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Abstract. We show that the category $Conv_{B}$ of convergence spaces
over $B$ is a convenient category for any $B\in Conv$ . It is shown that
without any condition on spaces the category $Conv_{B}$ and the category
$Conv_{B}^{B}$ of sectioned convergence spaces over $B$ hold various expo-
nential laws in a natural way. In $Conv_{B}$ , we can construct expo-
nential object in terms of function spaces. Our fibrewise mapping
space structure generalizes the fibrewise compact-open topology in
some case.
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1. Introduction.

The fibrewise viewpoint is standard in the theory of fibre bundles. It also
has an important role to play in homotopy theory. Fibrewise topology, as a
natural generalization of topology, has emerged recently as a subject in its own
right with a rich potential for research. I.M. James has been promoting the
fibrewise viewpoint systematically in topology [13-19].

In homotopy theory, the category Top of topological spaces is not a very
good one to work in for many problems. Top is not cartesian closed. So is
not the category $Top_{B}$ of topological spaces and maps over a fixed space $B$ .
So, many attempts have been made to find a suitable category, allowing a con-
venient category of fibred spaces. A convenient category means that it contains
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all the spaces of real interest, that it have all limits and colimits, and that it
be cartesian closed. So far, compactly generated spaces and quasi-topological
spaces have been main objectives. However, in a structural point of view, it
has not been completely successful to find a convenient category of fibred spaces.
P.I. Booth [4] obtained many interesting exponential laws for quasi-topological
spaces. However, quasi-topological spaces do not form a category, but a quasi-
category, which is illegitimate and hence not a suitable replacement for Top
(cf. [12]).

In this paper, we will introduce a new approach to fibrewise topology using
the notion of convergence $[3, 9]$ and develop a theory of fibrewise convergence,
mainly focusing on the adjoints of the fibre product and the fibre smash product,
respectively. In 1986, Ad\’amek and Herrlich [1] showed that a topological
category $A$ is a quasitopos ( $=final$ epi-sinks in $A$ are preserved by pullbacks)

if and only if, for each $B\in A$ , the comma category $A_{B}$ is cartesian closed.
Thus, to find a convenient category of fibred spaces, we must first choose a
quasitopos. It is well-known that the category Conv of convergence spaces
forms a quasitopos (cf, [1, 21]) and it is very useful category in various respects,

containing the category Top as a bireflective subcategory (cf. [3, 21]). So, we
work with the category of convergence spaces. We will show that the category
$Conv_{B}$ of convergence spaces over $B$ is a convenient category for every $B\in Conv$ .
In fact, it turns out that without any restriction on spaces the category $Conv_{B}$

and the category $Conv_{B}^{B}$ of sectioned convergence spaces over $B$ hold various
exponential laws including the exponential laws for fibred section spaces and
fibred relative lifting spaces and homotopy versions of all exponential laws
mentioned above. We note that an exponential object in $Conv_{B}$ can be con-
structed in terms of function spaces even though a constant map in $Conv_{B}$ is
not a morphism (cf. 27. 18, [2]). Our fibrewise mapping space structure generalizes
the fibrewise compact-open topology in some cases. Using those exponential
laws, we can obtain naturally improved versions of many interesting properties
concerned by many researchers [4-8,14,18,20,22-24]. The terminology and
notation of $[2, 13]$ will be used throughout.

2. Convergence spaces over a base.

For a set $X$, we denote by $\mathcal{F}(X)$ the set of all filters on $X$ and $\mathcal{P}(\mathcal{F}(X))$

the power set of $\mathcal{F}(X)$ . A convergence space [3] is a pair (X, c) of a set $X$ and
a function $c:X\rightarrow \mathcal{P}(\mathcal{F}(X))$ , called a convergence structure, subject to the following

axioms: for each $x\in X$,
(1) $\dot{x}\in c(x)$ , where $\dot{x}$ is the filter generated by $\{x\}$ .
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(2) if $\mathcal{F}\in c(x)$ and $\mathcal{F}\subseteqq \mathcal{G}$ , then $\mathcal{G}\in c(x)$ ,

(3) if $\mathcal{F},$ $\mathcal{G}\in c(x)$ , then $\mathcal{F}\cap \mathcal{G}\in c(x)$ .
The filters in $c(x)$ are said to be convergent to $x$ . We usually write $\mathcal{F}\rightarrow x$

instead of $\mathcal{F}\in c(x)$ . By a continuous map $f:X-\succ Y$ between convergence spaces
is meant a function $f:X\rightarrow Y$ such that $f(\mathcal{F})\rightarrow f(x)$ in $Y$ whenever $\mathcal{F}\rightarrow x$ in $X$.
The category Conv is formed by all convergence spaces and all continuous
maps between them.

Let $X$ be a topological spaces. By assigning to each $x\in Xc(x)=the$ set of
all filters on $X$, convergent to $x$ , we obtain a convergence structure. Hence
any topology can be interpreted as a convergence structure. Let (X, c) be a
convergence space. A subset $U$ of $X$ is said to be open if it belongs to every
filter which converges to a point of $U$ . The collection $\tau_{c}$ of all open subsets
of $X$ forms a topology on $X$. Note that (X, $\tau_{c}$) is the topological reflection of
(X, $c$ ).

Given a space $B\in Conv$ , an object (X, p) of the comma category $Conv_{B}$ is
called a convergence space over $B$ and $p$ the projection. As usual, (X, p) is also
simply denoted by $X$. A morphism $f:(X, p)\rightarrow(Y, q)$ in $Conv_{B}$ is called a con-
tinuous map over $B$ . For topological space $B$ , each $((X, c),$ $p$ ) $\in Conv_{B}$ has the
topological reflection $((X, \tau_{c}),$ $p$ ). Hence $Top_{B}$ is a bireflective subcategory of
$Conv_{B}$ .

It is easy to see the following facts; Initial (resp. final) structures in Conv
determine initial (resp. final) structures in $Conv_{B}$ over $Set_{B}$ . The limit (resp.

colimit) in Conv of a natural source (resp. sink) in $Conv_{B}$ is the limit (resp.

colimit) in $Conv_{B}$ . Therefore, $Conv_{B}$ has initial structures over $Set_{B}$ and, hence,

limits and colimits. Moreover, as does in Conv final epi-sinks in $Conv_{B}$ are
preserved by pullbacks and hence finite products of quotient maps are quotient
in $Conv_{B}$ . From now on, $B$ means any convergence space.

Note that, for (X, $p$ ), $(Y, q)\in Conv_{B}$ , the pull-back $X\times BY$ of $p$ and $q$ is the
product of $X$ and $Y$ in $Conv_{B}$ . Since $Conv_{B}$ is cartesian closed, the functor
$ X\times B-\cdot$ $Conv_{B}\rightarrow Conv_{B}$ has a right adjoint -X an exponential functor. An ex-
ponential object $Y^{X}$ is not necessarily a function space. However, in $Conv_{B}$ ,

we can construct exponential object in terms of function spaces.
For (X, $p$ ), $(Y, q)\in Conv_{B}$ , consider the set

$map_{B}(X, Y)=\bigcup_{b\in B}map(X_{b}, Y_{b})$

with the natural projection $(pq)$ , where map$(X_{b}, Y_{b})$ denotes the set of continuous
maps of $X_{b}$ into $Y_{b}$ and we define a convergence structure $c$ on $map_{B}(X, Y)$ as
follows; For a filter $\mathcal{F}$ on $map_{B}(X, Y)$ and $f\in map(X_{b}, Y_{b}),$ $\mathcal{F}\in c(f)$ if and
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only if
(1) for each $x\in X_{b},$ $(\mathcal{F}\cap f)(\mathcal{A}\cap\dot{x})\rightarrow f(x)$ in $Y$ whenever $A\rightarrow x$ in $X$, where

$F(A)=\bigcup_{b\in B}F_{b}(A_{b})$ for $F\in \mathcal{F}\cap f$ and $A\in\llcorner 4\cap\dot{x}$ ,

(2) $(pq)(\mathcal{F})\rightarrow(pq)(f)$ in $B$ .
By a routine work, we can show that $c$ is a convergence structure over $B$ .
We note that if $B$ is a singleton space, then $c$ is the continuous convergence
structure on map(X, $Y$ ).

THEOREM 2.1. For any convergence space $X$ over $B,$ $map_{B}(X, -)$ is a right
adjoint of $Xx_{B-}$ . Therefore the exponential object $Y^{x}$ is isomorphic to
$map_{B}(X, Y)$ in $Conv_{B}$ .

PROOF. Consider the evaluation map $ev:Xx_{B}map_{B}(X, Y)\rightarrow Y$ defined by

$ev(x, f)=f(x)$ . Then $ev$ is a map over $B$ . For the continuity of $ev$ , let $\epsilon U\rightarrow$

$(x, f)$ in $X\times Bmap_{B}(X, Y)$ with $(x, f)\in X_{b}\times map(X_{b}, Y_{b})$ . Then there exist filters
$A4$ on $X$ and $\mathcal{F}$ on $map_{B}(X, Y)$ such that $\mathcal{A}\rightarrow x$ in $X$ and $\mathcal{F}\rightarrow f$ in $map_{B}(X, Y)$

and $\mathcal{A}\times B\mathcal{F}\subseteqq V$ , where $\mathcal{A}\times B\mathcal{F}$ is the filter generated by $\{A\times BF|A\in \mathcal{A}, F\in \mathcal{F}\}$ .
Note that $ev(A\times_{B}F)=F(A)$ . Hence $(\mathcal{F}\cap f)(-A\cap\dot{x})\subseteqq ev(\mathcal{A}X_{B}\mathcal{F})\subseteqq ev(cU)$ . Therefore
$en$ is continuous. In fact, $ev$ is a co-universal map for $Y$ with respect to the
functor $ X\times B-\cdot$ Let $(Z, r)\in Conv_{B}$ and $f:X\times BZ\rightarrow Y$ a continuous map over $B$ .
Define $\overline{f}:Z\rightarrow map_{B}(X, Y)$ by $\overline{f}(r)(x)=f(x, z)$ . (If $ X_{b}=\emptyset$ , then $\overline{f}(z)$ is the empty

map $\emptyset_{b}$ : $X_{b}\rightarrow Y_{b}.$ ) Then $\overline{f}$ is a map over $B$ . Let $\mathcal{H}\rightarrow z$ in $Z$ with $z\in Z_{b}$ and
$I\rightarrow x$ in $X$ with $x\in X_{b}$ . Then

$f((\mathcal{A}\cap\dot{x})\times B(.j!\cap\dot{z}))\subseteqq(f(\mathcal{H})\cap\overline{f}(z))(\lrcorner\#\cap\dot{x})$

and $(pq)\circ\overline{f}=r$ . Hence $\overline{f}(\mathcal{H})\rightarrow\overline{f}(z)$ in $map_{B}(X, Y)$ . Thus $f$ is continuous. Clearly,
$ev\circ(1_{X}X_{B}\overline{f})=f$ and such a map $\overline{f}$ is unique.

Since $Conv_{B}$ is cartesian closed, we have the following exponential law as
a corollary.

THEOREM 2.2. For $X,$ $Y,$ $Z\in Conv_{B}$ ,

$\Psi:map_{B}(X\times BY, Z)-map_{B}(X, map_{B}(Y, Z))$

is an isomorphism in $Conv_{B}$ , where $\Psi(f)(x)(y)=f(x, y)$ .

For $X,$ $Y\in Conv_{B}$ , we denote by $Map_{B}(X, Y)$ the convergence space of all
continuous maps $X\rightarrow Y$ over $B$ , equipped with a subspace structure of map(X, Y)

in Conv.

LEMMA 2.3. For (X, $p$ ), $(X, q)\in Conv_{B}$ , consider $X\times B$ and $X\times Y$ as objects
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in $Conv_{B}$ with projections $\pi_{2}$ and $q\circ\pi_{2}$ respectively. Then $\alpha:(X\times B)\times BY\rightarrow X\times Y$

is an isomorphism in $Conv_{B}$ . where $\alpha((x, b),$ $y$ )$=(x, y)$ .

PROOF. It is immediate from the property of products in Conv.

PROPOSITION 2.4. For $X,$ $Y\in Conv_{B}$ ,

$\sigma:Map_{B}(X, Y)-Map_{B}(B, map_{B}(X, Y))$

is an isomorphism in $Conv_{B},where\sigma(f)(b)=f_{b}$ : $X_{b}\rightarrow Y_{b}$ , the restriction of $f$ on $X_{b}$ .

PROOF. Using the cartesian closedness of Conv, Theorem 2.1. and Lemma
2.3., the following comm\‘utative diagram;

$X\times Bmap_{B}(X, Y)$
$\rightarrow^{ev}$

$Y$

$\uparrow B$ $\uparrow ev$

$X\times B(B\times Map_{s}((X, Y))\cong X\times Map_{B}(X, Y)$

Since $X\times-$ is a left adjoint of map(X, -), we have a continuous map
$\hat{ev};Map_{B}(X, Y)\rightarrow map(B, map_{B}(X, Y))$ such that $ev\circ(1_{X}\times\hat{ev})=\overline{ev}$ . In fact, $\sigma$ is the
corestriction of $\hat{ev}$ . Consider the following diagram;

$X\times map(X, Y)$ $\underline{ev}$ $Y$

$\int$

$X\times Map_{B}(B,$ $map_{B}((X, Y))$ $|ev$

$|\int$

$X\times B(B\times Map_{B}(B, map_{\epsilon}(X, Y)))\underline{1_{X}\times pev}X\times fmap_{B}(X, Y)$

Again, by the exponential law in Conv, we have a continuous map
$\beta$ : $Map_{B}(B, map_{B}(X, Y))\rightarrow map(X, Y)$ such that $ ev\circ(1_{X}\times_{B}ev)=ev\circ\beta$ . In fact, $\sigma^{-1}$

is the corestriction of $\beta$ .

REMARK 2.5. The space $Map_{B}(B, map_{B}(X, Y))$ is the space of sections of
$map_{B}(X, Y)$ . So, usually it is denoted by $sec_{B}map_{B}(X, Y)$ . This proposition
shows that exponential objects in $Conv_{B}$ may not be hom-objects in that category.

By combining Theorem 2.2. and Proposition 2.4., we have another ex-
ponential law.

THEOREM 2.6. For $X,$ $Y,$ $Z\in Conv_{B}$ ,
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$\Phi:Map_{B}(X\chi_{B}Y, Z)\rightarrow Map_{B}(X, map_{B}(Y, Z))$

is an isomorphism in $C0nv_{B}$ , where $\Phi(f)(x)(y)=f(x, y)$ .

PROOF. $Map_{B}(X\times BY, Z)\cong Map_{B}(B, map_{B}(Xx_{B}Y, Z))$

$\cong Map_{B}(B, map_{B}(X, map_{B}(Y, Z)))\cong Map_{B}(X, map_{B}(Y, Z))$ .

REMARK 2.7. Since, in $Conv_{B},$ $B\times BX\cong X$ in a natural way, Theorem 2.6.
implies Proposition 2.4. Therefore given the isomorphism in Theorem 2.2.,
Proposition 2.4. and Theorem 2.6. are equivalent.

Mapping Spaces
We collect some interesting properties of mapping spaces in $Conv_{B}$ .
1. Since $Conv_{B}$ is cartesian closed, we can show the followings (cf. [2]);

(a) $X\times B-$ preserves final epi-sinks, (b) $map_{B}(X, -)$ preserves initial sources and (c)

$map_{B}(-, X)$ carries final epi-sinks to initial sources. In particular. $ X\times B(\coprod_{B}Y_{i})\cong$

$1I_{B}(X\times Y),$ $map_{B}(X, \Pi_{B}Y_{i})\cong\Pi_{B}map_{B}(X, Y_{i})$ and $map_{B}(IJ_{B}Y_{i}, X)\cong\Pi_{B}map_{B}(Y_{i}, X)$ .
2. Given (X, $p$ ), $(Y, q)\in Conv_{B}$ , if $q$ is quotient or $ Map_{B}(X, Y)\neq\emptyset$ , then

$(pq):map_{B}(X, Y)\rightarrow B$ is quotient (cf. Theorem 5.1. in [4]). If we take $Y=B$ ,

then this shows $map_{B}(X, B)\cong B$ . Let $\alpha$ be the compositon $map_{B}(B, X)^{((}\rightarrow\iota_{B^{P).1)}}$

$B\times Bmap_{B}(B, X)\rightarrow Xev$ Then $\alpha$ is bijective and the adjoint of $\pi_{2}$ : $B\times BX\rightarrow X$ is
$\alpha^{-1}$ . Hence $map_{B}(B, X)\cong X$.

3. For each $B^{\prime}\in Conv$ and a continuous map $\xi:B^{\prime}\rightarrow B$ , a functor $\xi:Conv_{B}$

$\rightarrow Conv_{B^{\prime}}$ is defined, where $\xi^{*}X=Xx_{B}B^{\prime}$ and $\xi^{*}(f)=f\times_{B}1_{B^{\prime}}$ . In fact, $\xi^{*}$ has a
left adjoint functor $\xi_{*}$ , defined by $\xi_{*}(X, p)=(x, \xi\circ p)$ and $\xi_{*}(f)=f$ , and hence
preserves products. By Theorem 1.1. and modification of proof of Proposition

6.9. in [14], we can show that the natural map $\xi_{\#}$ : $map_{B},(\xi^{*}X, \xi^{*}Y)\rightarrow\xi^{*}map_{B}(X, Y)$

is an isomorphism in $Conv_{B^{\prime}}$ .
4. For $(Z, r)\in Conv_{B}$ and a non-empty space $F$, define $\mathcal{O}_{F}(Z)$ to be the

subspace of map$(F, Z)$ of maps $f:F\rightarrow Z$ such that $r\circ f$ is constant. Then, $O_{F}(Z)$

$\in Conv_{B}$ with the projection $q_{F}(r)(f)=rf(x)$ and we have an isomorphism in
$Conv_{B}\alpha:\mathcal{O}_{F}(Z)\rightarrow map_{B}(F\times B, Z)$ , where $\alpha(f)(x, b)=f(x)$ , using Lemma 2.3. and
exponential laws in Conv and $Conv_{B}$ . Hence $map_{B}(F\times B, Z)$ is embedded in
map$(F, Z)$ (cf. Proposition 3.1. [7]).

5. Using the similar argument in Theorem 6.1. of [4], we can show the
following; Given (X, $p$ ), $(Y, q)\in Conv_{B}$ , if $p$ and $q$ are Hurewicz (resp. Dold)

fibrations, then so is $(pq)$ .
6. Let $B$ be a discrete topological space, $X$ a locally compact Hausdorff

topological space over $B$ and $Y$ a topological space over $B$ . Then $map_{B}(X, Y)$
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carries the fibrewise compact-open topology: Suppose $\mathcal{F}\rightarrow f$ in $map_{B}(X, Y)$ with
$f\in map(X_{b}, Y_{b})$ . Since $B$ is discrete, $(pq)(\mathcal{F})\rightarrow(pq)(f)=b$ in $B$ implies map$(X_{b}, Y_{b})$

$\in \mathcal{F}$ . Let $(K, V)$ be a fibrewise compact-open neighborhood of $f$. Then, for
each $x\in K_{b}$ , $V\in(\mathcal{F}\cap f)(\mathfrak{R}_{x})$ , where $\Re_{x}$ is the neighborhood filter at $x$ in $X$.
Since $K_{b}$ is compact, there exist $x_{1},$ $\cdots,$

$x_{n}\in X_{b},$ $U_{x},\in \mathfrak{N}_{x_{i}}$ and $F_{x_{i}}\in \mathcal{F}\cap f$ such
that $F_{x_{i}}(U_{i})\subseteqq V$ for each $i=1,$ $\cdots,$ $u$ . Let $F=F_{x_{1}}\cap\cdots\cap F_{x_{n}}\cap map(X_{b}, Y_{b})$ . Then
$F\in \mathcal{F}\cap fandF\subseteqq(K, V)$ . Hence $\mathcal{F}\rightarrow f$ with respect to the fibrewise compact-open
topology. Conversely, let $\mathcal{J}l_{f}$ be the neighborhood filter at $f$ with respect to
the fibrewise compact-open topology, where $f\in map(X_{b}, Y_{b})$ . Let $V$ be an open
neighborhood of $f(x)$ in $Y$ . Since $X$ is locally compact over $B$ , there is a
compact neighborhood $K$ of $x$ in $X_{b}$ such that $f(X)\subseteqq V_{b}$ . Note that $K$ is com-
pact over $B$ , since $B$ is $T_{1}$ . In fact, $(K, V)\in\Re_{f}$ and $(K, V)(K)\subseteqq V$ . Hence
$X_{f}\rightarrow f$ in $map_{B}(X, Y)$ . In general, $map_{B}(X, Y)$ does not carry the fibrewise
compact-open topology. For example, let $X=Y=B=\{0,1\}$ , the Sierpinski space
with the topology $\{\emptyset, \{0\}, \{0,1\}\}$ and the identity map as its projection. Consider
the filter $\mathcal{F}=\{\{\underline{0}, \underline{1}\}\}$ , where $\underline{0}:\{0\}\rightarrow\{0\}$ and 1: $\{1\}\rightarrow\{1\}$ . Then $\mathcal{F}\rightarrow\underline{1}$ in
$map_{B}(X, Y)$ , but $\mathcal{F}+\underline{1}$ with respect to the fibrewise compact-open topology.
Note that $\{\underline{1}\}=(\{1\}, Y)$ is the fibrewise compact-open neighborhood of 1.

3. Sectioned space over a base.

A sectioned space over $B$ is a triple consisting of a convergence space $X$ and
continuous maps

$s$ $p$

$B\rightarrow X\rightarrow B$

such that $ps=1_{B}$ . Usually $X$ alone is a sufficient notation. The map $p$ is called
a projection and the map $s$ the section. Let $X,$ $Y$ be sectioned space over $B$ ,

with projections $p,$ $q$ and sections $s,$
$t$ , respectively. By a map of sectioned

space over $B$ , we mean a continuous map $f:X\rightarrow Y$ of convergence spaces such
that $qf=p$ and $fs=t$ . The category $Conv_{B}^{B}$ is formed by all sectioned spaces
over $B$ and all maps between them. By a similar argument in $Conv_{B}$ , the
category $Top_{B}^{B}$ is shown to be a bireflective subcategory of $Conv_{B}^{B}$ . Note that
products of sectioned spaces in $Conv_{B}$ serve as products in $Conv_{B}^{B}$ .

Let $X,$ $Y$ be sectioned spaces over $B$ , with projections $p,$ $q$ and sections $s,$
$t$ ,

respectively. Consider the convergence space

$X\bigwedge_{B}Y=\bigcup_{b\in B}\{(X_{b}\times Y_{b})/((s(b)\times Y_{b})\cup(X_{b}\times t(b))\}$

equipped with the quotient structure with respect to the natural map $\phi:Xx_{B}Y$

$\rightarrow X\bigwedge_{B}Y$ . Then the triple $(\phi\circ(s, t),$ $X\bigwedge_{B}Y,$ $p\wedge q$) is a sectioned space over $B$ ,
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called the smash product of $X$ and $Y$ , where the map $p\wedge q$ is induced by the
projection for $X\times BY$ . We note that the smash product is not the product in
the category $Conv_{B}^{B}$ . We denote by $map_{B}^{B}(X, Y)$ the subspace of $map_{B}(X, Y)$ of
pointed maps, where the base points in the fibres are determined by sections.
The space $map_{B}^{B}(X, Y)$ is a sectioned space over $B$ : In fact, the projection is

induced by $(pq)$ and the section is induced by the adjoint of $Xx_{B}B^{n_{2}}\rightarrow B^{t}\rightarrow Y$ .
For any $X\in Conv_{B}^{B},$ $map_{B}^{B}(B, X)\cong B$ via its projection. Denote $j=\{0\}\coprod\{1\}$ .
Then $map_{B}^{B}(B\times\dot{I}, X)\cong X$, since $map_{B}(-, X)$ carries coproducts into products.

THEOREM 3.1. For any sectioned space $X$ over $B,$ $map_{B}^{B}(X, -)$ is a right

adjoint of $X\bigwedge_{B-}$ .

PROOF. Let $Y\in Conv_{B}^{B}$ . Consider the map $e:X\bigwedge_{B}map_{B}^{B}(X, Y)\rightarrow Y$ defined
by $e([x, f])=f(x)$ , where $[x, f]=\phi(x, f)$ . Then $e\circ\phi=ev$ implies that $e$ is a
morphism in $Conv_{B}^{B}$ . In fact, $e$ is a co-universal map for $Y$ with respect to the
functor $X\bigwedge_{B-}$ . Given $Z\in Conv_{B}^{B}$ and a morphism $f:X\bigwedge_{B}Z\rightarrow Y$ in $Conv_{B}^{B}$ , define
$\overline{f}:Z\rightarrow map_{B}^{B}(X, Y)$ by $\overline{f}(z)(x)=f([x, z])$ . Then, using Theorem 2.1., it is easy
to see that $\overline{f}$ is a unique morphism in $Conv_{B}^{B}$ such that $e\circ(1_{X}\bigwedge_{B}\overline{f})=f$ , since
$map_{B}^{B}(X, Y)$ is a subspace of $map_{B}(X, Y)$ .

THEOREM 3.2. For $X,$ $Y,$ $Z\in Conv_{B}^{B}$ ,

$\psi:map_{B}^{B}(X\times BY, Z)\rightarrow map_{B}^{B}(X, map_{B}^{B}(Y, Z))$

is an isomorphism in $Conv_{B}^{B}$ , where $\psi(f)(x)(y)=f([x, y])$ .

PROOF. Clearly, $\psi$ is bijective. Using Theorem 3.1. and a parallel method
in Theorem 2.2., we can show that $\psi$ is an isomorphism in $Conv_{B}^{B}$ . We note
that the smash product $\bigwedge_{B}$ is commutative and associative.

REMARK 3.3. If $B$ is a singleton space $*$ , then this theorem gives an ex-
ponential law of pointed convergence spaces. This type of exponential law
plays a central role on duality in homotopy theory (cf. [10, 11, 23]).

For $X,$ $Y\in Conv_{B}^{B}$ , we denote by $Map_{B}^{B}(X, Y)$ the convergence space of all
morphisms $X\rightarrow Y$ in $Conv_{B}^{B}$ , equipped with a subspace structure of map(X, $Y$ ).

Clearly, $Map_{B}^{B}(X, Y)$ is a subspace of $Map_{B}(X, Y)$ in $Conv_{B}$ .

PROPOSITION 3.4. For $X,$ $Y\in Conv_{B}^{B}$ ,

$\sigma:Map_{B}^{B}(X, Y)\rightarrow Map_{B}^{B}(B, map_{B}^{B}(X, Y))$

is an isomorphism in $Conv_{B}^{B}$ , where $\sigma(f)(b)=f_{b}$ : $X_{b}\rightarrow Y_{b}$ , the restriction of $f$ on $X_{b}$ .
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PROOF. Clearly, $\sigma$ is bijective. We note that $Map_{B}^{B}(B, map_{B}^{B}(X, Y))=$

$Map_{B}(B, map_{B}^{B}(X, Y))$ and our $\sigma$ is the restriction of $\sigma$ in Proposition 2.4. Since
map$(B$ , .-

$)$ preserves initial sources, the result follows immediately.

By combining Theorem 3.2. and Proposition 3.4., we have another ex-
ponential law;

THEOREM 3.5. For $X,$ $Y,$ $Z\in Conv_{B}^{B}$ ,

$\varphi:Map_{B}^{B}(X\bigwedge_{B}Y, Z)-Map_{B}^{B}(X, map_{B}^{B}(Y, Z))$

is an isomorphism in $Conv_{B}^{B}$ , where $\varphi(f)(x)(y)=f(x, y)$ .

REMARK 3.6. Using our exponential laws and modifying the proof in [7],

we can obtain in our context the exponential laws for fibred section space, and
fibred relative lifting spaces and homotopy versions of all exponential laws

mentioned above without any restriction on spaces.
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