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SHARP CHARACTERS OF FINITE GROUPS
HAVING PRESCRIBED VALUES

By

S\^ohei NOZAWA

Let $\chi$ be a generalized character of a finite group $G$ with $L=\{\chi(g)|g\in G$ ,

$g\neq 1\}$ . Cameron and Kiyota [2] called that the pair $(c, x)$ is L-sharp if $|G|$

$=\prod_{\alpha\in L}(\chi(1)-\alpha)$ , and posed the problem of determining all the L-sharp pairs

$(c, x)$ for various sets $L$ of complex numbers. In [2] and Cameron, Kiyota
and Kataoka [3], L-sharp pairs $(c, x)$ for several sets $L$ are characterized or
partially settled. In this paper, we consider the cases $L=\{l, l+1, l+2, l+3\}$

with $l\in Z$ , and $L=\{0\}()L^{\prime}$ where $L^{\prime}$ is a family of algebraic conjugates. The
results are as follows.

THEOREM 1. Let $G$ be a finite group and $\chi$ be a faithful character of de-
gree $n$ of G. Suppose that $(G, \chi)$ is $\{1, l+l, l+2, l+3\}$ -sharp with $l\in Z$, and
normalized. Then

(1) $l=-2$ or $-1$ , and $\chi$ is irreducible;
(2) $G$ is isomorphic to one of the following groups:

$SL(2,3)$ ($n=2$ and $[=-2$);

$S_{5}$ ($n=4$ and $l=-1$);

$A_{6}$ ( $n=5$ and $1=-1$);

$M_{11}$ ($n=10$ and $1=-1$ ).

By inspection of character tables, it is easily verified that the above four
groups have sharp characters of type $\{1, 1+1,1+2, l+3\}$ with $1=-2$ or $-1$ .
We note that the case $1=-1$ was proved by [2].

THEOREM 2. Let $G$ be a finite group and $\chi$ be a faithful irreducible
character of G. Suppose that $(c, x)$ is L-sharp with $L=\{0\}\cup L^{\prime}$ where $L^{\prime}$ is a
family of algebraic conjugates and $|L^{\prime}|\geqq 2$ . Then $G$ is dihedral of twice odd
prime order, and $\chi$ is an irreducible character of degree 2.
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In Theorem 2, the pair $(G, \chi)$ is normalized since $\chi$ is irreducible. When
$\chi$ is a (possibly reducible) character of $G$ and $(c, x)$ is normalized, Cameron and
Kiyota [2] proved that the theorem 2 is true under either of the following
hypotheses:

(1) $n$ is coprime to $f_{L^{\prime}}(n)$ ;
(2) $|L^{\prime}|=2$ .

1. Some preliminrry results.

For a given finite set $L$ of complex numbers, let $f_{L}(x)$ denote the monic
polynomial of least degree having $L$ as its set of roots, that is,

$f_{L}(x)=\prod_{\alpha\in L}(x-\alpha)$ .

Let $G$ be a finite group and $\chi$ be a generalized character of $G$ with $\chi(1)=n$ .
Let $L=\{\chi(g)|g\in G, g\neq 1\}$ . Then we may say that the pair $(c, x)$ is of type $L$ .
If $(c, x)$ is of type $L$ , then it is known by Blichfeldt [1] that $f_{L}(n)$ is a rational
integer and $|G|$ divides $f_{L}(n)$ . We say that the pair $(c, x)$ is L-sharp if $(c, x)$

is of type $L$ and $|G|=f_{L}(n)$ . Thus $\chi$ is faithful whenever $(c, x)$ is L-sharp.
We note that the L-sharpness of $(c, x)$ is equivalent to the condition $f_{L}(n)=\rho_{G}$ ,

where $\rho_{G}$ is the regular character of $G$ .
Adding a multiple of the principal character $1_{G}$ to $\chi$ adds the same quantity

to $n$ and to each element of $L$ , and so does not affect the sharpness of $(c, x)$ .
Accordingly, we say that $(c, x)$ is normalized if $(\chi, 1_{G})=0$ .

Throughout this section, let $G$ be a finite group and let $\chi$ be a faithful
generalized character of $G$ . The first four lemmas appear in the work [2] of
Cameron and Kiyota. We will make use of these results later.

LEMMA 1.1 (Proposition 1.3 in [2]). Let $(c, x)$ be L-sharp and normalizecl,
where $L\subseteqq R$ .

(1) If $|L|=2$ , say $L=\{l_{1}, l_{2}\}$ , then $(\chi, \chi)_{G}=1-l_{1}l_{2}$ .
(2) If $|L|>2$ and $\min(L),$ $\max(L)\in Z$ , then $(\chi, \chi)_{G}\leqq-\min(L)\cdot\max(L)$ .

LEMMA 1.2 (Corollary 1.4 in [2]). Let $\chi$ be a faithful character of G. With
the hypotheses of Lemma 1.1,

(1) If $|L|=2$ , then $\min(L)<0\leqq\max(L)$ ;
(2) If $|L|>2$ and $\max(L),$ $\min(L)\in Z$, then $\min(L)<0<\max(L)$ .

LEMMA 1.3 (Proposition 1.6 in [2]). Let $F$ be a monic polynomial with
integer coefficients and degree $d$ , and $L$ a finite subset of complex numbers such
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that each element of $F(L)$ is the image under $F$ of exactly $d$ elements of L. If
$(c, x)$ is L-sharp, then $(G, F(\chi))$ is $F(L)$-sharp.

LEMMA 1.4 (Proposition 2.4 in [2]). Let $\chi$ be a faithful character of $G$ .
Let $(G, \chi)$ be $\{0,1\}$ -sharp with $l\neq-1$ and normalized. Then

(1) $-1$ is a prime power;
(2) $|G|$ is bounded by a function of 1;
(3) If $-l=p$ is prime, then $G=P\rangle\triangleleft Z_{p- 1}$ , where $P$ is a non-abelian group of

oraer $p^{3}$ .

Next we introduce the result [3] for classification of $\{-1,1\}$ -sharp pairs
and two Theorems concerning $L$ which contains a family of algebraic con-
jugates.

THEOREM 1.5 (Main Theorem in [3]). Let $\chi$ be a faithful character of de-
gree $n$ of G. If $(c, x)$ is $\{-1,1\}$ -sharp, then $G$ is isomorphic to one of the
following twelve groups:

$D_{8}$ and $Q_{8}(n=3)$ ;

$S_{4}$ and $SL(2,3)(n=5)$ ;

$GL(2,3)ana$ the binary octahedral group $(n=7)$ ;

$S_{5}$ and $SL(2,5)(n=11)$ ;

$PSL(2,7)(n=13)$ ;

$A_{6}(n=19)$ ;

the double cover $\hat{A}_{7}$ of $A_{7}(n=71)$ ;

$M_{11}(n=89)$ .

THEOREM 1.6 (Theorem 4.1 in [2]). Let $\chi$ be a faithful character of $G$ and
$L$ a family of algebraic conjugates and $|L|>1$ . If $(c, x)$ is L-sharp and nor-
malized, then $G$ is cyclic of odd prime order, and $\chi$ is either a linear character

of $G$ , or the sum of two complex $con$] $ugate$ linear characters of $G$ .

THEOREM 1.7 (Theorem 7.3 in [2]). Let $\chi$ be a faithful character of $G$ and
$L=\{0\}\cup L^{\prime}$ , where $L^{\prime}$ is a family of algebraic conjugates. Suppose either that
$n$ is coprime to $f_{L^{f}}(n)$ or that $|L^{\prime}|=2$ . If $(G, \chi)$ is L-sharp and normalized,

then $G$ is dihedral of twice odd prime order, and $\chi$ is an irreducible character
of degree 2.
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2. Proof of Therem 1.

From now on, let $G$ be a finite group and $\chi$ a faithful character of degree
$n$ of $G$ . We construct new sharp pairs from old ones.

PROPOSITION 2.1. Let $l_{1}$ and $l_{2}$ be integers with $l_{1}<0<l_{l}$ ancl $l_{1}+l_{2}\neq 0$ . Let
$(\chi, \chi)_{G}=m$ , and let $\varphi=x^{2}-(l_{1}+l_{2})\chi-m1_{G}$ . Suppose that $(c, x)$ is $\{0, l_{1}, l_{2}, l_{1}+l_{2}\}$ -

sharp. Then
(1) $(G, \varphi)$ is $\{-m, -m-l_{1}l_{2}\}$ -sharp;
(2) $(G, \varphi)$ is normalized and $(\varphi, \varphi)=1-m(m+l_{1}l_{2})$ if $(c, x)$ is.

PROOF. (1) Let $L=\{0, l_{1}, l_{2}, l_{1}+l_{2}\}$ and $F(x)=x^{2}-(l_{1}+l_{2})x-m$ . Then
$(G, \varphi)$ is clearly of type $F(L)=\{-m, -m-l_{1}l_{2}\}$ , and

$f_{L}(n)=n(n-l_{1})(n-l_{2})(n-l_{1}-l_{2})$

$=(F(n)+m)(F(n)+m+l_{1}l_{2})$

$=f_{F(L)}(\varphi(1))$ .
This identity shows that $(G, \varphi)$ is $F(L)$-sharp.

(2) If $(c, x)$ is normalized, then we have, by orthogonality relation,

$(\varphi, 1_{G})=(x^{2},1_{G})-m=0$ .

Thus $(G, \varphi)$ is normalized. Also it follows from (1) that

$\rho_{G}=\varphi^{2}+(2m+l_{1}l_{2})\varphi+m(m+l_{1}l_{f})1_{G}$ .
Hence we have

$(\varphi, \varphi)=(\varphi^{2},1_{G})=1-m(m+l_{1}l_{2})$ ,

and the proof is complete.

In the proof of Proposition 2.1, we notice that $\varphi$ is a generalized character

not necessarily character. However, $\varphi$ is faithful as $\chi$ is so.

COROLLARY 2.2. Let $(\chi, \chi)_{G}=m$ , and let $\varphi=x^{2}+\chi-m1_{G}$ . If $(c, x)$ is $\{-2$ ,

$-1,0,1\}$ -sharp and normalized, then
(1) $\chi$ is irreducible, $ana(G, \varphi)$ is $\{-1,1\}$ -sharp and normalized;
(2) $\varphi$ is a character.

PROOF. Under the same notation as in Proposition 2.1, we put $l_{1}=-2$ and
$l_{2}=1$ . Then it follows from Lemma 1.1 (2) that $(\chi, \chi)=m\leqq 2$ . Hence $m$ must
be equal to 1 or 2. However, if $m=2$ , then by Proposition 2.1, $(G, \varphi)$ is
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$\{-2,0\}$ -sharp and $\varphi$ is an irreducible character of $G$ . Hence it follows from
Lemma 1.4 that $G$ is a non-abelian group of order 8. In particular, we have
$\varphi(1)=4$ . This is impossible since the groups of order 8 have no irreducible
character of degree 4. Thus $m$ must be equal to 1. Therefore $\chi$ is irreducible
and $(G, \varphi)$ is $\{-1,1\}$ -sharp. Also we then have $(\varphi, \varphi)=2$ .

So, if $\varphi$ is not a character, it is the difference of two irreducible characters.
But $x^{2}$ is the sum of its symmetric and alternating parts, and the symmetric
part contains the principal character $1_{G}$ . This is impossible as $\varphi=X^{2}+\chi-1_{G}$ .
Hence the proof is complete.

COROLLARY 2.3. Let $(\chi, \chi)_{G}=m$ , and let $\varphi=x^{2}-\chi-m1_{G}$ . If $(c, x)$ is $\{-1$ ,

$0,1,2\}$ -sharp and normalizea, then
(1) $\chi$ is irreaucible, and $(G, \varphi)$ is $\{-1,1\}$ -sharp and normalized;
(2) $\varphi$ is a character.

PROOF. The result follows from the similar argument as Corollary 2.2.

Now we are ready to prove the theorem 1 stated in the introduction.

PROOF OF THEOREM 1. It follows from Lemma 1.1 and Lemma 1.2 that
$l(l+3)<0$ . Hence we have $1=-2$ or $-1$ . Now let $(\chi, \chi)_{G}=m$ and let $\varphi=x^{2}-$

$(2l+3)\chi$ $m1_{G}$ with $1=-2$ or $-1$ . Then, by Corollary 2.2 and 2.3, $(G, \varphi)$ is
$\{-1,1\}$ -sharp. So we can quote the classification theorem 1.5 of sharp pairs
of type $\{-1,1\}$ . If $1=-2$ , then since 3, 7 and 13 are not of the form $n^{2}+n-1$ ,
$G$ is isomorphic to one of the following groups:

$S_{4}$ and $SL(2,3)(n=2)$ ;

$S_{5}$ and $SL(2,5)(n=3)$ ;

$A_{6}(n=4)$ ;

the double cover $\hat{A}_{7}$ of $A_{7}(n=8)$ ;

$M_{11}(n=9)$ .
Since the irreducible character of degree 2 of $S_{4}$ is not faithful and the irre-
ducible character of degree 3 of $SL(2,5)$ is not rational, $G$ is not $S_{4}$ and $SL(2,5)$ .
Moreover, the other four groups except the $SL(2,3)$ have no irreducible
characters of given degree $n$ by inspection of character tables, and so the result
follows. (Of course, the irreducible character of degree 2 of $SL(2,3)$ satisfies
the assumption.)

For the case $l=-1$ , the similar argument as $1=-2$ gives the result.
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3. Proof of Theorem 2.

Throughout this section, let $\chi$ be a faithful irreducible character of degree
$n$ of a finite group $G$ , and let $L=\{0\}\cup L^{\prime}$ , where $L^{\prime}$ is a family of algebraic
conjugates with $|L^{\prime}|=t$ . We also set

$a=|\{x\in G|\chi(x)=0\}|$

$b=|\{x\in G|\chi(x)=\alpha\}|$

for $\alpha\in L^{\prime}$ , and
$-s=\sum_{\alpha\in L}\alpha$ .

Suppose that $(c, x)$ is L-sharp and normalized. Since $(G, \chi)$ is of type $L$ , the
elements of $L^{\prime}$ occur equally often, each $b$ times, as values of $\chi$ , and so

$|G|=1+a+bt$ . (3.1)

Moreover, since $(G, \chi)$ is normalized, $(\chi, 1_{G})=0$ implies

$n-bs=0$ , (3.2)

and so $s$ must be a positive integer.

PROPOSITION 3.1. Under the above notation, if $(G, \chi)$ is L-sharp, then the
followings hold.

(1) $|G|=nf_{L^{\prime}}(n)$ where $f_{L^{\prime}}(n)=\prod_{\alpha\in L}(n-\alpha)$ .
(2) There is a non-identity p-element $g$ of $G$ , for some prime $p$ , such that

$\chi(g)\neq 0$ .
(3) For the same prime $p$ as in (2), $f_{L^{\prime}}(n)$ is a power of $p$ .

PROOF. Statement (1) follows from definition.
(2) If not, then the restriction of $\chi$ to every Sylow subgroup $P$ of $G$ is a

multiple of the regular character of $P$, whence $|P|$ devides $n$ , and so $|G|$

divides $n$ . This is impossible and so (2) holds.
(3) Let $g$ be an element of order $p^{d}$ of $G$ such that $\chi(g)\neq 0$ . Since $\chi(g)$

is a sum of $p^{d}th$ roots of unity, $L^{\prime}$ is contained in the field $Q(e^{2\pi ip^{d}}/)$ . If
$(p, m)=1$ , it is well known from Galois theory that $Q(e^{2\pi t/P^{d}})\cap Q(e^{87\tau i/m})=Q$ .
Therefore $p$ is a unique prime such that $L^{\prime}\subseteqq Q(e^{2\pi ip^{d}}/)$ , since $L^{\prime}\not\leqq Q$ . Thus
if $Q$ is a Sylow q-subgroup of $G$ , for any prime $q$ different from $p$ , then the
restriction of $\chi$ to $Q$ is a multiple of the regular character of $Q$ , whence $|Q|$

divides $n$ . Thus the p’-part of the order of $G$ divides $n$ , and so statement (1)
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implies that $f_{L^{\prime}}(n)$ is a power of $p$ , and the proof is complete.

Since the Galois group of $Q(e^{2\pi ip^{d}}/)$ over $Q$ acts transitively on $L^{\prime},$ $G$ has
$t$ distinct Galois conjugates, say $x=x_{1},$ $x_{2},$

$\cdots,$
$x_{t}$ , of $\chi$ . Now we set $\varphi=x_{1}+\chi_{2}+$

$+\chi_{i}$ . Clearly, $\varphi$ is a faithful character of $G$ with $(\varphi, 1_{G})=0$ , and the pair
$(G, \varphi)$ is of type $\{0, -s\}$ .

PROPOSITION 3.2. Let $\varphi$ be as above. Under the same notation as in Pro-
position 3.1, if $(c, x)$ is L-sharp, then

(1) $f_{L^{\prime}}(n)=s(1+bt)$ ;
(2) $b$ is the p’-part of the order of $G$ .

PROOF. (1) Using (3.2), the inner product of $\varphi$ with $\chi$ gives

$1=(\varphi, x)=\frac{1}{|G|}(n^{2}t+bs^{2})=\frac{ns(1+bt)}{|G|}$ .

Thus $f_{L^{\prime}}(n)=s(1+bt)$ .
(2) If follows from Proposition 3.1 and statement (1) that $s(1+bt)$ is a

power of $p$ . In particular, $b$ is relatively prime to $p$ and therefore $|G|=$

$bs^{2}(1+bt)$ means $b$ is the p’-part of the order of $G$ as desired.

PROPOSITION 3.3. Under the same notation as in Proposition 3.1, if $(c, x)$

is L-sharp, then the following hold.
(1) $N=\{g\in G|\chi(g)\neq 0\}$ is the unique minimal normal subgroup of $G$ .
(2) For any $\alpha\in L^{\prime},$ $c_{\alpha}=\{g\in G|\chi(g)=\alpha\}$ is a single conjugacy class of $G$ .

In particular, $N$ is an elementary abelian p-subgroup of $G$ .

PROOF. (1) Set $\Theta=Irr(G)-$ { $all$ irreducible constituents of $\varphi$ }. Then. for
any $\theta\in\Theta$ , we have

$(\theta, \varphi)=\frac{1}{|G|}\sum_{g\in G}\theta(g)\overline{\varphi(g)}$

$=\frac{1}{|G|}\{nt\theta(1)-\sum_{g\in N-\{1\}}s\theta(g)\}$ ,

whence by (3.2),

$\sum_{g\in N-\{1\}}\theta(g)=bt\theta(1)$ .

Thus we obtain $\theta(g)=\theta(1)$ for any element $g$ of $N$, and so $ N\subseteqq\bigcap_{\theta\in\Theta}Ker\theta$ . Let

$g$ be a non-identity element of $N$. If there exists a non-identity element $h$ of
$\bigcap_{\theta\in\theta}Ker\theta$ that is not contained in $N$, then the second orthogonality relation

applied to the conjugacy classes containing $g$ and $h$ yields
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$0=\sum_{\theta\in\Theta}\theta(g)\theta(h)=\sum_{\theta\in\Theta}\theta(1)^{2}$ .

a contradiction. Thus $ N=\bigcap_{\theta\in\theta}Ker\theta$ , and so $N$ is a normal subgroup of $G$ .
Let $M$ be any proper normal subgroup of $G$ , and put $\Psi$ be the set of irre-

ducible characters $\psi$ of $G$ with kernel containing $M$. As $\chi$ is faithful, $\chi$ does
not contained in $\Psi$ . Thus we have $ N\subseteqq Ker\psi$ for every $\psi\in\Psi$ , and so $M=$

$\bigcap_{\psi\in\Psi}Ker\psi\supseteqq N$. Hence $N$ is the unique minimal normal subgroup of $G$ ,

(2) Let $g,$
$h$ be any elements of $C_{\alpha}$ and let $\theta$ be any irreducible character

of $G$ . Then we have $\theta(g)=\theta(h)=\theta(1)$ , and so $C_{a}$ is a single conjugacy class
of $G$ .

Clearly $N$ is a p-group as $|N|=1+bt$ is a power of $p$ . Since, for any
$\beta\in L^{\prime}$ , each element of $C_{\beta}$ is a power of an element of $C_{\alpha}$ , every element of
$N-\{1\}$ is of order $p$ . In particular, $N$ is an elementary abelian p-subgroup.
This completes the proof of Proposition 3.3.

PROOF OF THEOREM 2. By Theorem 1.7, we may assume that $t\geqq 3$ . Let
$N=\{g\in G|\chi(g)\neq 0\}$ . By Proposition 3.3, $N$ is an elementary abelian normal p-
subgroup of $G$ . Hence we have, by Clifford’s Theorem,

$x_{N}=s\sum_{i\Rightarrow 1}^{b}\lambda_{i}$

for some linear character $\lambda_{t}$ of $N$. Hence we have, by Proposition 3.1 and 3.2,

$s|N|=f_{L^{\prime}}(n)=s^{l}\prod_{\alpha\in L^{\prime}}(b-\alpha/s)$ .

Also, clearly, the pair $(N, \Sigma_{i=1}^{b}\lambda_{i})$ is of type $\{\alpha/s|\alpha\in L^{\prime}\}$ . This yields that
$\Pi_{a\in L^{\prime}}(b-\alpha/s)$ is divisible by $|N|$ , and so we have $s=1$ as $t\geqq 3$ . In particular,
the pair $(N, \chi_{N})$ is of type $L^{\prime}$ . Hence it follows from Theorem 1.6 that $N$

must be cyclic of order $p$ and $n=2$ . Thus $G$ is dihedral of order $2p$ and $\chi$ is
an irreducible character of degree 2. This completes the proof of Theorem 2.
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