EXCEPTIONAL MINIMAL SURFACES WITH THE RICCI CONDITION

By
Makoto SAKAKI

0. Introduction.

Let $X^{N}(c)$ denote the N-dimensional simply connected space form of constant curvature c, and let M be a minimal surface in $X^{N}(c)$ with Gaussian curvature $K(\leqq c)$ with respect to the induced metric $d s^{2}$. When $N=3, M$ satisfies the Ricci condition with respect to c, that is, the metric $d \hat{s}^{2}=\sqrt{c-K} d s^{2}$ is flat at points where $K<c$. Conversely, every 2-dimensional Riemannian manifold with Gaussian curvature less than c which satisfies the Ricci condition with respect to c, can be realized locally as a minimal surface in $X^{3}(c)$ (see [2]). Then it is an interesting problem to classify those minimal surfaces in $X^{N}(c)$ which satisfy the Ricci condition with respect to c, that is, to classify those minimal surfaces in $X^{N}(c)$ which are locally isometric to minimal surfaces in $X^{3}(c)$. In the case where $c=0$, Lawson [3] solved this problem completely. In [4] Naka (=Miyaoka) obtained some results in the case where $c>0$.

In [1] Johnson studied a class of minimal surfaces in $X^{N}(c)$, called exceptional minimal surfaces. In this paper, we discuss exceptional minimal surfaces in $X^{N}(c)$ which satisfiy the Ricci condition with respect to c. Our results are as follows:

Theorem 1. Let M be an exceptional minimal surface lying fully in $X^{N}(c)$ where $c>0$. We denote by K the Gaussian curvature of M with respect to the induced metric $d s^{2}$. Suppose that the metric $d \hat{s}^{2}=\sqrt{c-K} d s^{2}$ is flat at points where $K<c$. Then either (i) $N=4 m+1$ and M is flat, or (ii) $N=4 m+3$.

Theorem 2. Let M be an exceptional minimal surface lying fully in $X^{N}(c)$ where $c<0$. We denote by K the Gaussian curvature of M with respect to the induced metric $d s^{2}$. Suppose that the metric $d \hat{s}^{2}=\sqrt{c-K} d s^{2}$ is flat at points where $K<c$. Then $N=3$.

Remark. We note that every flat minimal surface in $X^{N}(c)$, where $c>0$,
automatically satisfies the Ricci condition with respect to c. In Section 3, we show that there are flat exceptional minimal surfaces lying fully in $X^{2 n+1}(c)$, where $c>0$. We also show that there are non-flat exceptional minimal surfaces lying fully in $X^{4 m+3}(c)$ which satisfy the Ricci condition with respect to c, where $c>0$.

In Section 1, we follow [1] and recall the definition of exceptional minimal surfaces. In Section 2, we give lemmas for exceptional minimal surfaces in $X^{N}(c)$ which satisfy the Ricci condition with respect to c. In Sections 3 we prove Theorem 1, and in Section 4 we prove Theorem 2.

1. Exceptional minimal surfaces.

Suppose M is a minimal surface in $X^{N}(c)$. Assume that M lies fully in $X^{N}(c)$, namely, does not lie in a totally geodesic submanifold of $X^{N}(c)$. Let the integer n be given by $N=2 n+1$ or $2 n+2$, and let indices have the following ranges:

$$
1 \leqq i, j \leqq 2, \quad 3 \leqq \alpha \leqq N, \quad 1 \leqq A, B \leqq N .
$$

Let \tilde{e}_{A} be a local orthonormal frame field on $X^{N}(c)$, and let $\tilde{\theta}_{A}$ be the coframe dual to \tilde{e}_{A}. Then $d \tilde{\theta}_{A}=\Sigma_{B} \tilde{\omega}_{A B} \wedge \tilde{\theta}_{B}$, where $\tilde{\omega}_{A B}$ are the connection forms on $X^{N}(c)$.

Suppose that e_{i} is a local orthonormal frame field on M and that the frame \tilde{e}_{A} is chosen so that on $M, e_{i}=\tilde{e}_{i}$ and \tilde{e}_{α} are normal to M. When forms and vectors on $X^{N}(c)$ are restricted to M, let them be denoted by the same symbol without tilde: $\theta_{A}=\left.\tilde{\theta}_{A}\right|_{M}, \omega_{A B}=\left.\tilde{\omega}_{A B}\right|_{M}$ and $e_{A}=\left.\tilde{e}_{A}\right|_{M}$. Then $\omega_{\alpha i}=\sum_{j} h_{\alpha i j} \theta_{j}$, where $h_{\alpha i j}$ are the coefficients of the second fundamental form of M.

Let $T_{x} M$ and $T_{x} X^{N}(c)$ denote the tangent space of M and $X^{N}(c)$, respectively, at a point x. Curves on M through x have their first derivatives at x in $T_{x} M$, but higher order derivatives will have components normal to M. The space spanned by the derivatives of order up to r is called the r-th osculating space of M at x, denoted $T_{x}^{(r)} M$.

The r-th normal space of M at x, denoted $\operatorname{Nor}_{x}^{(r)} M$, is the orthogonal complement of $T_{x}^{(r)} M$ in $T_{x}^{(r+1)} M$. At generic points of M, the dimension of $N o r_{x}^{(r)} M$ is 2 when $1 \leqq r \leqq n-1$, and the dimension of $\operatorname{Nor}_{x}^{(n)} M$ is 1 or 2 , depending on whether N is odd or even. Those normal spaces that have dimension 2 is called the normal planes of M. Let β_{N} denote the number of normal planes possessed by M at generic points: $\beta_{N}=n-1$ if $N=2 n+1$, and $\beta_{N}=n$ if $N=2 n+2$.

Choose the normal vectors e_{α} so that $N o r_{x}^{(r)} M$ is spanned by $\left\{e_{2 r+1}, e_{2 r+2}\right\}$,
where $1 \leqq r \leqq \beta_{N}$. When $N=2 n+1, \operatorname{Nor}_{x}^{(n)} M$ is spanned by $\left\{e_{2 n+1}\right\}$. Set $\varphi=$ $\theta_{1}+\sqrt{-1} \theta_{2}$.

Proposition ([1]). There are H_{α} such that $H_{\alpha}=h_{\alpha 11}+\sqrt{-1} h_{\alpha 12}$ for $\alpha=3$ and 4 , for each r such that $2 \leqq r \leqq \beta_{N}$

$$
H_{2 r-1} \omega_{a, 2 r-1}+H_{2 r} \omega_{\alpha, 2 r}=H_{\alpha} \bar{\varphi}
$$

where $\alpha=2 r+1$ and $2 r+2$, and when $N=2 n+1$

$$
H_{2 n-1} \omega_{2 n+1,2 n-1}+H_{2 n} \omega_{2 n+1,2 n}=H_{2 n+1} \bar{\varphi} .
$$

The r-th normal plane, $\operatorname{Nor}_{x}^{(r)} M$, of M is called exceptional if $H_{2 r+2}=$ $\pm \sqrt{-1} H_{2 r+1}$. The minimal surface M is called exceptional if all of its normal planes are exceptional. Note that when $N=2 n+1, \operatorname{Nor}_{x}^{(n)} M$ is a line, not a plane, and the notion of exceptionality does not apply. So, every minimal surface in $X^{3}(c)$ is exceptional.

2. Lemmas.

Let M be an exceptional minimal surface lying fully in $X^{N}(c)$. We denote by K and Δ the Gaussian curvature and the Laplacian of M, respectively, with respect to the induced metric $d s^{2}$. Set

$$
A_{0}^{c}=1 / 2, \quad A_{1}^{c}=c-K,
$$

$$
A_{p+1}^{c}= \begin{cases}A_{p}^{c}\left[\Delta \log \left(A_{p}^{c}\right)+A_{p}^{c} / A_{p-1}^{c}-2(p+1) K\right], & \text { if } A_{p}^{c}>0, \tag{1}\\ 0, \quad \text { otherwise } .\end{cases}
$$

Set $M_{1}=\{x \in M ; K<c\}$ and $M_{2}=\{x \in M ; K=c\}$. Suppose that the metric $d \hat{s}^{2}$ $=\sqrt{c-K} d s^{2}$ is flat on M_{1}. Then by the lemma in Section 3 of [1] for $n=1$,

$$
\begin{equation*}
\Delta \log (c-K)=4 K \tag{2}
\end{equation*}
$$

on M_{1}.

Lemma 1. When $c>0$,

$$
\begin{array}{ll}
A_{4 k}^{c}=2^{4 k-1} c^{2 k}(c-K)^{2 k}, & A_{4 k+1}^{c}=2^{4 k} c^{2 k}(c-K)^{2 k+1}, \\
A_{4 k+2}^{c}=2^{4 k+1} c^{2 k}(c-K)^{2 k+2}, \quad A_{4 k+3}^{c}=2^{4 k+2} c^{2 k+1}(c-K)^{2 k+2} .
\end{array}
$$

Lemma 2. When $c \leqq 0$,

$$
A_{2}^{c}=2(c-K)^{2}, \quad A_{3}^{c}=4 c(c-K)^{2}, \quad A_{p}^{c}=0 \quad \text { for } p \geqq 4 .
$$

Peoof of Lemma 1. By (1) and (2),

$$
\begin{aligned}
A_{2}^{c} & =A_{\mathrm{i}}^{c}\left[\Delta \log \left(A_{1}^{c}\right)+A_{\mathrm{i}}^{c} / A_{0}^{c}-4 K\right] \\
& =(c-K)[\Delta \log (c-K)+2(c-K)-4 K] \\
& =2(c-K)^{2}
\end{aligned}
$$

on M_{1}, and $A_{2}^{c}=0$ on M_{2}. So $A_{2}^{c}=2(c-K)^{2}$ on M. By (1) and (2)

$$
\begin{aligned}
A_{3}^{c} & =A_{2}^{c}\left[\Delta \log \left(A_{2}^{c}\right)+A_{2}^{c} / A_{1}^{\mathrm{c}}-6 K\right] \\
& =2(c-K)^{2}[2 \Delta \log (c-K)+2(c-K)-6 K] \\
& =4 c(c-K)^{2}
\end{aligned}
$$

on M_{1}, and $A_{3}^{c}=0$ on M_{2}. So $A_{3}^{c}=4 c(c-K)^{2}$ on M. Thus Lemma 1 is true for $k=0$.

Assume that Lemma 1 is true for some k. Then, by (1), (2) and the assumption,

$$
\begin{aligned}
A_{4 k+4}^{c} & =A_{4 k+3}^{c}\left[\Delta \log \left(A_{4 k+3}^{c}\right)+A_{4 k+3}^{c} / A_{4 k+2}^{c}-2(4 k+4) K\right] \\
& =2^{4 k+2} c^{2 k+1}(c-K)^{2 k+2}[(2 k+2) \Delta \log (c-K)+2 c-2(4 k+4) K] \\
& =2^{4 k+3} c^{2 k+2}(c-K)^{2 k+2}
\end{aligned}
$$

on M_{1}, and $A_{4 k+4}^{c}=0$ on M_{2}. So $A_{4 k+4}^{c}=2^{4 k+3} c^{2 k+2}(c-K)^{2 k+2}$ on M. Using (1), (2) and the assumption we have

$$
\begin{aligned}
A_{4 k+5}^{c} & =A_{4 k+4}^{c}\left[\Delta \log \left(A_{4 k+4}^{c}\right)+A_{4 k+4}^{c} / A_{4 k+3}^{c}-2(4 k+5) K\right] \\
& =2^{4 k+3} c^{2 k+2}(c-K)^{2 k+2}[(2 k+2) \Delta \log (c-K)+2 c-2(4 k+5) K] \\
& =2^{4 k+4} c^{2 k+2}(c-K)^{2 k+3}
\end{aligned}
$$

on M_{1}, and $A_{4 k+5}^{c}=0$ on M_{2}. So $A_{4 k+5}^{c}=2^{4 k+4} c^{2 k+2}(c-K)^{2 k+3}$ on M. By (1) and (2),

$$
\begin{aligned}
A_{4 k+6}^{\mathrm{c}} & =A_{4 k+5}^{c}\left[\Delta \log \left(A_{4 k+5}^{c}\right)+A_{4 k+5}^{c} / A_{4 k+4}^{c}-2(4 k+6) K\right] \\
& =2^{4 k+4} c^{2 k+2}(c-K)^{2 k+3}[(2 k+3) \Delta \log (c-K)+2(c-K)-2(4 k+6) K] \\
& =2^{4 k+5} c^{2 k+2}(c-K)^{2 k+4}
\end{aligned}
$$

on M_{1}, and $A_{4 k+6}^{c}=0$ on M_{2}. So $A_{4 k+6}^{c}=2^{4 k+5} c^{2 k+2}(c-K)^{2 k+4}$ on M. By (1) and (2),

$$
\begin{aligned}
A_{4 k+7}^{c} & =A_{4 k+6}^{c}\left[\Delta \log \left(A_{4 k+6}^{c}\right)+A_{4 k}^{c}{ }_{6}^{+} / A_{4 k+5}^{c}-2(4 k+7) K\right] \\
& =2^{4 k+5} c^{2 k+2}(c-K)^{2 k+4}[(2 k+4) \Delta \log (c-K)+2(c-K)-2(4 k+7) K] \\
& =2^{4 k+6} c^{2 k+3}(c-K)^{2 k+4}
\end{aligned}
$$

on M_{1}, and $A_{4 k+7}^{c}=0$ on M_{2}. So $A_{4 k+7}^{c}=2^{4 k+6} c^{2 k+3}(c-K)^{2 k+4}$ on M. Therefore,
by induction, Lemma 1 is proved.
q.e.d.

Proof of Lemma 2. By the same argument as in the proof of Lemma 1, we have $A_{2}^{c}=2(c-K)^{2}$ and $A_{3}^{c}=4 c(c-K)^{2}$. As $c \leqq 0, A_{3}^{c}=4 c(c-K)^{2} \leqq 0$. Hence by (1) we have $A_{p}^{c}=0$ for $p \geqq 4$.
q.e.d.

3. Proof of Theorem 1.

Proof of Theorem 1. Let Δ, A_{p}^{c} and M_{1} be defined as in Section 2. As M lies fully in $X^{N}(c), K=c$ only at isolated points, and M_{1} is M minus isolated points. By Lemma 1, for each $p \geqq 0, A_{p}^{c}>0$ on M_{1}. If $N=2 n+2$, then $A_{n+1}^{c}=0$ identically by Theorem A of [1], which contradicts that $A_{p}^{c}>0$ on M_{1} for each $p \geqq 0$. If $N=4 m+1$, then by Theorem A of [1], the metric $\left(A_{2 m}^{c}\right)^{1 /(2 m+1)} d s^{2}$ is flat at points where $A_{2 m}^{c}>0$. When $m=2 k$, using the lemma in Section 3 of [1], Lemma 1 and the equation (2), we have

$$
\begin{aligned}
0 & =\Delta \log \left(A_{2 m}^{c}\right)-2(2 m+1) K \\
& =\Delta \log \left(A_{4 k}^{c}\right)-2(4 k+1) K \\
& =2 k \Delta \log (c-K)-2(4 k+1) K \\
& =-2 K
\end{aligned}
$$

on M_{1}. So M_{1} is flat, and by continuity, M is flat. When $m=2 k+1$, using the lemma in Section 3 of [1], Lemma 1 and the equation (2), we have

$$
\begin{aligned}
0 & =\Delta \log \left(A_{2 m}^{c}\right)-2(2 m+1) K \\
& =\Delta \log \left(A_{4 k+2}^{c}\right)-2(4 k+3) K \\
& =(2 k+2) \Delta \log (c-K)-2(4 k+3) K \\
& =2 K
\end{aligned}
$$

on M_{1}. So M_{1} is flat, and by continuity, M is flat. Therefore, either (i) $N=$ $4 m+1$ and M is flat, or (ii) $N=4 m+3$.
q.e.d.

By Theorem B of [1], we can see that every flat surface can be realized locally as an exceptional minimal surface lying fully in $X^{2 n+1}(c)$, where $c>0$. So, there are flat exceptional minimal surfaces lying fully in $X^{2 n+1}(c)$, where $c>0$.

Let M be a minimal surface in $X^{3}(c)$ where $c>0$. We denote by K the Gaussian curvature of M with respect to the induced metric $d s^{2}$. Let A_{p}^{c} be defined as in Section 2. Assume that $K<c$. Then M satisfies the Ricci con-
dition with respect to c. So Lemma 1 is valid, and $A_{p}^{c}>0$ for each $p \geqq 0$. Let us show that the metric $\left(A_{2 m+1}^{c}\right)^{1 /(2 m+2)} d s^{2}$ is flat. When $m=2 k$, by Lemma 1,

$$
\left(A_{2 m+1}^{c}\right)^{1 /(2 m+2)}=\left(A_{4 k+1}^{c}\right)^{1 /(4 k+2)}=\left(2^{4 k} c^{2 k}\right)^{1 /(4 k+2)} \sqrt{c-K} .
$$

When $m=2 k+1$, by Lemma 1,

$$
\left(A_{2 m+1}^{c}\right)^{1 /(2 m+2)}=\left(A_{4 k+3}^{c}\right)^{1 /(4 k+4)}=\left(2^{4 k+2} c^{2 k+1}\right)^{1 /(4 k+4)} \sqrt{c}-K .
$$

Thus the metric $\left(A_{2 m+1}^{c}\right)^{1 /(2 m+2)} d s^{2}$ is flat, because M satisfies the Ricci condition with respect to c. By Theorem B of [1], we find that ($M, d s^{2}$) can be realized locally as an exceptional minimal surface lying fully in $X^{4 m+3}(c)$. Therefore, there are non-flat exceptional minimal surfaces lying fully in $X^{4 m+3}(c)$ which satisfy the Ricci condition with respect to c, where $c>0$.

4. Proof of Theorem 2.

Proof of Theorem 2. Let Δ, A_{p}^{c} and M_{1} be defined as in Section 2. As M lies fully in $X^{N}(c), K=c$ only at isolated points, and M_{1} is not empty. By Lemma 2, $A_{2}^{c}>0$ and $A_{3}^{c}<0$ on M_{1}. If $N=4$, then $A_{2}^{c}=0$ identically by Theorem A of [1], which contradicts that $A_{2}^{c}>0$ on M_{1}. If $N=5$, then by Theorem A of [1], the metric $\left(A_{2}^{c}\right)^{1 / 3} d s^{2}$ is flat at points where $A_{2}^{c}>0$. Using the lemma in Section 3 of [1], Lemma 2 and the equation (2), we have

$$
\begin{aligned}
0 & =\Delta \log \left(A_{2}^{c}\right)-6 K \\
& =2 \Delta \log (c-K)-6 K \\
& =2 K
\end{aligned}
$$

on M_{1}. So $K=0$ on M_{1}, which contradicts that $K \leqq c<0$. If $N=6$, then $A_{3}^{c}=0$ identically by Theorem A of [1], which contradicts that $A_{3}^{c}<0$ on M_{1}. If $N \geqq 7$, then $A_{3}^{c} \geqq 0$ by Theorem A of [1], which contradicts that $A_{3}^{c}<0$ on M_{1}. Therefore, $N=3$.
q.e.d.

References

[1] Johnson, G.D., An intrinsic characterization of a class of minimal surfaces in constant curvature manifolds, Pacific J. Math. 149 (1991), 113-125.
[2] Lawson, H. B., Complete minimal surfaces in S^{3}, Ann. of Math. 92 (1970), 335-374.
[3] Lawson, H. B., Some intrinsic characterizations of minimal surfaces, J. Analyse Math. 24 (1971), 151-161.
[4] Naka, R., Some results on minimal surfaces with the Ricci condition, Minimal Submanifolds and Geodesics, (M. Obata, ed.), Kaigai Publ., Tokyo, 1978, 121-142.

Department of Mathematics
Faculty of Science
Hirosaki University
Hirosaki 036
Japan

