TWO MOORE SPACES ON WHICH EVERY CONTINUOUS REAL-VALUED FUNCTION IS CONSTANT

By
V. Tzannes

Abstract

We construct two Moore spaces on which every continuous real-valued function is constant. The first is Moore, screenable and the second, Moore separable. As corollaries we obtain two more Moore spaces on which every continuous real-valued function is constant (a Moore separable and a Moore, screenable) and having a dispersion point.

Key words: Moore, metacompact, screenable, separable, dispersion point.

AMS Subject Classification: 54E30, 54C05, 54G15.

§ 1. Introduction.

Moore spaces on which every continuous real-valued function is constant are given in [1], [2], [7], [8]. The space by J.N. Younglove [8] is, in addition locally connected, complete and separable and the space in [2], by H . Brandenburg and A. Mysior, metacompact.

We construct two Moores spaces on which every continuous real-valued function is constant. The first is Moore, screenable (hence metacompact, since every developable screenable space is metacompact [4]) and the second, Moore separable. As corollaries we obtain two more Moore spaces on which every continuous real-valued function is constant (a Moore separable and a Moore, screenable) and having a dispersion point.

In order to construct these spaces, we first consider two auxiliary spaces (a Moore, screenable for the first space and a Moore separable for the second) containing two points not separated by a continuous real-valued function. Then we construct an appropriate Moore space (which is screenable in the first case or separable in the second) on which, with the help of a sequence of functions, we define a decomposition. Finally, on the quotient set we define a topology and we prove that this, in each case, is the required space.

A space X is called (1) developable, if it has a development, i.e. a sequence $F_{1}, F_{2}, \cdots, F_{n}, \cdots$ of open coverings such that if K is a closed subset of X and $x \notin K$, then there exists a covering F_{n} such that $\operatorname{St}\left(x, F_{n}\right) \cap K=\varnothing$, where $S t\left(x, F_{n}\right)$ is the union of all sets in F_{n} containing x (2) metacompact, if every open covering of X has a point-finite open refinement and (3) screenable, if for every open covering F of X there exists a sequence $F_{1}, F_{2}, \cdots, F_{n}, \cdots$ of collections of pairwise disjoint open sets such that $\bigcup_{n=1}^{\infty} F_{n}$ covers X and refines F. A regular developable space is called a Moore space.

A point p of a connected space X is called a dispersion point if the space $X \backslash\{p\}$ is totally disconnected.

§2. The space X.

The following space K is a slight modification of the Heath's space [4]. The idea of "splitting" the neighbourhoods is due to A. Mysior.

We consider the set

$$
K=[(-1, \infty) \times[0,1] \backslash\{(x, y):-1<x<0,|x|>y\}] \cup\{p\{.
$$

Let L_{1} (resp. M_{1}) be the set of rationals (resp. irrationals) of the intervals $\left[n, n+1\right.$) $, n=0,2,4, \cdots$, and L_{2} (resp. M_{2}) be the set of rationals (resp. irrationals) of the intervals $[n, n+1), n=1,3,5, \cdots$.

On the set K we define the following topology: Every point $(x, y) \in$ $K \backslash\{p\}, y>0$, is isolated.

For every $(q, 0) \in L_{1}$ (resp. $\left.(s, 0) \in M_{1}\right)$ a basis of open neighbourhoods are the sets

$$
\begin{gathered}
U_{n}(q, 0)=\{(q, 0)\} \cup\left\{(q-y, y): 0<y<\frac{1}{n}\right\} \\
\cup\left\{(q+1-y, y): 0<y<\frac{1}{n}\right\} . \\
\left(\text { resp. } U_{n}(s, 0)=\{(s, 0)\} \cup\left\{(s+y, y): 0<y<\frac{1}{n}\right\}\right. \\
\left.\cup\left\{(s+1+y, y): 0<y<\frac{1}{n}\right\}\right),
\end{gathered}
$$

$n=1,2, \cdots$.
For every $(r, 0) \in L_{2}$ (resp. $(t, 0) \in M_{2}$) a basis of open neighbourhoods are the sets

$$
\begin{gathered}
\qquad U_{n}(r, 0)=\{(r, 0)\} \cup\left\{(r+y, y): 0<y<\frac{1}{n}\right\} \\
\cup\left\{(r+1+y, y): 0<y<\frac{1}{n}\right\}, \\
\left(\text { resp. } U_{n}(t, 0)=\{(t, 0)\} \cup\left\{(t-y, y): 0<y<\frac{1}{n}\right\}\right. \\
\left.\cup\left\{(t+1-y, y): 0<y<\frac{1}{n}\right\}\right),
\end{gathered}
$$

$n=1,2, \cdots$.
For the point p a basis of open neighbourhoods are the sets

$$
U_{n}(p)=\{p\} \cup\{(x, y): x>n\}, \quad n=1,2, \cdots
$$

It can be easily proved that K is Moore, screenable not completely regular.
Let K^{+}, K^{-}be two disjoint copies of K and let $[0,1)^{+},[0,1)^{-}$be the copies of the interval $[0,1)$ in K^{+}, K^{-}, respectively. We attach K^{+}to K^{-}identifying each point of $[0,1)^{+}$with its corresponding point of $[0,1)^{-}$. We set $[0,1)^{+}=$ $[0,1)^{-}=[0,1)$ and we consider the space

$$
X=\left(K^{+} \backslash[0,1)^{+}\right) \cup[0,1) \cup\left(K \backslash[0,1)^{-}\right) .
$$

It is easy to prove that X is regular, first countable, containing two points a, b (the copies of p in K^{+}, K^{-}, respectively) not separated by a continuous real-valued function of X.

Let $x \in X$ and $U_{n}(x), n=1,2, \cdots$, be a countable local basis of x. It is obvious that the collection $F_{n}=\left\{U_{n}(x): x \in X\right\}, n=1,2, \cdots$, is a development for X and hence X is a Moore space.

Let L_{1}^{+}, L_{1}^{-}(resp. M_{1}^{+}, M_{1}^{-}) and L_{2}^{+}, L_{2}^{-}(resp. M_{2}^{+}, M_{2}^{-}) be the copies of L_{1} (resp. M_{1}) and L_{2} (resp. M_{2}) in K^{+}, K^{-}, respectively.

We set

$$
\begin{aligned}
& P=\left(L_{1}^{+} \backslash\left\{0^{+}\right\}\right) \cup\{0\} \cup\left(L_{1}^{-} \backslash\left\{0^{-}\right\}\right) \\
& R=M_{1}^{+} \cup M_{1}^{-} \\
& Q=L_{2}^{+} \cup L_{2}^{-} \\
& T=M_{2}^{+} \cup M_{2}^{-}
\end{aligned}
$$

and we observe that P, R, Q, T are pairwise disjoint sets and that if p, p^{\prime} (resp. $r, r^{\prime}, q, q^{\prime}$ and t, t^{\prime}) are distinct points of F (resp. of R, Q and T) then for every $n, m, U_{n}(p) \cap U_{m}\left(p^{\prime}\right)=\varnothing$ (resp. $U_{n}(r) \cap U_{m}\left(r^{\prime}\right)=\varnothing, U_{n}(q) \cap U_{m}\left(q^{\prime}\right)=\varnothing$ and $\left.U_{n}(t) \cap U_{m}\left(t^{\prime}\right)=\varnothing\right)$. Based on this, it is easy to prove that X is screenable.

§ 3. The space (Z, τ).

The set of isolated points of X has cardinality c. Let I be an index set having the same cardinality and let $X^{(i)}, i \in l$ be disjoint copies of X and $a^{(i)}$, $b^{(i)} \in X^{(i)}$ be points corresponding to $a, b \in X$, respectively. Let Y be the disjoint union (i.e. topological sum) of $X^{(i)}, i \in I$ and let D be the dense subset of isolated points of Y. Obviously, $|D|=c$.

Set $A=\left\{a^{(i)}: i \in I\right\}$ and on the quotient set $Z=Y / A$ we define a topology τ as follows: For every point $x^{(i)} \in X^{(i)}, x^{(i)} \neq a^{(i)}$, a basis of open neighbourhoods is $B\left(x^{(i)}\right)$, where $B(x)$ is the basis of x in X. For the point A of Z a basis of open neighbourhoods are the sets

$$
O_{n}(A)=\{A\} \cup \cup V_{n}\left(a^{(i)}\right), \quad n=1,2, \cdots
$$

where $V_{n}\left(a^{(i)}\right)$ is the copy of $U_{n}(a) \backslash\{a\}$ in $X^{(i)}$.
Observe that this topology is regular, first countable, strictly weaker than the quotient topology on Z and that the subspace $\left(X^{(i)} \backslash\left\{a^{(i)}\right\}\right) \cup\{A\}$ is homeomorphic to $X^{(i)}$, for every $i \in I$.

Obviously (Z, τ) is Moore screenable.

§ 4. The space $\left(S_{\infty} / L, \tau^{*}\right)$.

We consider a copy Z_{0} of Z and let A_{0}, B_{0} be the copies of the point A and of the set $B=\left\{b^{(i)}: i \in I\right\}$, in Z_{0}, respectively.

Let $Y_{k}, k=1,2, \cdots$, be disjoint copies of Y and let A_{k}, B_{k} be the copies of A, B, in Y_{k}, respectively.

We attach the space Y_{1} to Z_{0} replacing each point $b_{0}^{(i)}$ of B_{0} by its corresponding point $a_{1}^{(i)}$ of A_{1}.

We set $S_{1}=\left(Z_{0} \backslash B_{0}\right) \cup Y_{1}$.
By induction (replacing each point $b_{k-1}^{(i)}$ of B_{k-1} by its corresponding point $a_{k}^{(i)}$ of A_{k}) we construct the space $S_{k}=\left(S_{k-1} \backslash B_{k-1}\right) \cup Y_{k}, k=2,3, \cdots$.

Finally, we consider the space

$$
S_{\infty}=\bigcup_{k=1}^{\infty} S_{k} .
$$

It can be easily proved that S_{∞} is Moore, screenable and that every continuous real-valued function of S_{∞} is constant on $\left\{A, a_{k}^{(i)}: k=1,2, \cdots, i \in I\right\}$.

Observe that the basis of open neighbourhoods of each point $a_{k}^{(i)} \in A_{k}$, $k=1,2, \cdots$, has the form

$$
O_{n}\left(a_{k}^{(i)}\right)=V_{n}\left(a_{k}^{(i)}\right) \cup U_{n}\left(a_{k}^{(i)}\right), \quad n=1,2, \cdots,
$$

where $V_{n}\left(a_{k}^{(i)}\right)$ is the deleted neighbourhood of $b_{k-1}^{(i)}$ in S_{k-1} and $U_{n}\left(a_{k}^{(i)}\right)$ is the neighbourhood of $a_{k}^{(i)}$ in Y_{k}.

Let $D_{0}, D_{1}, D_{2}, \cdots, D_{k}, \cdots$, be the sets of isolated points of $Z_{0}, Y_{1}, Y_{2}, \cdots$, Y_{k}, \cdots, respectively.

Since the sets $A_{k}, D_{k-2}, k=2,3, \cdots$ have the same cardinality there exists an one-to-one function f_{k} of A_{k} onto D_{k-2}.

Let L be the decomposition of S_{∞} consisting of the points $A_{0}, a_{1}^{(i)}, i \in I$, the pairs $\left(a_{k}^{(i)}, f_{k}\left(a_{k}^{(i)}\right)\right), k=2,3, \cdots$, and the points of the sets

$$
\begin{aligned}
& P_{k}=\left\{p_{k}^{(i)}: p \in P, k=0,1,2, \cdots, i \in I\right\} \\
& R_{k}=\left\{r_{k}^{(i)}: r \in R, k=0,1,2, \cdots, i \in I\right\} \\
& Q_{k}=\left\{q_{k}^{(i)}: q \in Q, k=0,1,2, \cdots, i \in I\right\} \\
& T_{k}=\left\{t_{k}^{(i)}: t \in T, k=0,1,2, \cdots, i \in I\right\}
\end{aligned}
$$

where again $P_{0}, R_{0}, Q_{0}, T_{0}$ are the corresponding copies for $k=0$, in Z_{0}.
On the quotient set S_{∞} / L we define a topology $\tau *$ as follows:
If $s \in S_{\infty} / L$ and $s=\left(a_{k}^{(i)}, f_{k}\left(a_{k}^{(i)}\right)\right)$ we set

$$
E_{n}^{0}(s)=\left\{f_{k}\left(a_{k}^{(i)}\right)\right\} \cup V_{n}\left(a_{k}^{(i)}\right) \cup U_{n}\left(a_{k}^{(i)}\right)
$$

and we consider the set

$$
E_{n}^{1}(s)=E_{n}^{0}(s) \cup M_{n}^{k+1}(s) \cup N_{n}^{k+2}(s) .
$$

where,

$$
M_{n}^{k+1}(s)=\cup\left\{O_{n}\left(a_{k+1}^{(i)}\right): f_{k+1}\left(a_{k+1}^{(i)}\right) \in V_{n}\left(a_{k}^{(i)}\right)\right\}
$$

and

$$
N_{n}^{k+2}(s)=\cup\left\{O_{n}\left(a_{k+2}^{(i)}\right): f_{k+2}\left(a_{k+2}^{(i)}\right) \in U_{n}\left(a_{k}^{(i)}\right)\right\}
$$

By induction, we consider the set

$$
\begin{aligned}
E_{n}^{m+1}(s)=E_{n}^{m}(s) & \left.\cup \cup O_{n}\left(a_{k+m+1}^{(i)}\right): f_{k+m+1}\left(a_{k+m+1}^{(i)}\right) \subseteq M_{n}^{k+m}\right\} \\
& \cup \cup\left\{O_{n}\left(a_{k+m+2}^{(i)}\right): f_{k+m+2}\left(a_{k+m+2}^{(i)}\right) \in N_{n}^{k+m+1}\right\}
\end{aligned}
$$

and we set $E_{n}(s)=\bigcup_{m=0}^{\infty} E_{n}^{m}(s)$.
A basis of open neighbourhoods for the point $s=\left(a_{k}^{(i)}, f\left(a_{k}^{(i)}\right)\right)$ are the sets $E_{n}(s), n=1,2, \cdots$.

Similarly, we define the open bases $E_{n}(s), n=1,2, \cdots$, if $s=A_{0}$, whence we set $E_{n}^{0}\left(A_{0}\right)=\left\{A_{0}\right\} \cup V_{n}\left(a_{0}^{(d)}\right)$ or, if $s=a_{1}^{(i)}, i \in I$, whence we set $E_{n}^{0}\left(a_{1}^{(i)}\right)=$ $V_{n}\left(a_{1}^{(i)}\right) \cup U_{n}\left(a_{1}^{(i)}\right)$, or if $s \in P_{k} \cup R_{k} \cup Q_{k} \cup T_{k}, k=0,1,2, \cdots$, whence we set $E_{n}^{0}(s)=U_{n}(s)$, where $U_{n}(s), n=1,2, \cdots$, is the basis of s in S_{∞}.

It can be easily proved that the space $\left(S_{\infty} / L, \tau^{*}\right)$ is regular, first countable
and that the topology $\tau *$ is strictly weaker than the quotient topology on S_{∞} / L.
Proposition. The space ($S_{\infty} / L, \tau *$) is Moore, screenable, on which every continuous real-valued function is constant.

Proof. Since the collection $F_{n}=\left\{E_{n}(s): s \in S_{\infty} / L\right\}, n=1,2, \cdots$, is a development, it follows that S_{∞} / L is a Moore space.

To prove that S_{∞} / L is screenable observe that for every $k=0,1,2, \cdots$, the sets P_{k}, R_{k}, Q_{k} and T_{k}, are pairwise disjoint and that if $p_{k}^{(i)}, p_{k}^{(j)}$ (resp. $r_{k}^{(i)}$, $r_{k}^{(j)}, q_{k}^{(i)}, q_{k}^{(j)}$ and $\left.t_{k}^{(i)}, t_{k}^{(j)}\right)$ are distinct points of P_{k} (resp. R_{k}, Q_{k} and T_{k}) then for every $n, m, E_{n}\left(p_{k}^{(i)} \cap E_{m}\left(p_{k}^{(j)}\right)=\varnothing\right.$ (resp. $\quad E_{n}\left(r_{k}^{(i)}\right) \cap E_{m}\left(r_{k}^{(j)}\right)=\varnothing, E_{n}\left(q_{k}^{(i)}\right) \cap$ $E_{m}\left(q_{k}^{(j)}\right)=\varnothing$ and $\left.E_{n}\left(t_{k}^{(i)}\right) \cap E_{m}\left(t_{k}^{(j)}\right)=\varnothing\right)$. Based on this it is easy to prove that S_{∞} / L is screenable.

Finally, since every continuous real-valued function of S^{∞} / L is constant on the dense subset $\left\{\left(a_{k}^{(i)}, f_{k}\left(a_{k}^{(i)}\right)\right): k=1,2, \cdots, i \in I\right\}$, it follows that every continuous real-valued function of S_{∞} / L is constant.

Remark 1. Based on the above we can easily construct a Moore separable space on which every continuous real-valued function is constant (see, also, [8]): Let K be the set

$$
\{(x, y): x, y \in Q, x, y>0\} \cup\{(r, 0): r \geqq 0, r \in R\} \cup\{p\}
$$

(Q, R denote the rationals and the reals, respectively). On K we define the following topology: Every point (x, y), $x, y \in Q, y>0$ is isolated. For every point ($r, 0$), $r \geqq 0$ a basis of open neighbourhoods are the sets

$$
\begin{aligned}
U_{n}(r, 0)=\{(r, 0)\} & \cup\left\{(t, s) \in K: t>r,(t-r)^{2}+\left(s-\frac{1}{n}\right)^{2}<\frac{1}{n^{2}}\right\} \\
& \cup\left\{(t, s) \in K: t<r+1,(t-r-1)^{2}+\left(s-\frac{1}{n}\right)^{2}<\frac{1}{n^{2}}\right\}
\end{aligned}
$$

$n=1,2, \cdots$. For the point p, a basis of open neighbourhoods are the sets

$$
U_{n}(p)=\{p\} \cup\{(t, s) \in K: t>n\}, \quad n=1,2, \cdots
$$

The space K (which is called splitted Niemytzki's space) is Moore, separable not completely regular and it is due to A. Mysior.

Then the corresponding space X (see $\S 2$) is Moore separable (since its subset of isolated points is countable and dense) containing two points a, b (the copies of p in K^{+}, K^{-}, respectively) not separated by a continuous real-valued function of X. Hence, if $X^{(n)}, n=1,2, \cdots$, are disjoint copies of X, then the corresponding spaces? Y, Z, S_{∞} (see $\S 3$ and 4) are Moore separable and there-
fore S_{∞} / L is Moore separable on which every continuous real-valued function is constant.

Corollary 1. There exists a Moore separable space on which every continuous real-valued function is constant and having a dispersion point.

Proof. Let Z be the Moore separable space corresponding to the space X of Remark 1. Let f be a one-to-one function of $B=\left\{b^{(k)}: k=1,2, \cdots\right\}$ onto the countable dense subset D of isolated points of Z. If L is the decomposition of Z consisting of the points of $Z \backslash B U D$ and the pairs ($b^{(k)}, f\left(b^{(k)}\right)$), $k=1,2, \cdots$, and if on the set Z / L we define a topology $\tau *$ in the same manner as on the set S_{∞} / L, then the space $(Z / L, \tau *)$ is, obviously, Moore separable on which every continuous real-valued function is constant (hence, is connected) and having the point A as a dispersion point, (since X is totally disconnected; see the remark in [3]).

Corollary 2. There exists a Moore screenable space on which every continuous real-valued function is constant and having a dispersion point.

Proof. Let $Z_{k}, k=1,2$, be disjoint copies of the space Z of $\S 3$ and let A_{k} be the copy of the point A in Z_{k}. Let Y_{∞} be the disjoint union of Z_{k}. We set $A_{\infty}=\left\{A_{k}: k=1,2, \cdots\right\}$ and on the quotient set $Z_{\infty}=Y_{\infty} / A_{\infty}$ we define a topology as on the set $Z=Y / A$ of $\S 3$. Let $D_{k}, k=1,2, \cdots$, be the (dense) subset of isolated points of Z_{k}. We set $B_{k}=\left\{b_{k}^{(i)}: i \in I\right\}$ and we consider a sequence of one-to-one functions $f_{k}, k=1,2, \cdots$, from B_{k+1} onto D_{k}. We set $B_{\infty}=\bigcup_{k=1}^{\infty} B_{k}$, $D_{\infty}=\bigcup_{k=1}^{\infty} D_{k}$ and let L be the decomposition of Z_{∞} consisting of the points of $Z_{\infty} \backslash B_{\infty} \cup D_{\infty}$ and the pairs $\left(b_{k}^{(i)}, f_{k}\left(b_{k}^{(i)}\right)\right), k=2,3, \cdots, i \in I$.

Then, defining on the quotient set Z_{∞} / L a topology $\tau *$ as on the set S_{∞} / L (in §4), it can be proved, in a similar manner as for the space S_{∞} / L, that Z_{∞} / L is Moore, screenable on which every continuous real-valued function is constant. That A_{∞} is a dispersion point, is proved as in Corollary 1.

Remarks. A direct application of the van Douwen's method [3] on the space X either if it is the Moore, screenable of $\S 2$, or it is the Moore separable of Remark 1, leads to a regular, not separable and nowhere first countable space. The quotient topology on S_{∞} / L if X is the Moore, screenable (resp. if it is the Moore separable) gives a regular, nowhere first countable, metacompact, screenable (resp. a regular, nowhere first countable, separable) space.

The quotient topology on Z / L of Corollary 1 if X is the Moore separable space of Remark 1 gives a regular, separable, nowhere first countable with a dispersion point. The quotient topology on Z_{∞} / L gives a regular, nowhere first countable, metacompact screenable space with a dispersion point. On each of these spaces, every continuous real-valued function is constant.

References

[1] S. Armentrout, A Moore space on which every real-valued continuous functions is constant, Proc. Amer. Math. Soc. 12 (1961), 106-109.
[2] H. Brandenburg and A. Mysior, For every Hausdorff space Y there exists a nontrivial Moore space on which all continuous functions into Y are constant, Pacific J. Math. 1 (1984), 1-8.
[3] E.K. van Douwen, A regular space on which every continuous real-valued function is constant, Nieuw Archief voor Wiskunde 20 (1972), 143-145.
[4] R.W. Heath, Screenability, pointwise paracompactness and metrization of Moore spaces, Can. J. Math. 16 (1964), 763-770.
[5] H. Herrlich, Wann sind alle stetigen Abbildungen in Y Konstant? Math. Zeitschr. 90 (1965), 152-154.
[6] E. Hewitt, On two problems of Urysohn, Annals of Mathematics 47 (1946), 503509.
[7] S. Iliadis and V. Tzannes, Spaces on which every continuous map into a given space is constant, Can. J. Math. 38 (1986), 1281-1296.
[8] J.N. Younglove, A locally connected, complete Moore space on which every realvalued continuous function is constant, Proc. Amer. Math. Soc. 20 (1969), 527-530.

Department of Mathematics

University of Patras
Patras Greece

