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EXCEPTIONAL MINIMAL SURFACES
WITH THE RICCI CONDITION

By

Makoto SAKAKI

0. Introduction.

Let $X^{N}(c)$ denote the N-dimensional simply connected space form of con-
stant curvature $c$ , and let $M$ be a minimal surface in $X^{N}(c)$ with Gaussian cur-
vature $K(\leqq c)$ with respect to the induced metric $ds^{2}$ . When $N=3,$ $M$ satisfies
the Ricci condition with respect to $c$ , that is, the metric $d\hat{s}^{2}=\sqrt{c-K}ds^{2}$ is flat
at points where $K<c$ . Conversely, every 2-dimensional Riemannian manifold
with Gaussian curvature less than $c$ which satisfies the Ricci condition with
respect to $c$ , can be realized locally as a minimal surface in $X^{3}(c)$ (see [2]).

Then it is an interesting problem to classify those minimal surfaces in $X^{N}(c)$

which satisfy the Ricci condition with respect to $c$ , that is, to classify those
minimal surfaces in $X^{N}(c)$ which are locally isometric to minimal surfaces in
$X^{3}(c)$ . In the case where $c=0$ , Lawson [3] solved this problem completely.

In [4] Naka $(=Miyaoka)$ obtained some results in the case where $c>0$ .
In [1] Johnson studied a class of minimal surfaces in $X^{N}(c)$ , called excep-

tional minimal surfaces. In this paper, we discuss exceptional minimal surfaces
in $X^{N}(c)$ which satisfiy the Ricci condition with respect to $c$ . Our results are
as follows:

THEOREM 1. Let $M$ be an exceptional minimal surface lying fully in $X^{N}(c)$

where $c>0$ . We denote by $K$ the Gaussian curvature of $M$ with respect to the
induced metric $ds^{2}$ . Suppose that the metric $d\hat{s}^{2}=\sqrt{c-K}ds^{2}$ is $\beta at$ at points
where $K<c$ . Then either (i) $N=4m+1$ and $M$ is flat, or (ii) $N=4m+3$ .

THEOREM 2. Let $M$ be an exceptional minimal surface lying fully in $X^{N}(c)$

where $c<0$ . We aenote by $K$ the Gaussian curvature of $M$ with respect to the
inauced metric $ds^{2}$ . Suppose that the metric $d\hat{s}^{2}=\sqrt{c-K}ds^{2}$ is flat at points
where $K<c$ . Then $N=3$ .

REMARK. We note that every flat minimal surface in $X^{N}(c)$ , where $c>0$ ,
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automatically satisfies the Ricci condition with respect to $c$ . In Section 3, we
show that there are flat exceptional minimal surfaces lying fully in $X^{2n+1}(c)$ ,

where $c>0$ . We also show that there are non-flat exceptional minimal surfaces
lying fully in $X^{4m+3}(c)$ which satisfy the Ricci condition with respect to $c$ ,

where $c>0$ .
In Section 1, we follow [1] and recall the definition of exceptional minimal

surfaces. In Section 2, we give lemmas for exceptional minimal surfaces in
$X^{N}(c)$ which satisfy the Ricci condition with respect to $c$ . In Sections 3 we
prove Theorem 1, and in Section 4 we prove Theorem 2.

1. Exceptional minimal surfaces.

Suppose $M$ is a minimal surface in $X^{N}(c)$ . Assume that $M$ lies fully in
$X^{N}(c)$ , namely, does not lie in a totally geodesic submanifold of $X^{N}(c)$ . Let
the integer $n$ be given by $N=2n+1$ or $2n+2$ , and let indices have the follow-
ing ranges:

$1\leqq i,$ $j\leqq 2$ , $3\leqq\alpha\leqq N$, $1\leqq A,$ $B\leqq N$ .
Let $\tilde{e}_{A}$ be a local orthonormal frame field on $X^{N}(c)$ , and let $\tilde{\theta}_{A}$ be the co-

frame dual to $\tilde{e}_{A}$ . Then $d\tilde{\theta}_{A}=\sum_{B}\tilde{\omega}_{AB}\wedge\tilde{\theta}_{B}$ , where $\tilde{\omega}_{AB}$ are the connection forms
on $X^{N}(c)$ .

Suppose that $e_{i}$ is a local orthonormal frame field on $M$ and that the frame
$\tilde{e}_{A}$ is chosen so that on $M,$ $e_{i}=\tilde{e}_{i}$ and $\tilde{e}_{a}$ are normal to $M$. When forms and
vectors on $X^{N}(c)$ are restricted to $M$, let them be denoted by the same symbol

without tilde: $\theta_{A}=\tilde{\theta}_{A}|_{M},$ $\omega_{AB}=\tilde{\omega}_{AB}|_{M}$ and $e_{A}=\tilde{e}_{A}|_{M}$ . Then $\omega_{\alpha i}=\Sigma_{j}h_{aij}\theta_{j}$ , where
$h_{aij}$ are the coefficients of the second fundamental form of $M$.

Let $T_{x}M$ and $T_{x}X^{N}(c)$ denote the tangent space of $M$ and $X^{N}(c)$ , respec-
tively, at a point $x$ . Curves on $M$ through $x$ have their first derivatives at $x$

in $T_{x}M$, but higher order derivatives will have components normal to $M$. The
space spanned by the derivatives of order up to $r$ is called the r-th osculating
space of $M$ at $x$ , denoted $T_{x}^{(r)}M$.

The r-th normal space of $M$ at $x$ , denoted $Nor_{x}^{(r)}M$, is the orthogonal com-
plement of $T_{x}^{(r)}M$ in $T_{x}^{(r+1)}M$. At generic points of $M$, the dimension of
$Nor_{x}^{(r)}M$ is 2 when $1\leqq r\leqq n-1$ , and the dimension of $Nor_{x}^{(n)}M$ is 1 or 2, de-
pending on whether $N$ is odd or even. Those normal spaces that have dimen-
sion 2 is called the normal planes of $M$. Let $\beta_{N}$ denote the number of normal
planes possessed by $M$ at generic points: $\beta_{N}=n-1$ if $N=2n+1$ , and $\beta_{N}=n$ if
$N=2n+2$ .

Choose the normal vectors $e_{\alpha}$ so that $Nor_{x}^{(r)}M$ is spanned by $\{e_{2r+1}, e_{2r+2}\}$ ,
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where $1\leqq r\leqq\beta_{N}$ . When $N=2n+1,$ $Nor_{x}^{(n)}M$ is spanned by $\{e_{2n+1}\}$ . Set $\varphi=$

$\theta_{1}+\sqrt{-1}\theta_{2}$ .

PROPOSITION ([1]). There are $H_{\alpha}$ such that $H_{\alpha}=h_{\alpha 11}+\sqrt{}\overline{-1}h_{\alpha 12}$ for $\alpha=3$

and 4, for each $r$ such that $2\leqq r\leqq\beta_{N}$

$H_{2r-1}\omega_{a,2r-1}+H_{2r}\omega_{\alpha.2r}=H_{a}\overline{\varphi}$

where $\alpha=2r+1$ and $2r+2,$ $ana$ when $1V=2n+1$

$H_{2n-1}\omega_{2n+1,2n-1}+H_{2n}\omega_{2n+1.2n}=H_{2n+1}\overline{\varphi}$

The r-th normal plane, $Nor_{x}^{(r)}M$, of $M$ is called exceptional if $H_{2r+2}=$

$\pm\sqrt{-1}H_{2r+1}$ . The minimal surface $M$ is called exceptional if all of its normal
planes are exceptional. Note that when $N=2n+1,$ $Nor_{x}^{(n)}M$ is a line, not a
plane, and the notion of exceptionality does not apply. So, every minimal sur-
face in $X^{3}(c)$ is exceptional.

2. Lemmas.

Let $M$ be an exceptional minimal surface lying fully in $X^{N}(c)$ . We denote
by $K$ and $\Delta$ the Gaussian curvature and the Laplacian of $M$, respectively, with
respect to the induced metric $ds^{2}$ . Set

$A_{0}^{c}=1/2$ , $A_{1}^{c}=c-K$ ,

(1)

$A_{p+1}^{c}=\{0,otherw^{p}iseA_{p}^{c}[\Delta\log(A^{c})+A_{p}^{c}/A_{p- 1}^{c}-2(p+1)K]$

, if $A_{p}^{c}>0$ ,

Set $M_{1}=\{x\in M;K<c\}$ and $M_{2}=\{x\in M;K=c\}$ . Suppose that the metric $d\hat{s}^{2}$

$=\sqrt{c-K}ds^{2}$ is flat on $M_{1}$ . Then by the lemma in Section 3 of [1] for $n=1$ ,

(2) $\Delta\log(c-K)=4K$

on $M_{1}$ .

LEMMA 1. When $c>0$ ,

$A_{4k}^{c}=2^{4k-1}c^{2k}(c-K)^{2k}$ , $A_{4k+1}^{c}=2^{4k}c^{2k}(c-K)^{2k+1}$ ,

$A_{4k+2}^{c}=2^{4k+1}c^{2k}(c-K)^{2k+2}$ , $A_{4k+3}^{c}=2^{4k+2}c^{2k+1}(c-K)^{2k+2}$ .

LEMMA 2. When $c\leqq 0$ ,

$A_{2}^{c}=2(c-K)^{2}$ , $A_{3}^{c}=4c(c-K)^{2}$ , $A_{p}^{c}=0$ for $p\geqq 4$ .



164 Makoto SAKAKI

PEOOF OF LEMMA 1. By (1) and (2),

$A_{2}^{c}=A_{1}^{c}[\Delta\log(A_{1}^{c})+A_{1}^{c}/A_{0}^{c}-4K]$

$=(c-K)[\Delta\log(c-K)+2(c-K)-4K]$

$=2(c-K)^{2}$

on $M_{1}$ , and $A_{2}^{c}=0$ on $M_{2}$ . So $A_{2}^{c}=2(c-K)^{2}$ on $M$. By (1) and (2)

$A_{3}^{c}=A_{2}^{c}[\Delta\log(A_{2}^{c})+A_{2}^{c}/A_{1}^{c}-6K]$

$=2(c-K)^{2}[2\Delta\log(c-K)+2(c-K)-6K]$

$=4c(c-K)^{2}$

on $M_{1}$ , and $A_{3}^{c}=0$ on $M_{2}$ . So $A_{3}^{c}=4c(c-K)^{2}$ on $M$. Thus Lemma 1 is true fol
$k=0$ .

Assume that Lemma 1 is true for some $k$ . Then, by (1), (2) and the as-
sumption,

$A_{4k+4}^{c}=A_{4}^{c_{k+3}}[\Delta\log(A_{4k+3}^{c})+A_{4k+3}^{c}/A_{4}^{c_{k+2}}-2(4k+4)K]$

$=2^{4k+2}c^{2k+1}(c-K)^{2k+2}[(2k+2)\Delta\log(c-K)+2c-2(4k+4)K]$

$=2^{4k+3}c^{2k+2}(c-K)^{2k+2}$

on $M_{1}$ , and $A_{4k+4}^{c}=0$ on $M_{2}$ . So $A_{4k+4}^{c}=2^{4k+3}c^{2k+2}(c-K)^{2k+2}$ on $M$. Using (1),

(2) and the assumption we have

$A_{4k+5}^{c}=A_{4}^{c_{k+4}}[\Delta\log(A_{4k+4}^{c})+A_{4k+4}^{c}/A_{4k+3}^{c}-2(4k+5)K]$

$=2^{4k+3}c^{2k+2}(c-K)^{2k+2}[(2k+2)\Delta\log(c-K)+2c-2(4k+5)K]$

$=2^{4k+4}c^{2k+2}(c-K)^{2k+3}$

on $M_{1}$ , and $A_{4k+5}^{c}=0$ on $M_{2}$ . So $A_{4k+5}^{c}=2^{4k+4}c^{2k+2}(c-K)^{2k+\theta}$ on $M$. By (1) and (2),

$A_{4k+6}^{c}=A_{4k+5}^{c}[\Delta\log(A_{4k+5}^{c})+A_{4k+5}^{c}/A_{4k+4}^{c}-2(4k+6)K]$

$=2^{4k+4}c^{2h+2}(c-K)^{2k+3}[(2k+3)\Delta\log(c-K)+2(c-K)-2(4k+6)K]$

$=2^{4k+5}c^{2k+2}(c-K)^{2k+4}$

on $M_{1}$ , and $A_{4k+6}^{c}=0$ on $M_{2}$ . So $A_{4k+6}^{c}=2^{4k+5}c^{2k+2}(c-K)^{2k+4}$ on $M$. By (1) and (2),

$A_{4k+7}^{c}=A_{4k+6}^{c}[\Delta\log(A_{4}^{c_{k+6}})+A_{4k6}^{c+}/A_{4}^{c_{k+5}}-2(4k+7)K]$

$=2^{4k+5}c^{2k+2}(c-K)^{2k+4}[(2k+4)\Delta\log(c-K)+2(c-K)-2(4k+7)K]$

$=2^{4k+6}c^{2k+3}(c-K)^{2k+4}$

on $M_{1}$ , and $A_{4k+7}^{c}=0$ on $M_{2}$ . So $A_{4k+7}^{c}=2^{4k+6}c^{2k+3}(c-K)^{2k+4}$ on $M$. Therefore,
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by induction, Lemma 1 is proved. $q.e.d$ .

PROOF OF LEMMA 2. By the same argument as in the proof of Lemma 1,
we have $A_{2}^{c}=2(c-K)^{2}$ and $A_{3}^{c}=4c(c-K)^{2}$ . As $c\leqq 0,$ $A_{3}^{c}=4c(c-K)^{2}\leqq 0$ . Hence
by (1) we have $A_{p}^{c}=0$ for $p\geqq 4$ . $q.e.d$ .

3. Proof of Theorem 1.

PROOF OF THEOREM 1. Let $\Delta,$ $A_{p}^{c}$ and $M_{1}$ be defined as in Section 2. As
$M$ lies fully in $X^{N}(c),$ $K=c$ only at isolated points, and $M_{1}$ is $M$ minus iso-
lated points. By Lemma 1, for each $p\geqq 0,$ $A_{p}^{c}>0$ on $M_{1}$ . If $N=2n+2$ , then
$A_{n+1}^{c}=0$ identically by Theorem A of [1], which contradicts that $A_{p}^{c}>0$ on $M_{1}$

for each $p\geqq 0$ . If $N=4m+1$ , then by Theorem A of [1], the metric
$(A_{2m}^{c})^{1/(2m+1)}ds^{2}$ is flat at points where $A_{2m}^{c}>0$ . When $m=2k$ , using the lemma
in Section 3 of [1], Lemma 1 and the equation (2), we have

$0=\Delta\log(A_{2m}^{c})-2(2m+1)K$

$=\Delta\log(A_{4k}^{c})-2(4k+1)K$

$=2k\Delta\log(c-K)-2(4k+1)K$

$=-2K$

on $M_{1}$ . So $M_{1}$ is flat, and by continuity, $M$ is flat. When $m=2k+1$ , using
the lemma in Section 3 of [1], Lemma 1 and the equation (2), we have

$0=\Delta\log(A_{2m}^{c})-2(2m+1)K$

$=\Delta\log(A_{4k+2}^{c})-2(4k+3)K$

$=(2k+2)\Delta\log(c-K)-2(4k+3)K$

$=2K$

on $M_{1}$ . So $M_{1}$ is flat, and by continuity, $M$ is flat. Therefore, either (i) $N=$

$4m+1$ and $M$ is flat, or (ii) $N=4m+3$ . $q.e.d$ .

By Theorem $B$ of [1], we can see that every flat surface can be realized
locally as an exceptional minimal surface lying fully in $X^{2n+I}(c)$ , where $c>0$ .
So, there are flat exceptional minimal surfaces lying fully in $X^{2n+1}(c)$ , where
$c>0$ .

Let $M$ be a minimal surface in $X^{3}(c)$ where $c>0$ . We denote by $K$ the
Gaussian curvature of $M$ with respect to the induced metric $ds^{2}$ . Let $A_{p}^{c}$ be
defined as in Section 2. Assume that $K<c$ . Then $M$ satisfies the Ricci con-
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dition with respect to $c$ . So Lemma 1 is valid, and $-!i_{p}^{c}>0$ for each $p\geqq 0$ . Let
us show that the metric $(A_{2m+1}^{C})^{1/(2m+2)}ds^{2}$ is flat. When $m=2k$ , by Lemma 1,

$(A_{2m+1}^{c})^{1/(2m+2)}=(A_{4k+1}^{c})^{1/(4k+2)}=(2^{4k}c^{2k})^{1/(4k+2)}\sqrt{c-}K$ .

When $m=2k+1$ , by Lemma 1,

$(A_{2m+1}^{c})^{1/(2m+2)}=(A_{4k+3}^{c})^{1/(4k+4)}=(2^{4i+2}c^{2k+1})^{1/(4k+4)}\sqrt{c-}K$ .

Thus the metric $(A_{2m+1}^{c})^{1/(2m+2)}ds^{2}$ is flat, because $M$ satisfies the Ricci condi-
tion with respect to $c$ . By Theorem $B$ of [1], we find that $(M, ds^{2})$ can be
realized locally as an exceptional minimal surface lying fully in $X^{4m+3}(c)$ .
Therefore, there are non-flat exceptional minimal surfaces lying fully in
$X^{4m+3}(c)$ which satisfy the Ricci condition with respect to $c$ , where $c>0$ .

4. Proof of Theorem 2.

PROOF OF THEOREM 2. Let $\Delta,$ $A_{p}^{c}$ and $M_{1}$ be defined as in Section 2. As
$M$ lies fully in $X^{N}(c),$ $K=c$ only at isolated points, and $M_{1}$ is not empty. By

Lemma 2, $A_{2}^{c}>0$ and $A_{3}^{c}<0$ on $M_{1}$ . If $N=4$ , then $A_{2}^{c}=0$ identically by Theorem
A of [1], which contradicts that $A_{2}^{c}>0$ on $M_{1}$ . If $N=5$ , then by Theorem A
of [1], the metric $(A_{2}^{c})^{1/3}ds^{2}$ is flat at points where $A_{2}^{c}>0$ . Using the lemma
in Section 3 of [1], Lemma 2 and the equation (2), we have

$0=\Delta\log(A_{2}^{c})-6K$

$=2\Delta\log(c-K)-6K$

$=2K$

on $M_{1}$ . So $K=0$ on $M_{1}$ , which contradicts that $K\leqq c<0$ . If $N=6$ , then $A_{3}^{c}=0$

identically by Theorem A of [1], which contradicts that $A_{3}^{c}<0$ on $M_{1}$ . If
$N\geqq 7$ , then $A_{3}^{c}\geqq 0$ by Theorem A of [1], which contradicts that $A_{3}^{c}<0$ on $M_{1}$ .
Therefore, $N=3$ . $q$ . $e$ . $d$ .
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