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ON STABILITY OF A CERTAIN MINIMAL
SUBMANIFOLD IN SU(3)/SO(3)

By

Osamu IKAWA

§1. Introduction.

Let M be a compact irreducible symmetric space. It is known that the
first conjugate locus F,(M) of M with respect to p<=M has a stratification.
We denote by FJ(M) the maximal dimensional strata. H. Tasaki proved the
following theorem :

THEOREM ([8]). For any point p in M, Fy(M) is a noncompact minimal
submanifold of M. If M is a compact connected simple Lie group, then Fy(M)
is stable.

If M is of rank one, then F(M) is stable. These results are obtained by
Berger [1].

In this paper we shall study on stability of a noncompact minimal submani-
fold F3(M) in the compact irreducible symmetric space M=SU(3)/SO(3).

In general, a noncompact minimal submanifold F in a Riemannian manifold
M is said to be stable if the second variation of the volume of F is nonnega-
tive for every variation of compact support.

The purpose of this paper is to prove the following theorem:

THEOREM. [If M is SU(3)/SO(3), then FJ(M) is stable.

In §2 we explain the structure of F(M) when M is simpley connected
which is obtained by T. Sakai and M. Takeuchi. In §3 we shall give the
proof of the theorem.

The author would like to express his hearty thanks to Professors Tsunero
Takahashi and Hiroyuki Tasaki who gave him valuable advice during the pre-
paration of this note.
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§2. Preliminaries.

1. Let (G, K) be a compact symmetric pair and § be the involutive auto-
morphism of G associated with (G, K). Let g and t be the Lie algebras of G
and K respectively. We denote also by € the induced involutive automorphism
of g. Take a bi-invariant Riemannian meric {,)> on G and denote also by ¢,>
the induced G-invariant Riemannian metric on M=G/K. Then M is a compact
symmetric space with respect to <,>. Let = denote the natural projection
from G to M. Put o=n(e), where ¢ is the identity element of G. Since K
lies between

Go={g<=G; 0(g)=g}

and its identity component, we have

I={Xeg; 0 X=X}.
Put
m={Xeg; 0 X=—X}.
Since # is an involutive automorphism, we have a direct sum decomposition
of g:
g=f+m.

Take a maximal abelian subspace a of m and a maximal abelian subalgebra t
in g containing a. Then the complexification t¢ of t is a Cartan subalgebra of
the complexification g¢ of g. For an element a<t, put

ga=1{Xeg®; [H, X]=2zVv—WKa, H)X  for each Hct}.

An element a=t— {0} is called a root if g,+ {0}. We denote by 33(G) the set
of all roots. We have a direct sum decomposition of g¢:

=14+ X g..

acZ(G)
For an element 7y<a, put
¢ ={Xe=g®; [H, X]=2r~—1<yr, H>X for each Hea}.

An element of y=a— {0} is called a restricted root if ¢+ {0}. We denote by
WG, K) the set of all restricted roots. We denote by - the orthogonal pro-
jection from t to a. We have

(G, K)=3(6G)—2Z«(G),
where 33(G)=3(G)Nt.
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Choose lexicographic orderings > on t and a such that
a=3)G), a=0=—= az=0.

We denote by >*(G) the set of positive roots and by >*(G, K) the set of posi-
tive restricted roots. We put

E=IN@F+8%),  my=mNEF+8%)
for each y=3*(G, K) and
Lh={Xet; [a, X]={0}}.
Then we have the following lemma:

LEMMA 1 ([7], Lemma 1.1). We have the orthogonal direct sum decomposi-
tions

=+ > &, m=a+ > m;.

rEXTH (G, K) rETT (G, K)

We can choose S,=t and T,=m for each ac 3 (G)—>33o(G) in such a way that:
(1) For each re3* G, K), the sets {S.; ac=3HG)—3«(G), d=r} and

{Ts; a=2HG)—2o(G), a=y} are orthonormal basis of ¥, and m, respectively ;
(2) For each ac=3Y(G)—(G) and each H=a, we have

LH, S.]1=2r<a, HYT,, [H, T,]=—2n<a, H>S,,
Ad(exp H)S,=(cos 2nla, H>)S,+(sin 2x<la, HY)T, ,
Ad(exp H)T ,=—(sin 2n<a, H)»)S.+(cos 2nla, HY)T 4;
(3) For each ac=3*(G)—X(G), we have
[Sa, Tol=2zma .
2. From now on we assume that M is irreducible. Then >}(G, K) is irre-
ducible and there exists a unique highest root 6 in 3*(G, K). Let » be the

rank of M and TI(G, K)=1{7:}1s:<- be the fundamental root system of 3}(G, K).

Put
S={Heca; <{H, o>=1/2,<H, 7:>=0 for 1=i<r},

S°={Hea; <{H, 6>=1/2, <H, 7>>0 for 1<i<r},
Fy(M)=gKExpS,
FyM)=gKExp S® for p=n(g)eM, where g=G,

my=—21 > (cot 2nla, H))a .
acEH(G)-2¢(G). @#d
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Then F,(M) is the first conjugate locus of M with respect to a point p (see
[2], Chap. VII, §3). The vector (k exp H)ymy is the mean curvature vector
of K Exp H at kexp H for each H=S°. Let (Ré)* denote the orthogonal com-
plement of R in a. The submanifold Fy(M) is open and dense in F,(M). H.
Tasaki proved the following theorem:

THEOREM 1 ([8]). For each point p in M, Fy(M) is a noncompact mimumal
submanifold of M. Furthermore, if M is a compact connected simple Lie group,
then F3(M) is stable.

For each X<g, we define a vector field X*<¥(M) by

d
Xp=exXp X plimo.

We denote by ¥ the covariant derivative of M. We have

(2.1) g*(VX*Y*)r-V(Ad(g)X)*(Ad(g)Y)* »
for g in G and X, Y in g, and
0 for Xem and Yem,
—[X,Y] for Xem and Y &1,
(2.2) (VsY #)o=
]O for Xet and Yt
0 for Xetl and Yem

under the identification of m with the tangent space T,(M) of M at the origin
o. Let m(r) denote the multiplicity of y&>}(G, K)* Then we obtain the follow-
ing relations:
Texp u(Exp S®)=(exp H)x(Ro)*,
Trexpu(KExp H)y=(kexp H)x 3 my,

TEE(G, K)-1(6)

€X(G. K>—-138} )’

Troxo a(FAMN=(k exp Hi( __ 53 my-+(RS)

(2.3) Ny exp a(FYM))=(k exp H)x(R6+mj5),
codim (FY(M))=14+m(5),
Niexp n(K Exp H)=(k exp H)y(a+mj;),

for HeS® and k=K (see [8]).
Let A, B and R denote the shape operator, the second fundamental form
of FYM)cM and the Riemanman curvature tensor of M, respectively. We
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define symmetric linear transformations R,gxpz and ﬁkEpo on the normal
space Nigxp n(FY(M)) at k Exp H, where k=K and H=S®, as follows:

R4 exp n()=X(R(e,, v)e)*,
1211: exp (V)=2B(e;, A%;),

for each v& N, gxp u(F)(M)), where {e;} is an orthonormal basis of the tangent
space T gxpa(FyM)). Let N(F)M)) denote the normal bundle of FYM) and
' (N(FYM))) denote the vector space of all C* sections of N(FYM)). Put

L(N(F{XM))={Vel (N(FXM))); V has a compact support}.

Let J :A+ﬁ—~f~l denote the Jacobi operator, where A is the negative of the
rough Laplacian of the normal connection of N(F3YM)).
Then FY(M) is stable if and only if the following inequality holds (see [5)):

[0V, Vidvrsanz0  for each VeI (N(FYM)).

Identifying Ré+m; with N, gxp w(Fo(M)) by linear isometry (k2 exp H)x, we
can consider R, gypx and A ¢ Expx aS the symmetric linear transformations on
R5+m;. Then we have the following theorem:

THEOREM 2. As a linear operator on Ré-+wms, the symmetric linear trans-
formation R, Epo—;lk expu 1S of the following form:
4r? (@, 0)* ]'d .

P S |
kExpH k Exp 1612 acz+6)<Fgca>. a=s Sin*2n<a, HD

PROOF. For the sake of brevity, we denote Rigxpn by R, Asgxpn by A,
and aestr-zio,.a+6 DY 2. Let {H;} be an orthonormal basis of (R4)*.
Then

{(k exp H)xH;}\U{(k exp H)xTo; a=X*(G)—2o(G), @+6}

forms an orthonormal basis of T gxp a(FY(M)).
We shall show that R and A are scalar operators. We define a closed sub-
group Ky of K for H=S® as follows:

(2.4) Ky={k=K; k Exp H=Exp H}.

Let ty denote the Lie algebra of K. Then t;=%,+f;. The group Ky acts
on the normal space Ngypu(K Exp H) naturally. Identifying a+mjs; with
Nexpu(K Exp H) by linear isometry (exp H)x, we can consider that Kj acts
on a+m;. Let pu(k) be the action of k=Ky on a+m;.  Since (5, H)=1/2 for
each H=S°, we get
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(2.5) ou(k)=sAd(k)s,

where s=:d on a and s=—id on m;. In particular, py is equivalent to the
adjoint representation of K, on a+m;. Put

M;=Exp (R6+m3;).

The manifold M; is a maximal dimensional totally geodesic sphere in M of
constant curvature x, where x is the maximum of the sectional curvatures of
M. The manifold M; is called the Helgason sphere of M. Then the pair
([ms, ms]+¥, R6+m;) is the symmetric pair of M; and ad(f;+[ms, ms])|(R6+mj)
=80(Ré+m;) (see [2], Chap. VII, §11).

It is well-known that the natural representation of 8o(n) on R™ is irreducible.
Since 1;+[m;, m;]Ct,+15;, the symmetric linear transformations R and A are
scalar operators.

Since M is symmetric, we have

(R(8), 5>=Zel(R(Ta, HTa)*, 8>+ Z(R(H,, HH))*, 8>
= (D[ Ta, 8, Tal*, >+3KI[H,, 61, HI*, 8))

:—2;<[[Ta’ 5]! Ta':lly 5> ’

where we denote by | the orthogonal projection from m to Ré+m;s;. Thus we
have
—— 2 -
R=— 2T svia, 65%4d .
ol
From [2.1), (2.2), we have

(2.6)  (exp H)ix'B((exp H)+T ., (exp H)«H,)

—_— *___:1 _ -1 x QKL
- Sin 277.'((1, H>(exp H)* (vﬂi Sa) »

=2x cot 2n<a, HYTL=0.
Since Exp S° is totally geodesic, we have
(2.7 (exp H)x'B((exp H)«H;, (exp H)xH;)=0.
The following is proved in [8]:
(exp H)z* B((exp H)«T 4, (exp H)«T g)=(cot 278, H>)[ T4, Spl*
Using the above equation, we have
CA@), 5>=3 S (cot?2m(B, HY)X[Ta, Sp1, 8>

=3V, (cot?2nla, H>)2nla, 6))*
Thus we have
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A :%EH; Sa (cot?2xla, Hy)Xa, o>%d.
Q.E.D.

3. From now on, we assume that M is simply connected. Put
K,={k=K; Exp Ad(k)H=Exp H for each H=S°.

Then clearly K, is a closed subgroup of K. Let f, be the Lie algebra of K.
Then f1=f0+fs.

ProposiTION 1 ([4], Lemma 3.10, [6], p. 52, Cor. 1). Ky (defined by (2.4))
is a closed subgroup of K which is independent of the choice of H=S® and con-
sequently equal to K,.

PROPOSITION 2 ([4], Prop. 3.11). We denote by @ : K/K,XS*—>M the mapp-
ing defined by O®(kK,, H)=Exp Ad(k)H. Then we have the following :
(1) @ is a differentiable mapping into M whose image is FY(M).
(2) @ is an injective mapping.
(3) @ is everywhere regular.
4) FYM) is an embedded submanifold of M, i.e., the topology on FY M)
induced by @ coincides with the relative topology of M.

From and [(2.5), pox is independent of the choice of HeS".

From now on, p is to stand for pg.

LEMMA 2.
(1) The space R5-+mj is invariant under the action of K,.

(2) The group K, acts trivially on (Ré)*.

PROOF.
(1) kxNgxp a{ FOM))C Nexp u(FYM)) for each k=K,. Hence we obtain (1)

using [2.3).
(2) Let k=K,, HES® and X=(R4)*. For sufficiently small ¢, H+tX is in

S°.  Using [Proposition 1, we get

d
kx(exp H)s X=— k Exp (H+1X)| -0

dt

d
= IT Exp (H+tX)| =0

= (exp H): X .
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Hence p(k)X=X. Q.E.D.

4. The restriction N(F)M))|K Exp H of the vector bundle N(F}M)) on
K Exp H is a homogeneous vector bundle isomorphic to KX ,Ngxp u(FY(M)). A
section of this vector bundle is identified with an element of

C=(K; Ro+m3)k,
={feC™(K; R6+wm;); f(ku)=p(u)f(k) for kK, ucK,}
by the following mapping:
(2.8) (KX yNexp u(FAM)) —> C=(K; Ré+mj) ; V-V,

where V'(k)=(k exp H)x'Vigxpu for each k=K. From Proposition 1 and
Lemma 2(1), we obtain the following bundle isomorphism :

KX pNExp n(FY(M)) —> KX pNExp n(Fy(M))

l l

KExp H > KExp H;

[(k, U)] | [k: €xp (H/—H)*U]

I I

EExpH ——— kExpH’,

where H, H'=S°. We remark that the above bundle isomorphism is independent
of representation of K-orbit K Exp H by Proposition 2(2). We may identify
I (KX p Nexp a(FO(M))) with I'(KX (Ngxp n(F3(M))) by the bundle isomorphism
above :

(2.9) ' (KX ,Nexp n(FY(M))) <> I' (KX ; Nexp 1 (FS(M)))
Ve-17V’,

where Vigxpnu =ksx exXp (H' —H)xkx'V ygxpn for each k=K. Then we can con-
sider I'(K'X ,Ngxp u(F3(M))) as a subspace of T(N(FYM))) by (2.9) and the above
remark. Let V" denote an element of I'(N(F3M))) corresponding to Ve&

I'(KX ;Ngxp a(FY(M))). Then the following relations hold in correspondence
(2.9):
Vi=ym on C*K; Ro+ms)k,,

vi=ym on I'(N(FYM))).
Define a mapping Ju from [ (KX ,Ngxp u(F3(M))) to itself by
JuV=(JV"| K Exp H for each V&l (KX ,Ngxp u(FYM))).
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We can consider [, as a mapping from C=(K; Ré+m;)k, to itself by using
(2.8). We shall prove the following theorem:

THEOREM 3. The mapping Ju: C(K; Ri+wmsg, —C(K; Ro+msx, is
given by the following equation :
1 ~
S S—
ae2+(G)§o(G), a+s sin?2n<a, H>

_ 4 {a, 8)°
612 acs+6) 2. axé sin? 2n<a, H)’

fHZ”—

where S, denote the left invariant vector field on K such that (§,,)e:S,,.

PROOF. For the sake of brevity, we denote Saex+r-sy.a25 DY 4. Let
Z denote the left invariant vector field on G such that Z~e=Zeg. Let ve
T.(M), WE¥(M) and x=n(g) for some g=G. We take an element Z<g
satisfying dz(Z,)=v and write Z=X+Y for some Xem and Y =f. Then the
following equation holds (see [3]):

= d
(210) VW= a—i(eXp(_tAd(g)Z»*Wg exptZK1t=0

— C%(exp (—tAd@Y )W ek 1t=0 -

Let A: I'(N(FYXM))—>I"(N(F)M))) be the negative of the rough Laplacian of
the normal connection of N(FYM)). Define a mapping
Ap: I'(KX ;Ngxp a(FYM))) —> I' (KX ;Nexp u(F)(M)))

by

AgV=AVH|KExp H for each Vel (KX ,Ngxp u(FY(M))).
We consider Ay as a mapping from C~(K; Ré+m;s)k, to itself by using [2.8).
We shall prove the following equation :
S S
*sin?2n<a, H>
Then the proof will be finished by using [Theorem 2. We . consider the homo-
geneous vector bundle A X Tgxp w(Exp S°) on K Exp H. Then we get by
2(2), '

I'(KX Tgxp u(Exp S°)

={Vel' (IN(KExp H)); Viexpu < k«Texp u(Exp S°) for each k=K}.

(2.11) Ap=—3 3:

We consider ' (KX Tgxp #(Exp S°) as a subspace of X(FYM)) in the way above.
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Let X% denote an element of ¥(F3(M)) corresponding to X&' (KX Tgxp n(Exp S°)).
Let H; be an orthonormal basis of (R§)* and define H,=I" (KX Tgxp u(Exp S°)
by

(ﬁi)k expn=(k exp H)+H; .

Then, by (2.10), we get

(212 (TayHExp H)= " (exp(~0Ad(exp HYH)ADexp  sxp rie-

d —
= Fl‘(eXp (—tH))«(HDexpcrr+1mpii=0

= & (exp (~tH)w(exp (Lot H) Hoyimo

=0.
Let ¥V be the covariant derivative of F3(M). The following is proved in [8]:

, 1
“sin?2x<a, H>

=(exp H)xmy<(exp H)x(Rs)* .

> (VsxSEXExp H)

For sufficiently small ¢, tmy+H<S®. Using this fact and (2.10), we get

1

(2.13) 2a sin?2n<a, H>

(Togr st V'XExp H)

d
= d_t(eXp (—tmp))«V ixp tmpy Exp Hit=0

:0, for each VEP(KXpNEpo(Fg(M)))'

Similarly we can prove
(Vﬁlﬁgg VExp H)=0.

Using (2.6), and the above equation, we have

(2.14) (V594 VY Exp H)=0.
Using (2.12), (2.13) and [2.14), we obtain

1

4 =—a—=—r——<
AV NExp H)=—3a =50 175

By we have
d
(vs;V")(eXP N EXD H): ‘E;(exp (_‘ ssa))*Vgxp tS,expsS,Exp His=0

(V5294 V*XExp H).

d
— g;(exp(—s)Ad(exp tS. exp H)(cos 2n<a, H>)Sa)xVixp 15, Exp mis=0-
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By taking the normal components to F3(M) of both sides in the above equation,

we get
d
(V§ZVH>(6XP tsa EXD H)Z E?(GXD (_ssa))*Vgxp tSyexpsS, Exp His=0
Hence we get

(Vs Vg2 Vi) (Exp H)= %(exp (—1Sa))x(Vgs V" )(exp tSa Exp H)it—o

— £ (exp(—D)Ad(exp H)(cos 2n(a, HY)S)u(VV*NEXD H)emy

2

0
:asat (eXp (—£tSa))x(eXp (—$Sa))xVexp tSoexpsS,Exp Hit=8=0

82
—m(exp (—t)Ad(eXp H)(COS 277:<a, H>)Sa €xp (— S)Sa)*vexp $8 4 EXp HIt=8=0-

If we take the normal components to FYM), we have
(V52 Vs« VX Exp H)

82
= %(CXD (—tSa))s(exp (— ssa))*Vexp tS,exp sS,Exp Hlt=s=0 .

Put f=V"% Then we get

XV 1 Je
(Allf)(e)_ 20‘ Sing 27r<a’ H>(Saf)(e)'
Hence we get (2.11). Thus the proof is finished. Q.E.D.
Put
C=(Fy(M )k

= {p=C=(FYM)); ¢(k Exp H)=¢(Exp H) for kK, HeS%.

By Proposition 2(2), an element f of C=(S° is extended to an element f" of
C(F)YM))x in a natural manner. Namely we put f%(k Exp H)=f(H) for each
=K and He=S’. Put

CHSH={f=C=(S8%; f has a compact support}.

By Proposition 2(2), we extend g=C*(K Exp H,)(H,=S°) to g'eC>(FYM)) by
gk Exp H)=g(Exp H,) for k=K and H=S°. Then

Vi =|IV]" for each Vel (KX ,Ngxp a,(Fo(M))).

We denote by grad and gradr9u, the gradient on S° and FY(M) respectively.
Then we shall show the following lemma :
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LEMMA 3.
lgradroon, f*l=lgradf]|® for each f=C>(S%.

ProOOF. Let {H;} be an orthonormal basis of (R6)*. Theh {(exp H)sH;}
is an orthonormal basis of Tgxp x(Exp S°). We have

(S%NExp H)= 3. f(exp 1S, Exp H)iems

d
Zaf(H)wo
=0,

and

((exp H)H) = 5; fXExD (tHot H)) e

d
= af(H+tHi)lt=0

=(H¢f)(H) .
Thus, we obtain

lgrad sy fA1I*(Exp H)=2{(H, f)(H)}*?

=|gradf|*(H).
Since f% k Exp H)=f%Exp H), we get

lgradrocun> f*I(k Exp H)=|grad f|I(H)
=|\gradf|"(k Exp H).
Q.E.D.
§3. Proof of theorem.

In this section, we put G=SU(3), K=5S0(3), 6(g)=g for each g=G and
{,>=the negative of the Killing form. We put

x 0 O
a=t={+~—1|0 y O0};x, y, 2R, x+y+2z=0},
0 0 =
and introduce a lexicographic order in ¢ defined by

E11>E22>E33 .
Then we have
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Y= SHC Kyl =YL p gy i
SHE)=24G, K)={ay="Y(Bu—Ey); i<j}

- {0'12, A 33, a’xs:g} ’

20(G>=@,
x+1 0 0
1 - 1 1
o__J ____ _ o =
So= 27:«/ 1 0 2x  0f; 3 <x< 30
0 0 x—-1
We put
0 0 1 0 0 1
=1 V=1
513—2\/3— 0O 0 01, Tlg—zﬁo 0 04,
-1 0 0 1 0 0
0 0 O 0 0 O
=1 V-1
523——2—\/: 0 0 14, ng—Z\/—S— 0 0 1,
0 —1 0 0 1 0
r0o 1 O O 1 O
1 /=1
512—2\/—3‘ —1 0 0}, 10 =5 73 1 0 O
0 0 O 0O 0 O

Then S;;=S.:j, T:j=Ta.:;- By a straightforward calculation we get the folow-

ing lemma:

LEMRWA 4. (1) For H, H'S’, k€K and a, B2 (G)— {4},

(SH exp 1y (SH wxp 1)
<(S§)k Exp H'» (S*ﬁ)k Exp H’>

is independent of the choice k=K.
(2) sin?2rnla, H) for HES® is independent of the choice of a<>*(G)— {o}.

Let C be the negative of the Casimir differential operator of K relative to
<,>. Then using and Cemma 4(2), we get

3.1 Ja=——(C~3),

cosz—z—yrx

x+1 0 0

1 _— 1 1

for H=5av/=1 0 —2x 0| (—-—3—<x<§).
0 0 x—1
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Let dvrpowr, dvse and dvg expn, denote the volume elements of F§((M), S° and
K Exp H,, respectively. Then we shall show the following lemma :

LEMMA 5.

“gidvpo
Spguu)fg FJ)

dVk Exp H
SKEpoog P o

1 sin 2n<a, H,)| Ssof(H)l Il J,Siﬂ 2nla, H)|dvso

11 aeE+ (G~
aeZH(G)-(d)

Jfor each f=CH(S®) and g= C=(K Exp H,).

PROOF. Put
gaﬁ(k EXP H)=<(S’a'z‘)k Exp H» (S’g)k Epo> ’
for k=K, H=S® and a, B<3*(G)—{d}. By the change of variable by the
mapping @, we replace the integration on FYM) with the integration on S°X
K Exp H,. By Lemma 41),

] Hdv 0
SFch)fg FYan

vdetg.ps(k Exp H)
f(H)g(k Exp Ho)x/?ietgag(k Exp H,) dvg Exp Ho X dvso

SSOXK Exp H,

dv
SK Exp Hog KExpHo

sin 2r<a, Hy) | Ssof(H

11 sin 2x<a, H)|dvso.
acZt+(G)-1(0)
aeT+(G)-(0)

Q.E.D.
Let Vel'(KXNgxpu (FS(M))). We assume that there exists ¢ C=(S°)
o
such that JV'=¢"V* Then

JUVH=@Fan OV + flo"VE,

for each f=CWS’), where Arycu, is the negative of the Laplace operator of

FyM). Since C=(F)(M))x is invariant under Arocy,, We get by and

Vpaa, STV, SV dvegn

2
N emepn VI dvxExp

= BRI\ lgradfI )| T sin2na, H)|dvse.

=+H(GH-(
acsxT+(G)~-10)
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LEMMA 6. Let Vi, V., I (KX ,Nexp a (Fo(M))) and ¢,, ¢, C=(S°).
If JVi=@iVi (=1, 2) and ¢,<¢,, then

Vi, Veddvg exp }10-:0 .

SK Exp Hy

PROOF. For each f=C%(S%), =0, f#£0, we get
SFO(M)<j(fHV¥), th'g)dvFg(M):S VY, f(f“V?)}dvFg(m.

We calculate the equation above by using

0
FJa

Jo—ef| I sin2nda, K> |dvss| Vi Viddvkeson,
=0.
Hence the lemma holds. Q.E.D.

THEOREM 4. If M is SU(3)/SO(3), then F3(M) is stable.

PROOF. We may assume p=o0. We put

0 ¢ 0
u={l—t 0 0|;teR
0 0 0
and
0 1 0
V=1
0 o0 0

u is a maximal abelian subalgebra of f. We introduce a lexicographic ordering
< on u such that a>0. Let D(K) be the set of all equivalence classes of
finite dimensional complex irreducible representations of K. It is well-known
that D(K) is identified with the following set:

{ma; m:O’ 1: 2’ }'

Let V(1) be a representation space of an element of AsD(K). Let
L*(KX ,Ngxp a(FY(M))°) be the completion of I" (KX ,Ngxp a(FYM))¢) relative to
the LZ2-inner product for each H<S°. By virtue of the Peter-Weyl theorem,
we get

= V(OQHomg (V (), (R6+mj5)°)

eD(K)

L* KX ,Ngxp H(F‘?(M))C)zl
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We know that the negative of the Casimir operator C of K is a scalar operator
a;id on each V(A)®@Homg (V(2), (Ré+ms)¢) with a,=4zx*(A+a, 2). Put

D(K)={2€D(K); Homg (V(4), (Ro+ms))+ {0} }.

For a fixed H,=S°, we denote ¢y the diffeomorphism from K Exp H, onto
K Exp H defined as follows:

on: KExp H,—» KExp H; k Exp H,— k Exp H (k€K).

Let V be in I(N(FYM))‘. Then V|KExp HEI (KX ,Ngxpu(FYM))¢ for
each H=S°. Let {V; ;}isispcay (Where p(A)=dim (V(A)QHomg (V(2), (Ré+m;5)°))
be an orthonormal basis of V(A)®@Homg (V(2), (R64+mEXCTI (KX ,Nexp a,
(Fo(M))°). By [3.1), we have
JWis) =~ —(ar=g Vi
CcOos 771‘)6

Since {V},} forms an orthonormal base of I"(N(FYM))|K Exp H) on each K-
orbit K Exp H, we can express
pCad

(3.2) V= X 2 fa.iV:‘I.i ’

AeD(K)' i=1

where f;,i(H):SKEXPHO/ |KExp H, Vi ;| KExp H)dvg gxp # € CH(S).

The right-hand side of is absolutely uniformly convergent to V|K Exp H
on each K-orbit K Exp H. We shall show the right-hand side of 1s

absolutely uniformly convergent to V on each compact subset of F3(M). We
have

fak)=\ _(VIKExp H, Vi|KExp H>dvx sxp

1

3 <V ‘KEXp H: A<Vith Exp H)>dUK ExXp H
a; cosz77rx

SK Exp H

=g, o <AVIKExp H), Vi KExp H>dvx sxpu

<A¥V |Exp H), Vl}l.iiK EXp Hydvg Exp H *

SK Exp H

Thus, by using the Cauchy-Schwartz’ inequality,
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1 ‘ 12
[ fa ) S (| 0% 1 Ak exp u(V | K Exp H)|*dvi expm,) -
a?zCOS6 —2—71‘)6 K Exp Iy

Let D be any compact set in S°. Put

1 ] 1/2
E=max(—g—{ | ohlak eV 1K Exp B)*dve s )
cOos ‘2“717)6

Then

1 fr Vol <E”Vj dl

Hence it is sufficient to prove the following equation:

. max||V .,
fim WXV 2.4l
|4 =00 a;

=0.

Let {ex}ises1+mces be an orthonormal basis of Ré+ms;. Put d;=dim V(1). Then
d;=2m+1 for A=ma. Let p(A) be a representation of 2. We define p(1)} as
the following equation:

p(DH(R)=<p(AN k), vy  (kEK),

where {vp}ispse; is a unitary frame of V(4). Then we express V; ;=
Satp(A)%e, (for some ab,=C, d;=X|a%|?). By the Cauchy-Schwarts’ in-
equality and the fact that each |a%,|*=d;,

Vi lP=di1+m8)Z | apel®| oD} |*

=diX| p(A)% 1P =di(1+m(3)).
Thus we get

max||V il _ @m+1)2vI+m(5)

——>0 (as m—oo).
a {%m(m—l—l)}

Hence the right-hand side of is absolutely uniformly convergence on the
compact subset. Thus, by Lemma 6, we have
SF8<M)<‘]V’ V>dUF3<M)

é g {]lgrad fz,;-”z‘l—f%,iﬂ‘_gl—/z}

=, .
ED(K) : cos2—2-7rx

sin 2x<a, H) |dvso

acZt(G)-10)

X s pen IV 2P e,

Since 0<a,<aa=1/2<a;, -+ and Homg (V(a), (R6+m;)°)={0}, we get
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[0, Vs Vodorganz0  for each Vel (N(FS(M)F .
o
Therefore FYM) is stable. Q.E.D.
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