SHARP CHARACTERS OF FINITE GROUPS HAVING PRESCRIBED VALUES

By
Sôhei Nozawa

Let χ be a generalized character of a finite group G with $L=\{\chi(g) \mid g \in G$, $g \neq 1\}$. Cameron and Kiyota [2] called that the pair (G, χ) is L-sharp if $|G|$ $=\prod_{\alpha \in L}(\chi(1)-\alpha)$, and posed the problem of determining all the L-sharp pairs (G, χ) for various sets L of complex numbers. In [2] and Cameron, Kiyota and Kataoka [3], L-sharp pairs (G, χ) for several sets L are characterized or partially settled. In this paper, we consider the cases $L=\{l, l+1, l+2, l+3\}$ with $l \in \boldsymbol{Z}$, and $L=\{0\} \cup L^{\prime}$ where L^{\prime} is a family of algebraic conjugates. The results are as follows.

Theorem 1. Let G be a finite group and χ be a faithful character of degree n of G. Suppose that (G, χ) is $\{l, l+1, l+2, l+3\}$-sharp with $l \in \boldsymbol{Z}$, and normalized. Then
(1) $l=-2$ or -1 , and χ is irreducible ;
(2) G is isomorphic to one of the following groups:

$$
\begin{aligned}
& \mathrm{SL}(2,3)(n=2 \text { and } l=-2) ; \\
& \mathrm{S}_{5}(n=4 \text { and } l=-1) ; \\
& \mathrm{A}_{6}(n=5 \text { and } l=-1) ; \\
& \mathrm{M}_{11}(n=10 \text { and } l=-1) .
\end{aligned}
$$

By inspection of character tables, it is easily verified that the above four groups have sharp characters of type $\{l, l+1, l+2, l+3\}$ with $l=-2$ or -1 . We note that the case $l=-1$ was proved by [2].

THEOREM 2. Let G be a finite group and χ be a faithful irreducible character of G. Suppose that (G, χ) is L-sharp with $L=\{0\} \cup L^{\prime}$ where L^{\prime} is a family of algebraic conjugates and $\left|L^{\prime}\right| \geqq 2$. Then G is dihedral of twice odd prime order, and χ is an irreducible character of degree 2.

[^0]In Theorem 2, the pair (G, χ) is normalized since χ is irreducible. When χ is a (possibly reducible) character of G and (G, χ) is normalized, Cameron and Kiyota [2] proved that the theorem 2 is true under either of the following hypotheses:
(1) n is coprime to $f_{L^{\prime}}(n)$;
(2) $\left|L^{\prime}\right|=2$.

1. Some preliminrry results.

For a given finite set L of complex numbers, let $f_{L}(x)$ denote the monic polynomial of least degree having L as its set of roots, that is,

$$
f_{L}(x)=\prod_{\alpha \in L}(x-\alpha) .
$$

Let G be a finite group and χ be a generalized character of G with $\chi(1)=n$. Let $L=\{\chi(g) \mid g \in G, g \neq 1\}$. Then we may say that the pair (G, χ) is of type L. If (G, χ) is of type L, then it is known by Blichfeldt [1] that $f_{L}(n)$ is a rational integer and $|G|$ divides $f_{L}(n)$. We say that the pair (G, χ) is L-sharp if (G, χ) is of type L and $|G|=f_{L}(n)$. Thus χ is faithful whenever (G, χ) is L-sharp. We note that the L-sharpness of (G, χ) is equivalent to the condition $f_{L}(n)=\rho_{G}$, where ρ_{G} is the regular character of G.

Adding a multiple of the principal character 1_{G} to χ adds the same quantity to n and to each element of L, and so does not affect the sharpness of (G, χ). Accordingly, we say that (G, χ) is normalized if $\left(\chi, 1_{G}\right)=0$.

Throughout this section, let G be a finite group and let χ be a faithful generalized character of G. The first four lemmas appear in the work [2] of Cameron and Kiyota. We will make use of these results later.

Lemma 1.1 (Proposition 1.3 in [2]). Let (G, χ) be L-sharp and normalized, where $L \subseteq \boldsymbol{R}$.
(1) If $|L|=2$, say $L=\left\{l_{1}, l_{2}\right\}$, then $(\chi, \chi)_{G}=1-l_{1} l_{2}$.
(2) If $|L|>2$ and $\min (L), \max (L) \in \boldsymbol{Z}$, then $(\chi, \chi)_{G} \leqq-\min (L) \cdot \max (L)$.

Lemma 1.2 (Corollary 1.4 in [2]). Let χ be a faithful character of G. With the hypotheses of Lemma 1.1,
(1) If $|L|=2$, then $\min (L)<0 \leqq \max (L)$;
(2) If $|L|>2$ and $\max (L), \min (L) \in Z$, then $\min (L)<0<\max (L)$.

Lemma 1.3 (Proposition 1.6 in [2]). Let F be a monic polynomial with integer coefficients and degree d, and L a finite subset of complex numbers such
that each element of $F(L)$ is the image under F of exactly d elements of L. If (G, χ) is L-sharp, then $(G, F(\chi))$ is $F(L)$-sharp.

Lemma 1.4 (Proposition 2.4 in [2]). Let χ be a faithful character of G. Let (G, χ) be $\{0, l\}$-sharp with $l \neq-1$ and normalized. Then
(1) $-l$ is a prime power ;
(2) $|G|$ is bounded by a function of l;
(3) If $-l=p$ is prime, then $G=P \rtimes Z_{p-1}$, where P is a non-abelian group of order p^{3}.

Next we introduce the result [3] for classification of $\{-1,1\}$-sharp pairs and two Theorems concerning L which contains a family of algebraic conjugates.

Theorem 1.5 (Main Theorem in [3]). Let χ be a faithful character of degree n of G. If (G, χ) is $\{-1,1\}$-sharp, then G is isomorphic to one of the following twelve groups:

$$
\begin{gathered}
\mathrm{D}_{8} \text { and } \mathrm{Q}_{8}(n=3) ; \\
\mathrm{S}_{4} \text { and } \operatorname{SL}(2,3)(n=5) ;
\end{gathered}
$$

$\mathrm{GL}(2,3)$ and the binary octahedral group ($n=7$);

$$
\begin{gathered}
\mathrm{S}_{5} \text { and } \operatorname{SL}(2,5)(n=11) \\
\operatorname{PSL}(2,7)(n=13) \\
\mathrm{A}_{6}(n=19) \\
\text { the double cover } \hat{\mathrm{A}}_{7} \text { of } \mathrm{A}_{7}(n=71) \text {; } \\
\mathrm{M}_{11}(n=89)
\end{gathered}
$$

Theorem 1.6 (Theorem 4.1 in [2]). Let χ be a faithful character of G and L a family of algebraic conjugates and $|L|>1$. If (G, χ) is L-sharp and normalized, then G is cyclic of odd prime order, and χ is either a linear character of G, or the sum of two complex conjugate linear characters of G.

Theorem 1.7 (Theorem 7.3 in [2]). Let χ be a faithful character of G and $L=\{0\} \cup L^{\prime}$, where L^{\prime} is a family of algebraic conjugates. Suppose either that n is coprime to $f_{L^{\prime}}(n)$ or that $\left|L^{\prime}\right|=2$. If (G, χ) is L-sharp and normalized, then G is dihedral of twice odd prime order, and χ is an irreducible character of degree 2.

2. Proof of Therem 1.

From now on, let G be a finite group and χ a faithful character of degree n of G. We construct new sharp pairs from old ones.

Proposition 2.1. Let l_{1} and l_{2} be integers with $l_{1}<0<l_{2}$ and $l_{1}+l_{2} \neq 0$. Let $(\chi, \chi)_{G}=m$, and let $\varphi=\chi^{2}-\left(l_{1}+l_{2}\right) \chi-m 1_{G}$. Suppose that (G, χ) is $\left\{0, l_{1}, l_{2}, l_{1}+l_{2}\right\}$ sharp. Then
(1) (G, φ) is $\left\{-m,-m-l_{1} l_{2}\right\}$-sharp;
(2) (G, φ) is normalized and $(\varphi, \varphi)=1-m\left(m+l_{1} l_{2}\right)$ if (G, χ) is.

Proof. (1) Let $L=\left\{0, l_{1}, l_{2}, l_{1}+l_{2}\right\}$ and $F(x)=x^{2}-\left(l_{1}+l_{2}\right) x-m$. Then (G, φ) is clearly of type $F(L)=\left\{-m,-m-l_{1} l_{2}\right\}$, and

$$
\begin{aligned}
f_{L}(n) & =n\left(n-l_{1}\right)\left(n-l_{2}\right)\left(n-l_{1}-l_{2}\right) \\
& =(F(n)+m)\left(F(n)+m+l_{1} l_{2}\right) \\
& =f_{F(L)}(\varphi(1)) .
\end{aligned}
$$

This identity shows that (G, φ) is $F(L)$-sharp.
(2) If (G, χ) is normalized, then we have, by orthogonality relation,

$$
\left(\varphi, 1_{G}\right)=\left(\chi^{2}, 1_{G}\right)-m=0 .
$$

Thus (G, φ) is normalized. Also it follows from (1) that

$$
\rho_{G}=\varphi^{2}+\left(2 m+l_{1} l_{2}\right) \varphi+m\left(m+l_{1} l_{2}\right) 1_{G} .
$$

Hence we have

$$
(\varphi, \varphi)=\left(\varphi^{2}, 1_{G}\right)=1-m\left(m+l_{1} l_{2}\right)
$$

and the proof is complete.
In the proof of Proposition 2.1, we notice that φ is a generalized character not necessarily character. However, φ is faithful as χ is so.

Corollary 2.2. Let $(\chi, \chi)_{G}=m$, and let $\varphi=\chi^{2}+\chi-m 1_{G}$. If (G, χ) is $\{-2$, $-1,0,1\}$-sharp and normalized, then
(1) χ is irreducible, and (G, φ) is $\{-1,1\}$-sharp and normalized;
(2) φ is a character.

Proof. Under the same notation as in Proposition 2.1, we put $l_{1}=-2$ and $l_{2}=1$. Then it follows from Lemma 1.1 (2) that $(\chi, \chi)=m \leqq 2$. Hence m must be equal to 1 or 2 . However, if $m=2$, then by Proposition 2.1, (G, φ) is
$\{-2,0\}$-sharp and φ is an irreducible character of G. Hence it follows from Lemma 1.4 that G is a non-abelian group of order 8. In particular, we have $\varphi(1)=4$. This is impossible since the groups of order 8 have no irreducible character of degree 4 . Thus m must be equal to 1 . Therefore χ is irreducible and (G, φ) is $\{-1,1\}$-sharp. Also we then have $(\varphi, \varphi)=2$.

So, if φ is not a character, it is the difference of two irreducible characters. But χ^{2} is the sum of its symmetric and alternating parts, and the symmetric part contains the principal character 1_{G}. This is impossible as $\varphi=\chi^{2}+\chi-1_{G}$. Hence the proof is complete.

Corollary 2.3. Let $(\chi, \chi)_{G}=m$, and let $\varphi=\chi^{2}-\chi-m 1_{G}$. If (G, χ) is $\{-1$, $0,1,2\}$-sharp and normalized, then
(1) χ is irreducible, and (G, φ) is $\{-1,1\}$-sharp and normalized;
(2) φ is a character.

Proof. The result follows from the similar argument as Corollary 2.2.
Now we are ready to prove the theorem 1 stated in the introduction.
Proof of Theorem 1. It follows from Lemma 1.1 and Lemma 1. 2 that $l(l+3)<0$. Hence we have $l=-2$ or -1 . Now let $(\chi, \chi)_{G}=m$ and let $\varphi=\chi^{2}-$ $(2 l+3) \chi-m 1_{G}$ with $l=-2$ or -1 . Then, by Corollary 2.2 and $2.3,(G, \varphi)$ is $\{-1,1\}$-sharp. So we can quote the classification theorem 1.5 of sharp pairs of type $\{-1,1\}$. If $l=-2$, then since 3,7 and 13 are not of the form $n^{2}+n-1$, G is isomorphic to one of the following groups:

$$
\begin{aligned}
& \qquad \begin{array}{c}
\mathrm{S}_{4} \text { and } \operatorname{SL}(2,3)(n=2) ; \\
\mathrm{S}_{5} \text { and } \operatorname{SL}(2,5)(n=3) ; \\
\mathrm{A}_{6}(n=4) ; \\
\text { the double cover } \hat{\mathrm{A}}_{7} \text { of } \mathrm{A}_{7}(n=8) ; \\
\mathrm{M}_{11}(n=9)
\end{array}
\end{aligned}
$$

Since the irreducible character of degree 2 of S_{4} is not faithful and the irreducible character of degree 3 of $\operatorname{SL}(2,5)$ is not rational, G is not S_{4} and $\operatorname{SL}(2,5)$. Moreover, the other four groups except the $\operatorname{SL}(2,3)$ have no irreducible characters of given degree n by inspection of character tables, and so the result follows. (Of course, the irreducible character of degree 2 of $\operatorname{SL}(2,3)$ satisfies the assumption.)

For the case $l=-1$, the similar argument as $l=-2$ gives the result.

3. Proof of Theorem 2.

Throughout this section, let χ be a faithful irreducible character of degree n of a finite group G, and let $L=\{0\} \cup L^{\prime}$, where L^{\prime} is a family of algebraic conjugates with $\left|L^{\prime}\right|=t$. We also set

$$
\begin{aligned}
& a=|\{x \in G \mid \chi(x)=0\}| \\
& b=|\{x \in G \mid \chi(x)=\alpha\}|
\end{aligned}
$$

for $\alpha \in L^{\prime}$, and

$$
-s=\sum_{\alpha \in L} \alpha
$$

Suppose that (G, χ) is L-sharp and normalized. Since (G, χ) is of type L, the elements of L^{\prime} occur equally often, each b times, as values of χ, and so

$$
\begin{equation*}
|G|=1+a+b t \tag{3.1}
\end{equation*}
$$

Moreover, since (G, χ) is normalized, $\left(\chi, 1_{G}\right)=0$ implies

$$
\begin{equation*}
n-b s=0, \tag{3.2}
\end{equation*}
$$

and so s must be a positive integer.

Proposition 3.1. Under the above notation, if (G, χ) is L-sharp, then the followings hold.
(1) $|G|=n f_{L^{\prime}}(n)$ where $f_{L^{\prime}}(n)=\prod_{\alpha \in L}(n-\alpha)$.
(2) There is a non-identity p-element g of G, for some prime p, such that $\chi(g) \neq 0$.
(3) For the same prime p as in (2), $f_{L^{\prime}}(n)$ is a power of p.

Proof. Statement (1) follows from definition.
(2) If not, then the restriction of χ to every Sylow subgroup P of G is a multiple of the regular character of P, whence $|P|$ devides n, and so $|G|$ divides n. This is impossible and so (2) holds.
(3) Let g be an element of order p^{d} of G such that $\chi(g) \neq 0$. Since $\chi(g)$ is a sum of p^{d} th roots of unity, L^{\prime} is contained in the field $\boldsymbol{Q}\left(e^{2 \pi i / p^{d}}\right)$. If $(p, m)=1$, it is well known from Galois theory that $\boldsymbol{Q}\left(e^{2 \pi i / p d}\right) \cap \boldsymbol{Q}\left(e^{2 \pi i / m}\right)=\boldsymbol{Q}$. Therefore p is a unique prime such that $L^{\prime} \cong \boldsymbol{Q}\left(e^{2 \pi i / p^{d}}\right)$, since $L^{\prime} \nsubseteq \boldsymbol{Q}$. Thus if Q is a Sylow q-subgroup of G, for any prime q different from p, then the restriction of χ to Q is a multiple of the regular character of Q, whence $|Q|$ divides n. Thus the p^{\prime}-part of the order of G divides n, and so statement (1)
implies that $f_{L^{\prime}}(n)$ is a power of p, and the proof is complete.
Since the Galois group of $\boldsymbol{Q}\left(e^{2 \pi i / p d}\right)$ over \boldsymbol{Q} acts transitively on L^{\prime}, G has t distinct Galois conjugates, say $\chi=\chi_{1}, \chi_{2}, \cdots, \chi_{t}$, of χ. Now we set $\varphi=\chi_{1}+\chi_{2}+$ $\cdots+\chi_{t}$. Clearly, φ is a faithful character of G with $\left(\varphi, 1_{G}\right)=0$, and the pair (G, φ) is of type $\{0,-s\}$.

Proposition 3.2. Let φ be as above. Under the same notation as in Proposition 3.1, if (G, χ) is L-sharp, then
(1) $f_{L^{\prime}}(n)=s(1+b t)$;
(2) b is the p^{\prime}-part of the order of G.

Proof. (1) Using (3.2), the inner product of φ with χ gives

$$
1=(\varphi, \chi)=\frac{1}{|G|}\left(n^{2} t+b s^{2}\right)=\frac{n s(1+b t)}{|G|} .
$$

Thus $f_{L^{\prime}}(n)=s(1+b t)$.
(2) If follows from Proposition 3.1 and statement (1) that $s(1+b t)$ is a power of p. In particular, b is relatively prime to p and therefore $|G|=$ $b s^{2}(1+b t)$ means b is the p^{\prime}-part of the order of G as desired.

Proposition 3.3. Under the same notation as in Proposition 3.1, if (G, χ) is L-sharp, then the following hold.
(1) $N=\{g \in G \mid \chi(g) \neq 0\}$ is the unique minimal normal subgroup of G.
(2) For any $\alpha \in L^{\prime}, \mathcal{C}_{\alpha}=\{g \in G \mid \chi(g)=\alpha\}$ is a single conjugacy class of G. In particular, N is an elementary abelian p-subgroup of G.

Proof. (1) Set $\Theta=\operatorname{Irr}(G)-\{$ all irreducible constituents of $\varphi\}$. Then. for any $\theta \in \Theta$, we have

$$
\begin{aligned}
(\theta, \varphi) & =\frac{1}{|G|} \sum_{\boldsymbol{g} \in G} \theta(g) \overline{\varphi(g)} \\
& =\frac{1}{|G|}\left\{n t \theta(1)-\sum_{g \in N-(1)} s \theta(g)\right\},
\end{aligned}
$$

whence by (3.2),

$$
\sum_{g \in N-(1)} \theta(g)=b t \theta(1) .
$$

Thus we obtain $\theta(g)=\theta(1)$ for any element g of N, and so $N \subseteq \bigcap_{\theta \in \theta} \operatorname{Ker} \theta$. Let g be a non-identity element of N. If there exists a non-identity element h of $\bigcap_{\theta \in \theta} \operatorname{Ker} \theta$ that is not contained in N, then the second orthogonality relation applied to the conjugacy classes containing g and h yields

$$
0=\sum_{\theta \in \boldsymbol{\theta}} \theta(g) \theta(h)=\sum_{\theta \in \boldsymbol{\theta}} \theta(1)^{2} .
$$

a contradiction. Thus $N=\bigcap \bigcap_{\theta \in \Theta} \operatorname{Ker} \theta$, and so N is a normal subgroup of G.
Let M be any proper normal subgroup of G, and put Ψ be the set of irreducible characters ψ of G with kernel containing M. As χ is faithful, χ does not contained in Ψ. Thus we have $N \cong \operatorname{Ker} \psi$ for every $\psi \in \Psi$, and so $M=$ $\bigcap_{\psi \in \Psi} \operatorname{Ker} \psi \supseteqq N$. Hence N is the unique minimal normal subgroup of G,
(2) Let g, h be any elements of \mathcal{C}_{α} and let θ be any irreducible character of G. Then we have $\theta(g)=\theta(h)=\theta(1)$, and so \mathcal{C}_{α} is a single conjugacy class of G.

Clearly N is a p-group as $|N|=1+b t$ is a power of p. Since, for any $\beta \in L^{\prime}$, each element of \mathcal{C}_{β} is a power of an element of \mathcal{C}_{α}, every element of $N-\{1\}$ is of order p. In particular, N is an elementary abelian p-subgroup. This completes the proof of Proposition 3.3.

Proof of Theorem 2. By Theorem 1.7, we may assume that $t \geqq 3$. Let $N=\{g \in G \mid \chi(g) \neq 0\}$. By Proposition 3.3, N is an elementary abelian normal p subgroup of G. Hence we have, by Clifford's Theorem,

$$
\chi_{N}=s \sum_{i=1}^{b} \lambda_{i}
$$

for some linear character λ_{i} of N. Hence we have, by Proposition 3.1 and 3.2,

$$
s|N|=f_{L^{\prime}}(n)=s^{t} \prod_{\alpha \in L^{\prime}}(b-\alpha / s)
$$

Also, clearly, the pair ($N, \sum_{i=1}^{b} \lambda_{i}$) is of type $\left\{\alpha / s \mid \alpha \in L^{\prime}\right\}$. This yields that $\Pi_{\alpha \in L^{\prime}}(b-\alpha / s)$ is divisible by $|N|$, and so we have $s=1$ as $t \geqq 3$. In particular, the pair $\left(N, \chi_{N}\right)$ is of type L^{\prime}. Hence it follows from Theorem 1.6 that N must be cyclic of order p and $n=2$. Thus G is dihedral of order $2 p$ and χ is an irreducible character of degree 2. This completes the proof of Theorem 2.

References

[1] H.F. Blichfeldt, A theorem concerning the invariants of linear homogeneous groups, with some applications to substitution-groups, Trans. Amer. Math. Soc. 5 (1904), 461-466.
[2] P.J. Cameron and M. Kiyota, Sharp characters of finite groups, J. Algebra 115 (1988), 125-143.
[3] P.J. Cameron, T. Kataoka and M. Kiyota, Sharp characters of finite groups of type $\{-1,1\}$, to appear in J. Algebra.
[4] S.M. Gagola, Jr., Characters vanishing on all but two conjugacy classes, Pacific

Sharp characters of finite groups having prescribed values
J. Math. 109 (1983), 363-385.
[5] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.

Mathematical Institute,
College of Arts and Sciences
Chiba University,
Yayoicho, Inage-ku, Chiba 263,
Japan

[^0]: Received June 24, 1991. Revised October 28, 1991.

