U);U\in qJ\}$ for each $ p\in\kappa<\omega$ Then { $G(p)$ :
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$p\in\kappa^{<\omega}\}$ is a collection of open sets in $X$ such that $G(p)\subset G(q)$ for any $p,$ $ q\in\kappa<\omega$

with $p\subset q$ . Since $\{B(\tilde{y}|n):n\in\omega\}$ is a neighborhood base at $y$ for each $y\in Y$ , it
follows that $\bigcup_{n\in\omega}G(\tilde{y}|n)=X$, where $\tilde{y}$ is the same one as is described in 4) of
Lemma 3.4. Since $X$ is a $P(\kappa)$-space, there is a collection $\{F(p):p\in\kappa^{<\omega}\}$ of
closed sets in $X$ such that $F(p)\subset G(p)$ for each $ p\in\kappa<\omega$ and $\bigcup_{n\in\omega}F(\tilde{y}|n)=X$ for
each $y\in Y$ . Since $\{G(B(\rho), U):U\in\epsilon U\}$ is an open cover of the closed set $F(p)$ ,

there is an interior preserving collection $\psi(p)=\{W(p, U):U\in\epsilon U\}$ of open sets
in $X$ such that $W(p, U)cG(B(p), U)$ for each $U\in^{c}U$ and $F(p)\subset\cup 9\mu(p)$ . It fol-
lows from Lemma 3.1 that $c\nu_{n}=$ { $W(p,$ $U)\times B(p):p\in\kappa^{n}$ and $U\subseteq^{c}U$ } is an interior
preserving open weak refinement of $cu$ for each $ n\in\omega$ . It is not difficult to
verify that $W=\bigcup_{n\in\omega^{C}}W_{n}$ covers $X\times Y$ . Hence $X\times Y$ is $\sigma$ -orthocompact.

Since countably metacompact, $\sigma$ -orthocompact spaces are orthocompact, the
above lemma yields the following.

THEOREM 3.6. Let $X$ be an orthocompact $P(\kappa)$-space and $Y$ a space with a
$\sigma- point- finite$ base of $ cardinality\leqq\kappa$ . If the product $X\times Y$ is countably metacom-
pact, then it is orthocompact.

Nagami proved in [Na, Theorem 4.10] that the normal product of a P-
space and a strong $\sum$ -space is countably paracompact. But he actually proved
the following lemma.

LEMMA 3.7. The product $X\times Y$ of a $P(\kappa)$-space $X$ and a strong $\Sigma(\kappa)$-space
$Y$ is countably metacompact.

Since metacompact developable spaces of $weight\leqq\kappa$ are strong $\sum(\kappa)$-spaces
with a a.point-finite base of cardinality\leqq \kappa , Theorem 3.6 and Lemma 3.7 yield

the following.

COROLLARY 3.8. The product of an orthocompact $P(\kappa)$-space and a meta-
compact developable space of $ weight\leqq\kappa$ is orthocompact.

REMARK. This corollary is a generalization of [Sl, Theorem 2.5] and an
affirmative answer to the one direction of the Scott’s conjecture following

Theorem 2.1 in [S1]. Note that a similar result was proved for a GO-space $X$,

see [S2, Theorem 4.10].

EXAMPLE 3.9. There are an orthocompact P-space $X$ and a compact $T_{2^{-}}$

space $C$ such that $X\times C$ is normal but not orthocompact.



Orthocompactness in products 413

Let $X$ be the space $\omega_{1}$ with the usual order topology and $C$ the one-point
compactification of $\omega_{1}$ with the discrete topology. Then $X\times C$ is normal but
not orthocompact, as is pointed out in [Ao, Example 4.3]. Note that $X$ is a
P-space, because it is countably compact.

4. The orthocompactness of products of spaces of ordinals.

Throughout this section, $A$ and $B$ always denote spaces of ordinals with the
subspace topologies of $supA+1$ and $supB+1$ , respectively, with the usual order
topology. Note that $A$ and $B$ are hereditarily orthocompact, see [Lu]. We
characterize the orthocompactness and the paracompactness of the product $A\times B$ .
As a corollary, we show that $A\times B$ is orthocompact iff it is normal.

Let $\alpha$ be an ordinal with $cf\alpha\geqq\omega_{1}$ . A strictly increasing sequence { $f(\gamma)$ :
$\gamma\in cf\alpha\}$ in $\alpha$ is said to be normal in $\alpha$ if $f(\gamma)=\sup\{f(\gamma^{\prime}):\gamma^{\prime}\in\gamma\}$ for each limit
ordinal $\gamma\in cf\alpha$ , and $\alpha=\sup\{f(\gamma):\gamma\in cf\alpha\}$ . Considering $f$ as a function with
the domain $cf\alpha$ and the range $\alpha$ , we identify $f=\{f(\gamma):\gamma\in cf\alpha\}$ . Note that
there always exists a normal sequence in $\alpha$ , and that $f$ can be considered as a
closed copy of $cf\alpha$ in $\alpha$ whenever it is normal in $\alpha$ .

First, we need some propositions and subsidiary notations. The proof of
the following is a routine.

PROPOSITION 4.1. Let $\alpha$ be an ordinal with $cJ\alpha\geqq\omega_{1}$ , and let $f$ and $g$ be
two normal sequences in $\alpha$ . Then $\{\gamma\in cf\alpha:f(\gamma)=g(\gamma)\}$ contains a closed unbounded
(abbreviated as $cub$ ) set in $ cf\alpha$ .

Recall that a subset in a regular uncountable cardinal $\kappa$ is stationary if it
meets all cub sets in $\kappa$ . Using Proposition 4.1, the proof of the following is
also a routine.

PROPOSITION 4.2. Under the same $assumpt\iota on$ as in Proposition 4.1, { $\gamma\in cf\alpha$ ;

$f(\gamma)\in A\}$ is stationary iff so is $\{\gamma\in cf\alpha : g(\gamma)\in A\}$ .

REMARK. Let $A$ be the set of all non-limit ordinals in $\omega_{1}$ . Let $f=\{f(\gamma)$ :
$\gamma\in\omega_{1}\}$ defined by $ f(\gamma)=\gamma$ for each $\gamma\in\omega_{1}$ . Let $g=\{g(\gamma):\gamma\in\omega_{1}\}$ be the increas-
ing enumeration of the set of all limit ordinals in $\omega_{1}$ . Clearly, $f$ and $g$ are
normal sequences in $\omega_{1}$ . Then $\{\gamma\in\omega_{1} : f(\gamma)\in A\}$ is unbounded in $\omega_{1}$ (in fact,
$=A)$ , but $\{\gamma\in\omega_{1} : g(\gamma)\in A\}$ is not unbounded in $\omega_{1}$ (in fact, $=\emptyset$ ). Thus, in
general, the unboundedness of $\{\gamma\in cf\alpha:f(\gamma)\in A\}$ does not coincide with that of
$\{\gamma\in cf\alpha:g(\gamma)\in A\}$ even if $f$ and $g$ are normal sequences in $\alpha$ . But the above
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lemma means that the stationarity of them does not depend on the choices of
normal sequences.

NOTATION. Hereafter, for every ordinal $\alpha$ with $cf\alpha\geqq\omega_{1}$ , fix a normal
sequence $\tilde{\alpha}$ in $\alpha$ . By $ A\triangle\alpha$ , we denote the set $\{\gamma\in cf\alpha;\tilde{\alpha}(\gamma)\in A\}$ .

Note that $\{\tilde{\alpha}(\gamma):\gamma\in A\triangle\alpha\}$ is a closed subspace of $ A\cap\alpha$ . Making the nota-
tion simple, we rewrite $\alpha$ instead of $\tilde{\alpha}$ . That is, the normal sequence a $(=\alpha)$

is considered as the set $\{\alpha(\gamma):\gamma\in cf\alpha\}$ . So we observe $A\triangle\alpha=\{\gamma\in cf\alpha;\alpha(\gamma)\in A\}$ .
From the contexts, we can easily distinguish between an ordinal $\alpha$ and a
normal sequence $\alpha$ . If $\alpha$ is a regular uncountable cardinal, then we may con-
sider the normal sequence $\alpha$ defined by $\alpha(\gamma)=\gamma$ for each $\gamma\in\alpha$ , so we may
assume $ A\triangle\alpha=A\cap\alpha$ .

The proof of the following is also a routine.

LEMMA 4.3. Let $\alpha$ be an ordinal. Assume that $cf\alpha\geqq\omega_{1}$ and $ A\triangle\alpha$ is not

stationary in $ cf\alpha$ , or assume that $ cf\alpha=\omega$ . Then $ A\cap\alpha$ is a free union $ oJcf\alpha$

many bounded, closed-open subspaces.

In our proofs below, we often use the Pressing Down Lemma (PDL for
short). For a regular cardinal $\kappa,$ $Lim(\kappa)$ denotes the cub set { $\gamma\in\kappa:\gamma$ is a limit
ordinal} in $\kappa$ .

LEMMA 4.4. Let $\alpha$ and $\beta$ be ordinals with $\kappa=cf\alpha=cf\beta\geqq\omega_{1},$ $ A\subset\alpha$ and $ B\subset\beta$ .
If $X=(A\cup\{\alpha\})\times B$ is weakly suborthocompact, then $A$ is bounded in $\alpha$ or $ B\triangle\beta$

is not stationary in $\kappa$ .

PROOF. Assume that $A$ is unbounded in $\alpha$ and $ B\triangle\beta$ is stationary in $\kappa$ .
One can choose a strictly increasing cofinal sequence $\{h(\gamma):\gamma\in\kappa\}$ in $\alpha$ such

that $h(\gamma)\in A$ for each $\gamma\in\kappa$ . Let $ U_{\gamma}=(h(\gamma), \alpha$] $\times[0, \beta(\gamma)]\cap X$ for each $\gamma\in B\triangle\beta$ .
Then $\epsilon u=\{A\times B\}\cup\{U_{\gamma} : \gamma\in B\triangle\beta\}$ is an open cover of $X$ . By the weak sub-

orthocompactness of $X$, we can take a weak $\iota$ -sequence $\{^{c}u_{n} : n\in\omega\}$ for $cU$ .
For each $\gamma\in(B\triangle\beta)\cap Lim(\kappa)$ , pick an $ n(\gamma)\in\omega$ such that $\cap(qj_{n(\gamma)})_{\langle a.\beta(\gamma)\rangle}$ is a
neighborhood of the point $\langle\alpha, \beta(\gamma)\rangle$ in $X$, and take an $ f(\gamma)\in\gamma$ , a $ g(\gamma)\in\kappa$ and
$\phi(\gamma)\in B\triangle\beta$ such that

1) $ V_{\gamma}=(h(g(\gamma)), \alpha$ ] $\times(\beta(f(\gamma)), \rho(\gamma)$] $\cap X\subset\cap(cU_{n(\gamma)})_{\langle\alpha,\beta(\gamma)\rangle}\subset U_{\emptyset(\gamma)}$ .

The final inclusion of 1) is assured by the weak refinementness of $q]_{n(\gamma)}$ of $cU$ .
By $\langle\alpha, \beta(\gamma)\rangle\in U_{\phi(\gamma)}$ , note that $\gamma\leqq\phi(\gamma)$ . Since $ B\triangle\beta$ is stationary in $\kappa,$

$ n(\gamma)\in\omega$
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and $ f(\gamma)\in\gamma$ , it follows from the PDL that there are a stationary set $S\subset(B\triangle\beta)$

$\cap Lim(\kappa)$ , an $ n\in\omega$ and a $\gamma_{0}\in\kappa$ such that

2) $n(\gamma)=n$ and $f(\gamma)=\gamma_{0}$ for each $\gamma\in S$ .

Take a $\gamma_{1}\in S$ witn $\gamma_{0}\in\gamma_{1}$ , and let $\beta_{1}=\beta(\gamma_{1})$ . By 1) and 2), we have $\langle\alpha, \beta_{1}\rangle$

$\in V_{\gamma}$ for each $\gamma\in S$ with $\gamma_{I}\in\gamma$ , because of $\beta(f(\gamma))=\beta(\gamma_{0})\in\beta(\gamma_{1})=\beta_{1}\in\beta(\gamma)$ . Hence

$\langle\alpha, \beta_{1}\rangle\in\cap$ { $V_{\gamma}$ : $\gamma\in S$ and $\gamma_{1}\in\gamma$ }

$\subset\cap$ { $\cap(cU_{n})_{\langle\alpha.\beta(\gamma)\rangle}$ : $\gamma\in S$ and $\gamma_{1}\in\gamma$ }.

Therefore, we conclude

3) $\langle\alpha, \beta_{1}\rangle\in\cap(\epsilon U_{n})_{\langle\alpha.\beta_{1}\rangle}$

$\subset\cap$ { $\cap(cU_{n})_{\langle\alpha,\beta(\gamma)\rangle}$ : $\gamma\in S$ and $\gamma_{1}\in\gamma$ }

$\subset\cap$ { $U_{\phi(\gamma)}$ : $\gamma\in S$ and $\gamma_{1}\in\gamma$ }

$\subset\{\alpha\}\times\beta\cap X$

Where the last inclusion follows from the unboundedness of { $\phi(\gamma);\gamma\in S$ and
$\gamma_{1}\in\gamma\}$ in $\kappa$ . Since $A$ is unbounded in $\alpha$ , $int_{X}(\{\alpha\}\times\beta\cap X)=\phi$ . Thus by 3),

$int_{X}(\cap(\epsilon U_{n})_{\langle\alpha.\beta_{1}\rangle})$ is empty. On the other hand, by $\gamma_{1}\in S,$ $\cap(cU_{n})_{\langle\alpha,\beta_{1}\rangle}$ is a
neighborhood of $\langle\alpha, \beta_{1}\rangle$ . But this is a contradiction.

LEMMA 4.5. Let $\kappa$ be a regular uncountable cardinal, $ A\subset\kappa$ and $ B\subset\kappa$ . $IJ$

$X=A\times B$ is weakly suborthocompact, then $A$ is non-stationary in $\kappa,$
$B$ is non-

stationary in $\kappa$ , or $A\cap B$ is stationary in $\kappa$ .

PROOF. Assume the contrary. Without loss of generally, we may assume
that $A$ and $B$ are stationary sets in $\kappa$ such that $ A\cap B=\phi$ . In fact, take a cub
set $C$ in $\kappa$ such that $ A\cap B\cap C=\phi$ . Since weak suborthocompactness is a closed
hereditary property, we may consider $A\cap C$ and $B\cap C$ instead of $A$ and $B$ ,

respectively. Let $Y=\{\langle\alpha, \beta\rangle\in X:\beta\in\alpha\}$ . Then $Y$ is closed in $X$ . So $Y$ is
weakly suborthocompact. Let $U_{\gamma}=(\gamma, \kappa)\times[0, \gamma]\cap Y$ for each $\gamma\in\kappa$ . Then $cU=$

$\{U_{\gamma} : \gamma\in\kappa\}$ is an open cover of $Y$ . There is an weak $\iota$ -sequence 1 $U_{n}$ ; $ n\in\omega$ }
for $cU$ . First, fix an arbitrary $\beta\in B$ . For each $\alpha\in A-[0, \beta]$ , take an $n(\alpha, \beta)$

$\in\omega$ such that $\cap(cU_{n(\alpha,\beta)})_{\langle\alpha.\beta\rangle}$ is a neighborhood of $\langle\alpha, \beta\rangle$ . Furthermore, take
an $ f(\alpha, \beta)\in\alpha$ with $\beta\leqq f(\alpha, \beta)$ , a $ g(\alpha, \beta)\in\beta$ and a $\gamma(\alpha, \beta)\in\kappa$ such that

1) $\langle\alpha, \beta\rangle\in(f(\alpha, \beta),$ $\alpha$] $\times(g(\alpha, \beta),$ $\beta$ ] $\cap Y$

$\subset\cap(qj_{n(\alpha.\beta)})_{\langle\alpha.\beta\rangle}\subset U_{\gamma(\alpha.\beta)}$ .
Here note that
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2) $\beta\leqq\gamma(\alpha, \beta)\in\alpha$ .

It follows from the PDL that there are a stationary set $A(\beta)cA-[0, \beta]$ , an
$ n(\beta)\in\omega$ , an $ f(\beta)\in\kappa$ and a $ g(\beta)\in\beta$ such that

3) $n(\alpha, \beta)=n(\beta),$ $f(\alpha, \beta)=f(\beta)$ and $g(\alpha, \beta)=g(\beta)$ for each $\alpha\in A(\beta)$ .
Here notice that

4) $\beta\leqq f(\beta)$ .
Next, moving $\beta$ over $B$ , it follows from the PDL that there are a stationary

set $S\subset B$ , an $ n\in\omega$ and a $\beta_{0}\in\kappa$ such that

5) $n(\beta)=n$ and $g(\beta)=\beta_{0}$ for each $\beta\in S$ .
By 1), 3) and 5), we observe that

6) $S\subset B$ is a stationary set and, for each $\beta\in S,$ $A(\beta)\subset A-[0, \beta]$ is a
stationary set such that, for each $\alpha\in A(\beta)$ ,

$\langle\alpha, \beta\rangle\in(f(\beta), \alpha]\times[\beta_{0}, \beta]\cap Y\subset\cap(U_{n})_{\langle a.\beta\rangle}\subset U_{\gamma(\alpha.\beta)}$ .

Take a $\beta_{1}\in S$ with $\beta_{0}\in\beta_{1}$ , and an $\alpha_{1}\in A(\beta_{1})$ with $f(\beta_{1})\in\alpha_{1}$ . Take a $\beta_{2}\in S$

with $\alpha_{1}\in\beta_{2}$ , and an $\alpha_{2}\in A(\beta_{1})$ with $f(\beta_{2})\in\alpha_{2}$ . Moreover take an $\alpha_{3}\in A(\beta_{2})$

with $\alpha_{2}\in\alpha_{3}$ . By 4), note that $\beta_{0}\in\beta_{1}\leqq f(\beta_{1})\in\alpha_{1}\in\beta_{2}\leqq f(\beta_{2})\in\alpha_{2}\in\alpha_{3}$ . Choose
the three points $x=\langle\alpha_{1}, \beta_{1}\rangle,$ $ y=\langle\alpha_{2}, \beta_{1}\rangle$ and $ z=\langle\alpha_{3}, \beta_{2}\rangle$ in $Y$ . Then by 6), we
have

$y=\langle\alpha_{2}, \beta_{1}\rangle\in(f(\beta_{2}), \alpha_{3}]\times(\beta_{0}, \beta_{2}]\cap Y\subset\cap(qJ_{n})_{z}\subset U_{\gamma(z)}$ ,

where $\gamma(z)=\gamma(\alpha_{3}, \beta_{2})$ . Since $y\in\cap(cU_{n})_{z}$ implies $(^{c}U_{n})_{z}C(CU_{n})_{y}$ , it follows from
6) again that

$x=\langle\alpha_{1}, \beta_{1}\rangle\in(f(\beta_{1}), \alpha_{2}]\times(\beta_{0}, \beta_{1}]\cap Y$

$\subset\cap(\epsilon U_{n})_{y}\subset\cap((U_{n})_{z}\subset U_{\gamma(z)}$ .
However, by 2), notice $\alpha_{1}\in\beta_{2}\leqq\gamma(\alpha_{3}, \beta_{2})=\gamma(z)$ . Hence we have $ x=\langle\alpha_{1}, \beta_{1}\rangle\not\in$

$(\gamma(z), \kappa)\times[0, \gamma(z)]\cap Y=U_{\gamma(z)}$ . This contradicts $x\in U_{\gamma(z)}$ .

LEMMA 4.6. A product $A\times B$ is not orthocompact iff there are some ordinals
$\alpha$ and $\beta$ which satisfy the following conditions;

(a) $cf\alpha=cf\beta\geqq\omega_{1}$ ,

(b) $\alpha\not\in A$ or $\beta\not\in B$ ,

(c) $(A\cap[0, \alpha])\times(B\cap[0, \beta])$ is not orthocompact,
(d) $(A\cap[0, \alpha^{\prime}])\times(B\cap[0, \beta])$ is orthocompact for each $\alpha^{\prime}\in\alpha$ .
(e) $(A\cap[0, \alpha])\times(B\cap[0, \beta^{\prime}])$ is orthocompact for each $\beta^{\prime}\in\beta$ .
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PROOF. The “if” part immediately follows from (c), because $(A\cap[0, \alpha])\times$

$(B\cap[0, \beta])$ is a closed-open subspace of $A\times B$ .
To show the “only if” part, assume that $X=A\times B$ is not orthocompact.

Let
$\alpha_{0}=\min$ { $\alpha;(A\cap[0,$ $\alpha])\times B$ is not orthocompact}

$\beta_{0}=\min$ { $\beta:(A\cap[0,$ $\alpha_{0}])\times(B\cap[0,$ $\beta])$ is not orthocompact}.

Then it is easy to show that $cf\alpha_{0}\geqq\omega$ and $cf\beta_{0}\geqq\omega$ . Furthermore, the following
are clearly true.

1) $Y=(A\cap[0, \alpha_{0}])\times(B\cap[0, \beta_{0}])$ is not orthocompact.

2) $Z^{\alpha}=(A\cap[0, \alpha])\times(B\cap[0, \beta_{0}])$ is orthocompact for each $\alpha\in\alpha_{0}$ .
3) $Z_{\beta}=(A\cap[0, \alpha_{0}])\times(B\cap[0, \beta])$ is orthocompact for each $\beta\in\beta_{0}$ .

We show that these $\alpha_{0}$ and $\beta_{0}$ are desired ones. By 1), there is some open
cover $qj$ of $Y$ which has no interior preserving open refinement.

CLAIM 1. $\alpha_{0}\not\in A$ or $\beta_{0}\not\in B$ .

PROOF. Assume that $\alpha_{0}\in A$ and $\beta_{0}\in B$ . Take an UE $cU$ with $\langle\alpha_{0}, \beta_{0}\rangle\in U$ ,

an $\alpha\in\alpha_{0}$ and a $\beta\in\beta_{0}$ such that $V=(\alpha, \alpha_{0}$] $\times(\beta, \beta_{0}$] $\cap Y\subset U$ . Since, by 2) and
3), $Z=Z^{\alpha}\cup Z_{\beta}$ is an orthocompact closed-open subspace of $Y$ , take an interior
preserving open refinement $\mathcal{V}^{\prime}$ of $\{Z\cap U:U\in cU\}$ in $Z$ . Then $\mathcal{V}=\mathcal{V}^{\prime}\cup\{V\}$

is clearly an interior preserving open refinement of $cU$ . Tnis is a contradiction.

CLAIM 2. i) If $\alpha_{0}\not\in A$ , then $cf\alpha_{0}\geqq\omega_{1}$ and $A\triangle\alpha_{0}$ is stationary in $cf\alpha_{0}$ . ii)

If $\beta_{0}\not\in B$ , then $cf\beta_{0}\geqq\omega_{1}$ and $B\triangle\beta_{0}$ is stationary in $cf\beta_{0}$ .

PROOF. i): Assume $cf\alpha_{0}=\omega$ or assume that $cf\alpha_{0}\geqq\omega_{1}$ and $A\triangle\alpha_{0}$ is not
stationary in $cf\alpha_{0}$ . In any cases, it follows from Lemma 4.3 that $A\cap\alpha_{0}$ is the
free union of $\{A(\gamma):\gamma\in cf\alpha_{0}\}$ , where each $A(\gamma)$ is a bounded, closed-open sub-
space. Then $Y$ is the free union of $\{A(\gamma)\times(B\cap[0, \beta_{0}]):\gamma\in cf\alpha_{0}\}$ . Since each
$A(\gamma)\times(B\cap[0, \beta_{0}])$ is orthocompact, so is $Y$ . This contradicts 1). The case of
ii) is similar.

CLAIM 3. $cf\alpha_{0}=cf\beta_{0}$ .

PROOF. Assume the contrary. We may assume $cf\alpha_{0}\in cf\beta_{0}$ . From Claim 1,
we can consider the three cases.

CASE 1. $\alpha_{0}\not\in A$ and $\beta_{0}\not\in B$ .
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By Claim 2, note $cf\alpha_{0}\geqq\omega_{1}$ and $cf\beta_{0}\geqq\omega_{1}$ . First, fix a $\gamma\in\Lambda\triangle\alpha_{0}$ . For each
$\delta\in(B\triangle\beta_{0})()Lim(cf\beta_{0})$ , take an $ f(\gamma, \delta)\in\delta$ , a $ g(\gamma, \delta)\in\gamma$ and an $U(\gamma, \delta)\in \mathfrak{c}u$ such
that

4) $(\alpha_{0}(g(\gamma, \delta)),$ $\alpha_{0}(\gamma)$] $\times(\beta_{0}(f(\gamma, \delta)),$ $\beta_{0}(\delta)$] $\cap Y\subset U(\gamma, \delta)$ .
Observe that $(B\triangle\beta_{0})\cap Lim(cf\beta_{0})$ is stationary in $cf\beta_{0}$ , and observe that

$ f(\gamma, \delta)\in\delta$ and $g(\gamma, \delta)\in\gamma\in cf\alpha_{0}\in cf\beta_{0}$ . By the PDL, there are a stationary set
$S_{\gamma}\subset(B\triangle\beta_{0})\cap Lim(cf\beta_{0})$ , an $f(\gamma)\in cf\beta_{0}$ and a $ g(\gamma)\in\gamma$ such that

5) $f(\gamma, \delta)=f(\gamma)$ and $g(\gamma, \delta)=g(\gamma)$ for each $\delta\in S_{\gamma}$ .
Next, moving $\gamma$ over $(A\triangle\alpha_{0})\cap Lim(cf\alpha_{0})$ , let $\delta_{0}=\sup\{f(\gamma):\gamma\in(A\triangle\alpha_{0})\cap$

$Lim(cf\alpha_{0})\}$ . By $cf\alpha_{0}\in cf\beta_{0}$ , we have $\delta_{0}\in cf\beta_{0}$ . Let $\beta=\beta_{0}(\delta_{0})$ . Then we have

6) $(\alpha_{0}(g(\gamma)), \alpha_{0}(\gamma)$] $\times(\beta, \beta_{0}(\delta)$] $\cap Y\subset U(\gamma, \delta)$

for each $\delta\in S_{\gamma}$ with $\gamma\in(A\triangle\alpha_{0})\cap Lim(cf\alpha_{0})$ .
Applying the PDL to $(A\triangle\alpha_{0})\cap Lim(cf\alpha_{0})$ and $ g(\gamma)\in\gamma$ , one can take a stationary
set $T\subset(A\triangle\alpha_{0})\cap Lim(cf\alpha_{0})$ and a $\gamma_{0}\in cf\alpha_{0}$ such that

7) $g(\gamma)=\gamma_{0}$ for each $\gamma\in T$ .

Let $\alpha=\alpha_{0}(\gamma_{0})$ . By 4), 5), 6) and 7), we observe that
8) $T\subset(A\triangle\alpha_{0})\cap Lim(cf\alpha_{0})$ is a stationary set in $cf\alpha_{0}$ and, for each $\gamma\in T,$ $S_{\gamma}$

is stationary in $cf\beta_{0}$ such that $V(\gamma, \delta)=(\alpha, \alpha_{0}(\gamma)$] $\times(\beta, \beta_{0}(\delta)$] $\cap Y\subset U(\gamma, \delta)\in\epsilon U$ for
each $\gamma\in T$ and each $\delta\in S_{\gamma}$ .

Put $\mathcal{V}_{0}=$ { $V(\gamma,$ $\delta):\gamma\in T$ and $\delta\in S_{\gamma}$ }. Then it is easily seen by 8) that $\cup \mathcal{V}_{0}$

$=(\alpha, \alpha_{0})\times(\beta, \beta_{0})\cap Y$ . Clearly, $\mathcal{V}_{0}$ is an open weak refinement of $q$]. Pick a
point $x$ in $(\alpha, \alpha_{0})\times(\beta, \beta_{0})\cap Y$ . Let $\gamma_{x}=\min\{\gamma:V(\gamma, \delta)\in(\mathcal{V}_{0})_{X}\}$ and $\delta_{x}=$

$\min\{\delta:V(\gamma, \delta)\in(\mathcal{V}_{0})_{x}\}$ . Then we have $x\in(\alpha, \alpha_{0}(\gamma_{x})$] $\times(\beta, \beta_{0}(\delta_{x})$] $\cap Y\subset\cap(\mathcal{V}_{0})_{x}$ .
Therefore $\mathcal{V}_{0}$ is interior preserving. Since $Z=Z^{\alpha}\cup Z_{\beta}$ is an orthocompact,
closed-open subspace of $Y$ , there is an interior preserving open refinement $\mathcal{V}$

of $cU$ . This contradicts the assumption on $cU$ .

CASE 2. $\alpha_{0}\in A$ and $\beta_{0}\not\in B$ .

By Claim 2 ii), note that $cf\beta_{0}\geqq\omega_{1}$ and $B\triangle\beta_{0}$ is stationary in $cf\beta_{0}$ . For
each $\delta\in(B\triangle\beta_{0})\cap Lim(cf\beta_{0})$ , take an $ f(\delta)\in\delta$ , a $g(\delta)\in cf\alpha_{0}$ and an $U(\delta)\in qj$ such
that

$(\alpha_{0}(g(\delta)), \alpha_{0}]\times(\beta_{0}(f(\delta)), \beta_{0}(\delta)]\cap Y\subset U(\delta)$ .

Since $ f(\delta)\in\delta$ and $g(\delta)\in cf\alpha_{0}\in cf\beta_{0}$ , by the PDL, there are a stationary set $ s\subset$

$(B\triangle\beta_{0})\cap Lim(cf\beta_{0})$ , a $\delta_{0}\in cf\beta_{0}$ and a $\gamma_{0}\in cf\alpha_{0}$ such that $f(\delta)=\delta_{0}$ and $g(\delta)=\gamma_{0}$
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for each $\delta\in S$ . Let $\alpha=\alpha_{0}(\gamma_{0})$ and $\beta=\beta_{0}(\delta_{0})$ . Then $V(\delta)=(\alpha, \alpha_{0}$] $\times(\beta, \beta_{0}(\delta)$] $\cap Y$

$\subset U(\delta)\in(U$ for each $\delta\in S$ . Put $\mathcal{V}_{0}=\{V(\delta):\delta\in S\}$ . As in Case 1, we can derive
a contradiction.

CASE 3. $\alpha_{0}\not\in A$ and $\beta_{0}\in B$ .

Note that $\omega_{1}\leqq cf\alpha_{0}\in cf\beta_{0}$ and $(A\triangle\alpha_{0})$ is stationary in $cf\alpha_{0}$ . For each $\gamma\in$

$(A\triangle\alpha_{0})\cap Lim(cf\alpha_{0})$ , take an $f(\gamma)\in cf\beta_{0}$ , a $ g(\gamma)\in\gamma$ and an $U(\gamma)\in cU$ such that
$(\alpha_{0}(g(\gamma)),\alpha_{0}(\gamma)]\times(\beta_{0}(f(\gamma)), \beta_{0}](\neg Y\subset U(\gamma)$ . Let $\delta_{0}=\sup\{f(\gamma):\gamma\in(A\triangle\alpha_{0})\cap Lim(cf\alpha_{0})\}$ .
Then $\delta_{0}\in cf\beta_{0}$ . By the PDL, there are a stationary set $T\subset(A\triangle\alpha_{0})\cap Lim(cf\alpha_{0})$

and a $\gamma_{0}\in cf\alpha_{0}$ such that $g(\gamma)=\gamma_{0}$ for each $\gamma\in T$ . Let $\beta=\beta_{0}(\delta_{0})$ and $\alpha=\alpha_{0}(\gamma_{0})$ .
Then $V(\gamma)=(\alpha, \alpha_{0}(\gamma)$] $\times(\beta, \beta_{0}$] $\cap Y\subset U(\gamma)\in cU$ for each $\gamma\in T$ . Putting $\mathcal{V}_{0}=$

$\{V(\gamma):\gamma\in T\}$ , one can derive a contradiction as in Case 1. Thus the proof of

Claim 3 is complete.

It follows from Claims 1, 2 and 3 that $cf\alpha_{0}=cf\beta_{0}\geqq\omega_{1}$ . This establishes
the clause (a). The clauses (b), (c), (d) and (e) follow from Claim 1, 1), 2) and
3), respectively. This completes the proof of Lemma 4.6.

Now we have prepared to establish our main theorem in this section.

THEOREM 4.7. The following are equivalent.
(1) $A\times B$ is orthocompact.
(2) $A\times B$ is suborthocompact.
(3) $A\times B$ is $\sigma$ -orthocompact.
(4) $A\times B$ is weakly suborthocompact.
(5) For any ordinals $\alpha$ and $\beta$ with $\kappa=cf\alpha=cJ\beta\geqq\omega_{1}$ , the following conditions

hold;
i) $lf\alpha\not\in A$ and $\beta\not\in B$ , then $ A\triangle\alpha$ is non-stationary in $\kappa$ , $ B\triangle\beta$ is non-

stationary in $\kappa$ or $(A\triangle\alpha)\cap(B\triangle\beta)$ is stationary in $\kappa$ ,

ii) if $\alpha\in A$ and $\beta\not\in B$ , then $ A\cap\alpha$ is bounded in $\alpha$ or $ B\triangle\beta$ is non-stationary

in $\kappa$ ,

iii) if $\alpha\not\in A$ and $\beta\in B$ , then $ A\triangle\alpha$ is non-stationary in $\kappa$ or $ B\cap\beta$ is bounded
in $\beta$ .

PROOF. Since the implications (1) $\rightarrow(2)\rightarrow(4)$ and (1) $\rightarrow(3)\rightarrow(4)$ are obvious, it
suffices to show the implications (4) $\rightarrow(5)\rightarrow(1)$ .

(4) $\rightarrow(5)$ : Let $\alpha$ and $\beta$ be ordinals with $\kappa=cf\alpha=cf\beta\geqq\omega_{1}$ . Tben $X=$

$(A\cap[0, \alpha])\times(B\cap[0, \beta])$ is weakly suborthocompact. If $\alpha\not\in A$ and $\beta\not\in B$ , then
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$(fi\triangle\alpha)\times(B\triangle\beta)$ is also weakly suborthocompact. In fact, it can be considered
as a closed copy in $X$ . So i) follows from Lemma 4.5. If $\alpha\in A$ and $\beta\not\in B$ ,

then ii) follows from Lemma 4.4. The case of iii) is similar.
(5) $\rightarrow(1)$ : Assume $A\times B$ is not orthocompact, then there are some ordinals $\alpha$

and $\beta$ satisfying (a), (b), (c), (d) and (e) in Lemma 4.6. Put $ X=(A\cap[0, \alpha])\times$

$(B\cap[0, \beta])$ .
First assume that $\alpha\not\in A$ and $\beta\not\in B$ . If $ A\triangle\alpha$ is non-stationary in $\kappa$ , then

$ A\cap\alpha$ is a free union of bounded, closed-open subspaces (cf. Lemma 4.3). In
this case, as in the proof of Claim 2 in Lemma 4.6, we can show that $X$ is
orthocompact. This contradicts (c) in Lemma 4.6. The case $ B\triangle\beta$ is non-
stationary in $\kappa$ is similar. So we may assume that $\alpha\not\in A,$ $\beta\not\in B$ and $(A\triangle\alpha)\cap$

$(B\triangle\beta)$ is stationary in $\kappa$ . By (c), take an open cover $ c\cup$ of $X$ which has no
interior preserving open refinement. For each $\gamma\in(A\triangle\alpha)\cap(B\triangle\beta)\cap Lim(\kappa)$ , take
an $ f(\gamma)\in\gamma$ and an $U(\gamma)\in cU$ such that $(\alpha(f(\gamma)), \alpha(\gamma)$] $\times(\beta(f(\gamma)), \beta(\gamma)$] $\cap X\subset U(\gamma)$ .
By the PDL, there are a stationary set $S\subset(A\triangle\alpha)\cap(B\triangle\beta)\cap Lim(\kappa)$ and a $\gamma_{0}\in\kappa$

such that $f(\gamma)=\gamma_{0}$ for each $\gamma\in S$ . Let $V(\gamma)=(\alpha(\gamma_{0}), \alpha(\gamma)$] $\times(\beta(\gamma_{0}), \beta(\gamma)$] $\cap X(\subset U(\gamma))$

for each $\gamma\in S$ , and let $\mathcal{V}_{0}=\{V(\gamma):\gamma\in S\}$ . Then we can show that $qj$ has an
interior preserving open refinement, as in the proof of Case 1 of Claim 3 in
Lemma 4.6. This is a contradiction.

Next, assume that $\alpha\in A$ and $\beta\not\in B$ . If $ A\cap\alpha$ is bounded in $\alpha$ , we can get

a contradiction from (c) and (d) in Lemma 4.6. If $ B\Lambda\beta$ is non-stationary in $\kappa$ ,

using Lemma 4.3, we also get a contradiction as in the proof of Claim 2 of
Lemma 4.6.

The case of $\alpha\not\in A$ and $\beta\in B$ is similar. This completes the proof of Theo-
rem 4.7.

REMARK. If $\alpha$ is an ordinal with $\sup A\in\alpha$ and $cf\alpha\geqq\omega_{1}$ , then $\alpha\not\in A$ and
$ A\triangle\alpha$ is not stationary in $cf\alpha$ . Therefore, in (5) of the above theorem, it suf-
fices to consider any ordinals $\alpha$ and $\beta$ with $\kappa=cf\alpha=cf\beta\geqq\omega_{1}$ such that $\alpha\leqq supA$

and $\beta\leqq supB$ .

The condition (5) of Theorem 4.7 is exactly the same one as in a charac-
terization of the normality of $A\times B$ in [KOT, Theorem $A$ ]. This yields the
following result.

COROLLARY 4.8. A product $A\times B$ is orthocompact iff it is normal.

Finally we characterize the paracompactness of $A\times B$ . We begin with the
following.
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LEMMA 4.9. $A$ is paracompact $i\int f$, for every ordinal $\alpha$ with $\alpha\not\in A$ and $ cf\alpha$

$\geqq\omega_{1},$ $ A\triangle\alpha$ is not stationary in $ cf\alpha$ .

PROOF. The “only if” part: Assume that there is an ordinal $\alpha$ with $\alpha\not\in A$

and $cf\alpha\geqq\omega_{1}$ such that $ A\triangle\alpha$ is stationary in $cf\alpha$ . Since every stationary set in
a regular cardinal is not paracompact (cf. [EL, Theorem 2.3]), $ A\triangle\alpha$ is not
paracompact. By $\alpha\not\in A$ , note that $ A\triangle\alpha$ is homeomorphic to a closed subspace
of $A$ . Hence $A$ is not paracompact.

The “if” part: Assume $A$ is not paracompact. Let $\alpha_{0}=\min\{\alpha:A\cap[0, \alpha]$

is not paracompact}. Then one can obtain that $\alpha_{0}\not\in A,$ $cf\alpha_{0}\geqq\omega_{1}$ and $A\triangle\alpha_{0}$ is
stationary in $cf\alpha_{0}$ , as in the proofs of Claims 1 and 2 in Lemma 4.6 (but the
proof of this case is simpler).

THEOREM 4.10. The following are equivalent.
(1) $A\times B$ is paracompact.
(2) $A\times B$ is metacompact.
(3) $A\times B$ is submetacompact.
(4) $A\times B$ is $\sigma$ -metacompact.
(5) $A\times B$ is weakly submetacompact.
(6) $A$ and $B$ are paracompact.

PROOF. Since weakly submetacompact GO-spaces are paracompact (cf. [Lu,

Theorem 4.4]), the implication (5) $\rightarrow(6)$ immediately follows. It suffices to show
the implication (6) $\rightarrow(1)$ . Assume that $A$ and $B$ are paracompact and that $A\times B$

is not paracompact. Let

$\alpha_{0}=\min$ { $\alpha:(A\cap[0,$ $\alpha])\times B$ is not paracompact},

$\beta_{0}=\min$ { $\beta:(A\cap[0,$ $\alpha_{0}])\times(B\cap[0,$ $\beta])$ is not paracompact},

$Y=(A\cap[0, \alpha_{0}])\times(B\cap[0, \beta_{0}])$ .
As is easily seen, $cf\alpha_{0}\geqq\omega$ and $cf\beta_{0}\geqq\omega$ . Fourthermore, as in the proof of Claim
1 in Lemma 4.6, we can obtain that $\alpha_{0}\not\in A$ or $\beta_{0}\not\in B$ . Assume $\alpha_{0}\not\in A$ (the case
of $\beta_{0}\not\in B$ is similar). If $cf\alpha_{0}\geqq\omega_{1}$ , by Lemma 4.9, $A\triangle\alpha_{0}$ is not stationary in
$cf\alpha_{0}$ . Then it follows from Lemma 4.3 that $Y$ is a free union of paracompact
subspaces, as in the proof of Claim 2 in Lemma 4.6. Thus $Y$ is paracompact.
This is a contradiction, because $Y$ is not paracompact. If $cf\alpha_{0}=\omega$ , we can
similarly show that $Y$ is paracompact. But this is also a contradiction.

REMARK. Note that weak submetaLindelofness can be added $\ln$ these equi-
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valences in Lemma 4.9 and Theorem 4.10. On the other hand, Theorem 4.10
is not extended to the case of GO-spaces. In fact, we may consider the Sor-
genfrey line $S$ instead of $A$ and $B$ , because $S$ is paracompact but $S^{2}$ is not

normal. Furthermore, since the product of the Michael line and the irrationals
is orthocompact but not normal ([S3]), Corollary 4.8 is not extended to the case
of GO-spaces either.
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