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ON THE ABSOLUTELY PARACOMPACT
SUBSETS OF $\nabla^{\omega}(\omega+1)^{(*)}$

By

Shoulian YANG

Rudin [R] first proved under $CH$ that the box product $\coprod^{\omega}(\omega+1)$ of count-
able many copies of $\omega+1$ is paracompact. But since then it is still unknown
if this simplest box product is paracompact in $ZFC$ . Kunen [K] showed that
the paracompactness of $\Pi^{\omega}(\omega+1)$ is equivalent to that of the reduced box pro-
duct V $\omega(\omega+1)$ . In this paper, we give out some special subsets of $\nabla^{\omega}(\omega+1)$

which is paracompact in $ZFC$ (see Theorems 5, 8), hoping that our results will
become helpful toward the solution of the paracompactness of $\nabla^{\omega}(\omega+1)$ itself.
For survey of box products see van Douwan $[vD]$ .

Given spaces $X_{i}(i\in\omega)$ , an open box in the Cartesian product $\prod_{i\in\omega}X_{i}$ is a set

of the form $\prod_{i\in\omega}U_{t}$ , where $U_{i}$ is an open subset of $X_{i}$ . The topology generated

by all open boxes is the box topology. $\prod_{i\in\omega}X_{i}$ with the product is denoted by

$t\in\omega\square X_{i}$ and is called the box product. We define the reduced (or nabla) product

$i\in\omega\nabla X_{i}$ as the quotient space $\coprod_{i\in\omega}X_{i}/=*by$ the equivalence relation $=*such$ that

$f=*g$ iff $f(i)=g(i)$ for almost all $ i\in\omega$ , that is, $\{i\in\omega:f(i)=g(i)\}$ is finite. Let
us use $q$ to denote the quotient map

$ q:\coprod_{i\in\omega}X_{i}-\rightarrow\nabla_{\omega}X_{i}i\in$

When all factors are the same space $X$, we denote $i\in\omega\square X_{i},$ $i\in\omega\nabla X_{i}$ by $\coprod^{\omega}X,$ $\nabla^{\omega}X$

respectively. In this paper, we simply denote $\coprod_{i\in\omega}(\omega+1),$ $i\in\omega\nabla(\omega+1)$ by $\square ,$ $\nabla$

respectively.
We make our convention that members of $\square $ are denoted by $f,$ $g,$ $h,$ $\cdots$ ,

while members of $\nabla$ are denoted by $x,$ $y,$ $z,$ $\cdots$ . For each $ x\in\nabla$ , we choose
a fixed member of $q^{-1}(x)$ and denoted it by $x^{Z}$ . To denote an arbitrary mem-
ber of $q^{-1}(x)$ we use the symbol $X^{\square }$ .

For each $ x\in\nabla$ , we put
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$F(x)=\{i\in\omega:x^{1\not\supset}(i)<\omega\}$ and $1(x)=\{i\in\omega:x^{\emptyset}(i)=\omega\}$ .

If $E$ is an infinite subset of $\omega$ , all the above definitions are naturally modified
to the product $\prod_{i\in E}X_{i}$ . Let

$q_{E}$ : $\coprod^{E}(\omega+1)\rightarrow\nabla^{E}(\omega+1)$

be the quotient mapping. For each $x\in\nabla,$ $x|E$ denotes $q_{E}(x^{\square }|E)$ , where $x^{o}|E$

is the function $ x^{\square \omega}\in\omega$ restricted on $E$ .
For $f,$ $ g\in\coprod$ , we define

$f\leqq*g$ iff $f(i)\leqq g(i)$ for almost all $ i<\omega$ .
$<*is$ defined by $\leqq*and$ not $=*$ Note that $\leqq*$ is a quasi-order in $\square $ . $\leqq*$

induces a partial order $\leqq$ in $\nabla$ , that is,

$x\leqq y$ if $x^{\square }\leqq y$ .
Similarly, $<*induces<$ . For subsets $A,$ $ B\subset\omega$ , we define

$A\subset*B$ iff $A\backslash B$ is finite;

$A=*B$ iff $A\subset*B$ and $B\subset*A$ .
Let $\omega\omega\subset\square $ be the set of all functions from $\omega$ to $\omega$ . Then the image of $\omega\omega$ by
$q$ is $\nabla^{\omega}\omega\subset\nabla$ . Let us denote this $\nabla^{\omega}\omega$ by $\nabla\omega$ .

Since the togology of $\omega+1$ is the order topology, the basic set in $\square $ is of
the form $\prod_{i\in\omega}[a_{i}, b_{i}]$ , where $ a_{i}<\omega$ , or more strictly, we can add the condition

that $a_{i}=b_{i}$ if $ b_{i}<\omega$ . Hence, in $\nabla$ , we make a convention that a basic set in $\nabla$

means an interval
$[x, y]=\{z\in\nabla \ddagger x\leqq z\leqq y\}$

such that (1). $ x\in\nabla\omega$ ;
(2). $x=y$ on $F(y)$ , that is, $x^{o}(i)=y^{\square }(i)$ for almost all $i\in F(y)$ .
We say a point $ y\in\nabla\omega$ is increasing or unboundea if some $ x^{o}\in\omega\omega$ is so.
Let $E$ be an infinite subset of $\omega$ . For an unbounded function $f\in\omega E$ we

define a function $ h(f)\in\omega\omega$ by

$h(f)(n)=f(j)$ , $ n\in\omega$

where
$ j=\min$ { $i\in E:i\geqq n$ and $f(i)=\max\{f(k):k\in E,$ $k\leqq i\}$ }.

Note that the condition $f(i)=\max\{f(k):k\in E, k\leqq i\}$ is always satisfied if $f$ is
increasing.

We call this $h(f)$ the hat of $f$. For an unbounded $ x\in\nabla^{E}\omega$ the hat of $x$ is
defined by
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$ h(x)=q(h(x^{\square }))\in\nabla\omega$ .
For $ x\in\nabla$ such that $x|F(x)$ is unbounded, we often use

$h(x|F(x))$

and abbreviate this to $h(x)$ . Note that $ h(x)\in\nabla\omega$ , and that $h(x)\leqq x$ if $x|F(x)$

is increasing. When we consider $h(x)$ , we always assume that $x|F(x)$ is un-
bounded.

LEMMA 1. Let $ E\subset\omega$ be infinite, $ anax\in\nabla^{E}\omega$ be bounded. If $ y\in\nabla\omega$ is
increasing, then $y|E\leqq x$ implies $y\leqq h(x)$ .

PROOF. The condition $y|E\leqq x$ implies $h(y|E)\leqq h(x)$ . Since $y$ is increas-
ing, we know that $y\leqq h(y|E)$ . Hence we get $y\leqq h(x)$ .

Recall our convention that the basic set $[x, y]$ is chosen so that $x=y$ on
$F(y)$ . Then the following lemma is easy to see.

LEMMA 2. Suppose that $x,$ $ y\in\nabla$ , and $V_{x}=[\tilde{x}, x],$ $V_{y}=[\tilde{y}, y]$ are basic
sets. Then $ V_{x}\cap V_{y}\neq\emptyset$ if all the following three conditions hola;

(1) $x=y$ on $F(x)\cap F(y)$ ;
(2) $\tilde{x}\leqq y$ on $F(y)\backslash F(x)$ ;
(3) $\tilde{y}\leqq x$ on $F(x)\backslash F(y)$ .

We define a special relation in $\nabla$ , denoted $\prec$ , as follows. We write $x\prec y$

if the following two conditions are satisfied:
(i) $x=y$ on $F(x)\cap F(y)$ ;
(ii) $h(x)<y$ on $F(y)\backslash F(x)$ .

Note that if $x\prec y$ , then $h(x)\leqq h(y)$ .
A subset of $\nabla\omega$ is called dominating if it is cofinal in $\langle\nabla\omega, \leqq\rangle$ , or equi-

valently, cofinal in $\langle\omega^{\omega}, \leqq^{*}\rangle$ . Define the cardinal

$\underline{d}=\min$ { $|D|$ : $D$ is a dominating subset in $\nabla\omega$ }.

Note $\omega_{1}\leqq\underline{d}\leqq c=2^{\omega}$ . In the sequel, we fix a dominating family

$\mathcal{D}=\{q_{\alpha} ; \alpha\leqq\underline{d}\}$ , $q_{\alpha}=q(f_{\alpha})$ , $ f_{\alpha}\in\omega\omega$

in $\nabla\omega\subset\nabla$ such that each $f_{a}$ is increasing. For every $\alpha<\underline{d}$ put

$\Pi_{\alpha}=$ { $ x\in\nabla$ : $x\leqq q_{a}$ on $F(x)$ },

$\tilde{\Pi}_{a}=\Pi_{\alpha}\backslash \bigcup_{\beta<a}\Pi_{\beta}$ .
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Since $\mathcal{D}$ is dominating, we have

$\nabla=\cup\{\Pi_{a} ; \alpha<\underline{d}\}$ .
Focusing on the partial order $\prec$ , we call that a subset $ A\subset\nabla$ is super-boundea
if for each $ x\in\nabla$

$\{\alpha<\underline{d} : h(y|F(y)\backslash F(x))\in\Pi_{\alpha}, x\prec y\in A\}$

is bounded in $\underline{d}$ . (Note that if there is no $y$ with $x\prec y\in A$ for each $ x\in\nabla$ ,

then $A$ is super-bounded.)

More precisely, let call A super-bounaed by $g:\nabla\rightarrow\underline{d}$ if for every $ x\in\nabla$

$g(x)=\sup\{\alpha<\underline{d} : h(y|F(y)\backslash F(x))\in\Pi_{a}, x\prec y\in A\}$ .
Let $A$ be super-bounded by $g$ and let $ x\in\nabla$ be an arbitrary point. Since
$\{q_{a};\alpha\leqq g(x)\}$ can not dominate $\nabla\omega$ , there exists $ y_{x}\in\nabla\omega$ such that $y_{x}\not\leqq q_{c\iota}$ for
all $\alpha\leqq g(x)$ . Fix these $y_{x}\prime s$ . Let $C$ be an open cover of $\nabla$ . For each $x\in A$ ,
we call $V_{x}=[\tilde{x}, x]$ a good basic neighborhood of $x$ relative to $A$ and $C$ if it
satisfies the following:

(i) $V_{x}$ is a basic set and is contained in some member of $C$ ;

(ii) $\tilde{x}>h(x)$ ;
(iii) $\tilde{x}>q_{\beta}$ , where $\beta$ is such that $x\in\beta_{\beta;}$

(iv) $\tilde{x}>y_{x}$ , where $y_{x}$ is as above;
(v) $\tilde{x}$ is increasing.

LEMMA 3. Let $A$ be super-bounded, and $x,$ $y\in A$ . If $V_{x},$ $V_{y}$ are good basic
neighborhoods, then the conditions

$x\not\in V_{y}$ $ana$ $y\not\in V_{x}$

imply
$ V_{x}\cap V_{y}=\emptyset$ .

PROOF. We consider five cases.
(1) $x\neq y$ on $F(x)\cap F(y)$ . Then $ V_{x}\cap V_{y}=\emptyset$ by Lemma 2.
(2) $ F(x)\cap F(y)=*\emptyset$ . Then, either $y$ } $h(x)$ on $F(y)$ or $x$ } $h(y)$ on $F(x)$ .
Indeed, if $y>h(x)$ on $F(y)$ , then $h(y)>h(x)$ since $ F(x)\cap F(y)=*\emptyset$ . Hence

$x<h(y)$ on $F(x)$ . Since $\tilde{x}>h(x)$ and $\tilde{y}>h(y)$ , it follows that either $y\not\geqq\tilde{x}$ on
$F(y)$ or $x\not\geqq\tilde{y}$ on $F(x)$ happens; which means $ V_{x}\cap V_{y}=\emptyset$ by Lemma 2.

Now in the following cases, we can assume that $x=y$ on $F(x)\cap F(y)$ and
that $F(x)\cap F(y)$ is infinite. Take $\alpha,$ $\beta$ such that $x\in\prod_{\beta},$ $y\in\prod_{\alpha}$ and assume
that $\alpha\leqq\beta$ .

(3) $F(x_{\alpha})\backslash F(y)$ is infinite. Since $x_{a}\leqq q_{\alpha}$ on $F(x_{\alpha})$ , and $\tilde{y}>q_{\alpha}$ , we have
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$\tilde{y}\leqq x$ on $F(x_{\alpha})\backslash F(y)$ .
Since $F(x_{a})\subset*F(x)$ , we get

$\tilde{y}\leqq x$ on $F(x)\backslash F(y)$ .
Hence $ V_{x}\cap V_{y}=\emptyset$ by Lemma 2.

(4) $F(y)\backslash F(x_{a})$ is infinite and $F(x_{a})\subset*F(y)$ . If $x\not\leq y$ , then $h(x)\not\leq y$ on
$F(y)\backslash F(x)$ because $x$ and $y$ satisfy the first condition of $x\prec y$ . From $\tilde{x}>h(x)$

it follows that
$\tilde{x}\not\leqq y$ on $F(y)\backslash F(x)$ .

Hence $ V_{x}\cap V_{y}=\emptyset$ by Lemma 2. Note thrt $F(y)\backslash F(x)=*F(y)\backslash F(x_{\alpha})$ because
$ F(y)\cap(F(x)\backslash F(x_{\alpha}))=*\emptyset$ . So $F(y)\backslash F(x)$ is infinite.

If $x\prec y$ , then
$h(y|F(y)\backslash F(x))\in\Pi_{\xi}$

for some $\xi\leqq g(x)$ because $y\in A$ and $A$ is super-bounded by $g$ . This means

$h(y|F(y)\backslash F(x))\leqq q_{\xi}$ .
On the otheer hand, by the definition of $y_{x}$ , we have

$y_{x}=\not\leq q_{\xi}$ .
From $\tilde{X}>y_{x}$ it follows that

$\tilde{x}\not\leqq q_{\xi}$ .
Hence

$\tilde{x}\not\leqq h(y|F(y)\backslash F(x))$ .
By Lemma 1 we get

$\tilde{x}\not\leqq y$ on $F(y)\backslash F(x)$ .
which shows $ V_{x}\cap V_{y}=\emptyset$ by Lemma 2.

(5) $F(y)=*F(x_{\alpha})$ . Since $x=y$ on $F(y)$ and $x\not\in V_{y}$ , there exists an infinite
subset $G\subset F(x)\backslash F(y)$ such that

$x<y$ on $G$ .
Hence $ V_{x}\cap V_{y}=\emptyset$ .

This completes the proof of Lemma 3.
$ x\in\nabla$ is called a boundea point if $x^{o}|F(x)$ is bounded. The points in the

previous lemma are unbounded points. For every bounded point $x$ , we simply

choose an increasing $\tilde{x}$ so that $V_{x}[\tilde{x}, x]$ is contained in some member of $C$ .
Such $V_{x}$ is also called a good neighborhood. The next lemma is easy.

LEMMA 4. Suppose that $x,$ $y$ are boundea $anax\neq y$ , or that $x$ is bounded
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but $y$ is unboundecl. Then
$ V_{x}\cap V_{y}=\emptyset$

for gooa neighborhoods $V_{x},$ $V_{y}$ .

Now we come to the main theorem.

THEOREM 5. Every super-bounded subset of $\nabla$ is paracompact. Precisely,
every open cover of a super-boundea subset of $\nabla$ has a refinement consisting of
pairwise disjoint basic sets.

PROOF. Suppose that $A$ is the super-bounded subset of $\nabla$ . By induction
we will define the families $K(\alpha)$ for $\alpha<\underline{d}$ so that the following hold:

(1) $K(\alpha)$ is a disjoint collection consisting of good basic neighborhoods of
some points in $A\cap\Pi_{\alpha}$ ;

(2) $K(\alpha)$ refines $C$ ;
(3) $K(\alpha)$ covers $A\cap\Pi_{\alpha}$ ;
(4) $K(\alpha)\subset K(\beta)$ if $\alpha<\beta$ .
For a stage $\beta<\underline{d}$ , let $B=(A\cap\Pi_{\beta})\backslash \cup\{K(\alpha):\alpha<\beta\}$ , and define

$K^{\prime}(\beta)=$ { $V_{x}$ : $V_{x}$ is good neighborhood of $x\in B$ },

$K(\beta)=K^{\prime}(\beta)\cup\cup\{K(\alpha);\alpha<\beta\}$ .
By Lemma 3 and 4 we can conclude that $K(\beta)$ satisfies (1). Then, it is easy
to check that $K(\alpha),$ $\alpha\leqq\beta$ , satisfy (1) $-(4)$ . By (3). $\{K(\alpha):\alpha\leqq\underline{d}\}$ covers $A=$

$\cup\{A\cap\Pi_{\alpha} : \alpha<\underline{d}\}$ . By (1) and (2), $\{K(\alpha);\alpha<\underline{d}\}$ is a disjoint collection refining
$C$ . Thus we can conclude that $A$ is paracompact.

$x,$ $ y\in\nabla$ are said be compatible if $x=y$ on $F(x)\cap F(y)$ . Then, $ x\cup y\in\nabla$ is
a point such that $F(x\cup y)=F(x)\cup F(y),$ $(x\cup y)|F(x)=x|F(x)$ and $(x\cup y)|F(y)$

$=y|F(y)$ .
Let $A,$ $B$ are super-bounded, and $x\in A\subset B$ . $B$ is called on expansion of $A$

by $x$ if we have $x\cup y\in B$ whenever $y$ is a point in $A$ such that: (i) $x,$ $y$ are
compatible; $x>h(y)$ on $F(x)\backslash F(y)$ ; (iii) $y>h(x)$ on $F(y)\backslash F(x)$ . Let $x\not\in\cup \mathcal{A}$ ,

where $\mathcal{A}$ is a family of super-bounded sets and $B$ is a super-bounded set. Then
$B$ is called an expansion of $\mathcal{A}$ by $x$ if $x\cup y\in B$ whenever $y$ is a point in UA
such that (i), (ii), (iii) as above.

LEMMA 6. Suppose $A$ is a super-bounded set, and $x\not\in A$ . Then the least
expansion of $A$ by $x$ exists.

PROOF. Let



On the Absolutely paracompact subsets of $\nabla^{\omega}(\omega+1)$ 119

$ B=A\cup\cup$ { $x\cup y:y\in A$ satisfies the above (i), (ii) and (iii)}.

To show $B$ is the desired expansion, [ $t$ suffices to show $B$ is super-bounded.
Note first that for each $ z\in\nabla$

$\{\alpha:h(x\cup y|F(x\cup y)\backslash F(z))\in\tilde{\Pi}_{a}, x\cup yB, z\prec x\cup y\}$ $(*)$

is bounded in $\underline{d}$ .
Indeed,

$\{\alpha;h(x\cup y|F(x\cup y)\backslash F(z))\in\tilde{\Pi}_{\alpha}, y\in B, z\prec y\}$

is bounded in $\underline{d}$ . So let $\beta$ be the Supremum of this set; then

$h(x\cup y|F(x\cup y)\backslash F(z))\leqq q_{\beta}h(x|F\langle x)\backslash F(z))$

where $\vee is$ an operation on $\nabla$ such that

$wv=q(w^{o}v^{o})$ , $(w^{\square }v^{\square })(i)=\max\{w^{\square }(i), v^{\square }(i)\}$ .
From the fact $(*)$ it follows that for each $ z\in\nabla$ ,

$\{\alpha;h(y|F(y)\backslash F(z))\in\Pi_{\alpha}, y\in B, z\prec y\}$

is bounded in $\underline{d}$ . Hence $B$ is super-bounded.

Fix $\beta<cof(\underline{d})$ . Let $A_{\alpha},$ $\alpha<\beta$ , be super-bounded subsets in $\nabla$ . Let $\mathscr{D}$ be
a refinement of $C$ covering $\cup\{A_{\alpha} : \alpha<\beta\}$ . $\mathscr{D}$ is called a gooa refinement if
every $V_{x}=[\tilde{x}, x]\in \mathscr{Q}$ is a good basic neighborhood of $x$ relative to $A_{\gamma}$ , where

$\gamma=\min$ { $\alpha<\beta$ : $x\in A_{\alpha}$ and $V_{x}\in \mathscr{D}$ }.

LEMMA 7. If $\beta<cof(\underline{d})$ , and $\mathscr{Q}$ is a good refinement covering $\cup\{A_{\alpha} : \alpha<\beta\}$ ,

then $\cup \mathscr{Q}$ is closed in $\nabla$ .

PROOF. Let $A_{\alpha}$ be super-bounded by $g_{\alpha}$ . Let $g:\nabla\rightarrow\underline{d}$ be a function with
the property that $ g(x)\geqq sl\iota p(g_{\alpha}(x):\alpha<\beta$ }. (Such $g$ exists because $\beta<cof(\underline{d})$)

Fix a set $B_{0}$ which is super-bounded by $g$ ; then it is clear that $\cup\{A_{\alpha} ; \alpha<\beta\}$

$\subset B_{0}$ .
Assume $x\not\in\cup \mathscr{Q}$ . Let $B$ be the expansion of $B_{0}$ by $x$ , the existence of

which is assured by Lemma 6. Define an $\tilde{x}\in\nabla\omega$ so that:
(i) $V_{x}=[\tilde{x}, x]$ is a good basic neighborhood of $x$ relative to $B$ :
(ii) $\tilde{x}>q_{\xi}$ , where

$\xi=\sup\{\alpha:h(y)|F(y)\backslash F(x))\in\tilde{\Pi}_{a}, x\prec y\in B\}$ .
To sho $\cup \mathscr{Q}$ is closed, we will claim that $ V_{x}\cap V_{y}=\emptyset$ for every $V_{y}\in \mathscr{Q}$ .

In the cases that (1) $x\neq y$ on $F(x)\cap F(y)$ , or (2) $ F(x)\cap F(y)=*\emptyset$ , it is easy
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to prove $ V_{x}\cap V_{y}=\emptyset$ by the same argument as in the proof of Lemma 3. So,

in the next cases (3) and (4), we assume that $x=y$ on the infinite $F(x)\cap F(y)$ .
CASE (3): $x\in\tilde{\Pi}_{\beta},$ $y\in\tilde{\Pi}_{a}$ and $\beta\geqq\alpha$ .
Suppose that $y\in A_{\gamma}$ and $V_{\gamma}$ is the good neighborhood of $y$ in $A_{\gamma}$ . Since

$g(x)\geqq g_{\gamma}(x)$ fir all $ x\in\nabla$ and we many assume that $B$ is super-bounded by $g$ ,

we get that $ V_{x}\cap V_{y}=\emptyset$ by the same way as in Lemma 3.
CASE (4): $x\in\tilde{\Pi}_{\beta},$ $y\in\tilde{\Pi}_{a}$ and $\beta<\alpha$ .
If $x\gg h(y)$ on $F(x)\backslash F(y)$ or $y\gg h(x)$ on $F(y)\backslash F(x)$ , then the conditions

$\tilde{x}>h(x)$ and $\tilde{y}>h(y)$ imply that

$x\not\geqq\tilde{y}$ on $F(x)\backslash F(y)$ or $y\not\geqq\tilde{x}$ on $F(y)\backslash F(x)$ .
Hence $ V_{x}\cap V_{y}=\emptyset$ by Lemma 2. If $x>h(y)$ on $F(x)\backslash F(y)$ and $y>h(x)$ on
$F(y)/F(x)$ , then $x\cup y\in B$ . Then

$h(x\cup y|F(x\cup y)\backslash F(x))\leqq q_{\gamma}<\tilde{x}$ .
On the other hand,

$h(y|F(y)\backslash F(x))=h(x\cup y|F(x\cup y)\backslash F(x))$

since
$y|F(y)\backslash F(x)=x\cup y|F(x\cup y)\backslash F(x)$ .

So we have
$h(y|F(y)\backslash F(x))<\tilde{x}$ .

Hence, by Lemma 1, $y\not\geqq\tilde{x}$ on $F(y)\backslash F(x)$ , which shows $ V_{x}\cap V_{y}=\emptyset$ by Lemma 2.

THEOREM 8. The union of $cof(\underline{d})$ many super-bounaed sets is paracompact.

PROOF. Let $A_{\alpha},$ $\alpha<\underline{d}$ , be super-bounded subsets. Applying Theorem 5 and
Lemma 7 we can show that $\cup\{A_{\alpha} : \alpha<cof(\underline{d})\}$ is paracompact. Indeed, let
$\beta<cof(\underline{d})$ and $B$ be a disjoint good refinement covering $\cup\{A_{\alpha} : \alpha<\beta\}$ . Then,
by Lemma 7, US is closed. For the set $(\nabla\backslash B)\cap A_{\beta}$ , as a super-bounded set,

there is a good refinement covering it by Theorem 5. Since $\nabla\backslash \cup \mathscr{Q}$ is open,
by suitable contraction we can make $\llcorner 4$ satisfy that $-A\cup B$ is a disjoint collec-
tion. Thus, by induction, we can get a refinement covering $\cup\{A_{\alpha} : \alpha<cof(\underline{d})\}$

consistinng of disjoint basic sets. This completes the proof.

Now remains an open question: Is $\nabla$ a union of cof $(\underline{d})$ many super-bounded
sets in $ZFC$ ? I conjecture NO. To answer this question, it may be useful to
answer first the question whether Lemma 7 remains true if one replaces $\beta$ by
cof $(\underline{d})$ .
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