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THE JACOBSON RADICAL OF MONOID-GRADED ALGEBRAS

By

G. KARPILOVSKY

It is always a pleasant surprise to find that certain well-known results se-
emingly of a different nature can be obtained as a consequence of a general
approach which absorbs and unifies all the existing methods. This “right”
viewpoint is often the main difficulty in any subject. It certainly applies to
the topic under consideration here, which is the study of the Jacobson radical
of monoid-graded algebras. These algebras include such classical objects as
group-graded algebras, crossed products, twisted monoid rings, skew monoid
rings, polynomial rings, skew polynomial rings, etc. The “correct” approach
which we shall adopt is to consider the graded radical of a module and its im-
portant special case, namely, the graded Jacobson radical of a graded algebra.
A detailed account of all relevant background for group-graded algebras can be
found in $Nast\delta sescu$ and Van 0ystaeyen (1982a). As examples of successful
applications of graded radicals we mention the works of Nasttisescu (1984),
$Nast\delta sescu$ and Van 0ystaeyen (1982b) and Jespers and Puczylowski (1990).

The purdose of this paper is to prove a number of general results concern-
ing the Jacobson radical of monoid-graded and group-graded algebras. One of
the main theorems provides a large class of groups $G$ for which any G-graded
algebra has the property that its Jacobson radical is a graded ideal. We also
demonstrate that most of what is known concerning the Jacobson radical of
polynomial rings and skew polynomial rings is an easy consequence of our
results.

1. Notation and terminology.

Throughout, $A$ denotes an algebra over a commutative ring $R,$ $J(A)$ the
Jacobson radical of $A$ and $J(V)$ the radical of an A-module $V$ . Given R-
submodules $X$ and $Y$ of $A$ , we write $XY$ for the R-submodule of $A$ consisting
of all finite sums

$\Sigma x_{i}y_{i}$ with $x_{i}\in X,$ $y_{i}\in Y$

Let $M$ be a multiplicative monoid, i.e. $M$ is a multiplicative semigroup with
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identity element 1. We say that $A$ is an M-graded algebra if there is a family

$\{A_{x}|x\in M\}$

of R-submodules of $A$ indexed by the elements of $M$ such that the following
conditions hold:

$A=\oplus_{x\in M}A_{x}$ (direct sum of R-modules) (1)

$A_{x}A_{y}\subseteqq A_{xy}$ for all $x,$ $y\in M$ (2)

We shall refer to (1) as an M-grading of $A$ and to $A_{x}$ as the x-component of $A$ .
An element $a\in A$ is said to be homogeneous of degree $x$ , if $a\in A_{x}$ for some
$x\in M$.

Any algebra $A$ may be considered M-graded, for any monoid $M$, by putting

$\prime 1_{1}=A$ , $A_{x}=0$ for $1\neq x\in M$

Such an algebra $A$ is said to be trivially M-graded.
Again assume that $M$ is a monoid and $A$ an M-graded algebra. Owing to

(1), each element $a$ in $A$ can be written uniquely in the form

$a=\sum_{x\in M}a_{x}$
$(a_{x}\in A_{x})$

with finitely many $a_{x}\neq 0$ . The support of $a$ , written Supp $a$ , is defined by

Supp $a=\{x\in M|a_{x}\neq 0\}$

Thus Supp $a$ is a finite set which is empty if and only if $a=0$ . The number
of elements in Supp $a$ is called the length of $a$ . In case $M$ is a group, the
supporting subgroup of $a$ is defined to be the subgroup generated by Supp $a$ (by

convention, the subgroup generated by an empty set is the identity subgroup).

When (2) is replaced by the stronger condition

$A_{x}A_{y}=A_{xy}$ for all $x,$ $y\in M$

we say that $A$ is a strongly $M$-graaed algebra. Of course, if $R=Z$ , then we
say that $A$ is an M-graded ring (respectively, strongly M-gf adea ring) instead
of $A$ being an M-graded algebra (respectively, strongly M-graded algebra).

Let $A$ be an M-graded algebra. An A-module $V$ is said to be M-gradea
(or simply gradecl) if there exists a family

$\{V_{x}|x\in M\}$

of R-submodules of $V$ indexed by $M$ such that the following two conditions
hold:

$V=\oplus_{x\in M}V_{x}$ (direct sum of R-modules)
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$A_{x}V_{y}\subseteqq V_{xy}$ for all $x,$ $y\in M$

The above definition certainly implies that the regular module $AA$ is graded
(with $V_{x}=A_{x}$ for all $x\in M$ ). A submodule $W$ of a graded module $V$ is said to

be a graded submodule if
$W=\oplus_{x\in M}(W\cap V_{X})$

A graded left A-submodule of $A$ is called a graaea left ideal of $A$ . The notions
of a graded-simple and a graded-semisimple module are defined in an obvious
manner. A graded submodule $W$ of a graded A-module $V$ is said to be graded-
maximal if $W\neq V$ and $W$ is not strictly contained in any proper graded sub-
module of $V$ .

Let $V$ be a graded A-module. Then the graded radical $J^{g}(V)$ on $V$ is
defined to be the intersection of all graded-maximal submodules of $V$ . By con-
vention, $J^{g}(V)=V$ if $V$ has no graded-maximal submodules. The reader may
easily verifythat if $V\neq 0$ is finitely generated, then $J^{g}(V)\neq V$ .

The graded Jacobson radical $J^{g}(A)$ of $A$ is defined by

$J^{g}(A)=J^{g}(AA)$

where $AA$ is the regular left A-module. It is immediate that $J^{g}(A)$ is a graded

ideal of $A$ which contains all graded nil left ideals of $A$ .

2. Monoid crossed products.

The most important example of a monoid-graded algebra is a monoid crossed
product. It includes such well known constructions as ordinary crossed pro-
ducts, skew monoid rings, polynomial rings, skew polynomial rings, etc. The
notion of a monoid crossed product is due to Bovdi (1963) and seems not to be
well known to many people. In this short section we shall include all the
relevant background required for our purposes.

Let $A$ be an algebra over a commutative ring $R$ , let $M$ be a monoid and
let $Aut_{R}(A)$ be the group of all R-algebra automorphisms of $A$ . Denote by

$U(A)$ the unit group of $A$ . Given maps

$\sigma:M\rightarrow Aut_{R}(A)$

and
$\alpha:M\times M-U(A)$

we say that $(M, A, \sigma, \alpha)$ is a crossed system for $M$ over $A$ if, for all $x,$ $y,$ $z\in M$

and $a\in A$ , the following properties hold:

$x(^{\nu}a)=\alpha(x, y)^{xy}a\alpha(x, y)^{-1}$
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$\alpha(x, y)\alpha(xy, z)=^{x}\alpha(y, z)\alpha(x, yz)$

$a(x, 1)=\alpha(1, x)=1$

where by definition

$xa=\sigma(x)(a)$ for all $a\in A,$ $x\in M$

Let $(M, A, \sigma, \alpha)$ be a crossed system for $M$ over $A$ and let $A*M$ be the free
left A-module freely generated by the elements $\overline{x},$ $x\in M$, with multiplication
defined distributively by using

$(a_{1}\overline{x})(a_{2}\overline{y})=a_{1}^{x}a_{2}\alpha(x, y)\overline{xy}$

for all $a_{1},$ $a_{2}\in A$ and $x,$ $y\in M$. Then $A*M$ becomes an R-algebra and is called
a crossed product of $M$ over $A$ . It is clear that $A*M$ is a strongly M-graded
R-algebra with identity element $1\cdot\overline{1},$ $(A*M)_{1}=A\cdot\overline{1}$ and with

$(A*M)_{x}=A\overline{x}=\overline{x}A$

It is clear that $A$ may be embedded in $A*M$ via $a-a\cdot\overline{1}$ and we identify $A$

with its image $A\cdot I$ in $A*M$, From now on, we write 1 instead of 1 $\cdot\overline{1}$ . With
this convention, I is the identity element of both $A$ and $A*M$.

If $\alpha(x, y)=1$ for all $x,$ $y\in M$, and $\sigma$ is a homomorphism then $A*M$ is called
a skew monoid ring of $M$ over $A$ and is denoted by $A^{\sigma}M$. On the other hand,
if $\sigma(x)=1$ for all $x\in M$ and $\alpha(x, y)\in U(Z(A))$ for all $x,$ $y\in M$, then $A*M$ is
called the twisted monoid ring of $M$ over $A$ and is denoted by $A^{\alpha}M$. It is clear
that $A^{\alpha}M$ is a strongly M-graded $Z(A)$-algebra.

Let $M$ be a free commutative monoid freely generated by the indeterminates
$\{x_{i}|i\in l\}$ and, for each $i\in I$ , let $\sigma_{i}$ be an R-automorphism of $A$ . Then there is
a unique homomorphism $\sigma:M\rightarrow Aut_{R}(A)$ for which $\sigma(x_{i})=\sigma_{i},$ $i\in I$ . The cor-
responding skew monoid ring $A^{\sigma}M$ is called the skew polynomial ring in the
commuting indeterminates $x_{i}$ with coefficients in $A$ . Of course, if each $\sigma_{i}=1$ ,
then $A^{\sigma}M$ is the ordinary polynomial ring in the commuting indeterminates $x_{i}$

with coefficients in $A$ .

3. Some auxiliary results.

In this section, we shall record some useful observations required for sub-
sequent investigations. Throughout, $M$ denotes a multiplicative monoid. All
rings are associative with $1\neq 0$ and subrings of a ring $R$ are assumed to have
the same identity element as $R$ .

LEMMA 3.1. Let $A$ be an M-graded algebra where $M$ is a right (or left)
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cancellative monoid. Then $A_{1}$ is a subalgebra of $A$ .

PROOF. It obviously suffices to verify that $A_{1}$ contains the identity element
of $A$ . Assume that $M$ is a right cancellative monoid. There is an expansion
$1=\sum_{x\in M}a_{x}$ with $a_{x}\in A_{x}$ for all $x\in M$ and all but a finite number of $a_{x}$ are
zero. Fix some $z\in M$ and $a_{z}^{\prime}\in A_{z}$ . Then the product $a_{x}a_{z}^{\prime}$ lies in $A_{xz}$ for all
$x\in M$. Since $M$ is a right cancellative monoid, we also have $\Sigma_{x\in M}A_{xz}=$

$\oplus_{x\in M}A_{xz}$ . Thus

$a_{z}^{\prime}=1\cdot a_{z}^{\prime}=\sum_{x\in M}a_{x}a_{z}^{\prime}\in(\oplus_{x\in M}A_{xz})\cap A_{z}$

Hence all the $a_{x}a_{z}^{\prime}$ for $x\neq 1$ must be zero and $a_{\iota}a_{z}^{\prime}$ must be $a_{l}^{\prime}$ . It follows that
$a_{1}$ acts as a left identity on $A_{z}$ for all $z\in M$. This forces $a_{1}$ to be a left
identity for the algebra $A$ . Consequently, $a_{1}\in A_{1}$ is the identity element of $A$ ,

as required. A similar argument proves the case where $M$ is a left cancellative
monoid. $\blacksquare$

Given monoids $M$ and $M^{\prime}$ , by a monoid homomorphism, we understand any
map $f:M\rightarrow M^{\prime}$ such that $f(1)=1$ and $f(xy)=f(x)f(y)$ for all $x,$ $y\in M$. Any
multiplicatively closed subset of $M$ which contains the identity element of $M$ is
called a submonoid of $M$.

LEMMA 3.2. Let $M$ be a monoid and let $A$ be an M-graded algebra.
(i) If $f:M\rightarrow M^{\prime}$ is a $sur$] $ective$ monoid homomorphism, then $A$ can be viewed

as an M’-graded algebra via

$A_{x}=\sum_{f(y)=x}A_{y}$ for all $x\in M^{\prime}$

(ii) If $S$ is a submonoid of $M$ and $A_{1}$ is a subalgebra of $A$ , then the sub-
algebra $A^{(S)}$ of A defined by $A^{(S)}=\oplus_{x\in S}A_{x}$ is an S-graded algebra.

PROOF. (i) It is clear that $A=\oplus_{x\in M^{\prime}}A_{x}$ . Since, for any $x,$
$z\in M^{\prime}$ ,

$A_{x}A_{z}=(\sum_{f(y)=x}A_{y})(\sum_{f(t)=z}A_{t})$

$\subseteqq\sum_{f(y)=x}\sum_{f(t)=z}A_{y}A_{t}\subseteqq\sum_{f(y)=x}\sum_{f(t)=z}A_{yl}$

$\subseteqq\sum_{f(u)\Rightarrow xz}A_{u}=A_{xz}$ ,

the required assertion follows.
(ii) It clearly suffices to verify that $A^{(S)}$ contains the identity element of

$A_{1}$ . Since $A^{(S)}\supseteqq A_{1}$ , the result foollows. $\blacksquare$
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LEMMA 3.3. Let $H$ be a submonoid of a monoid $M$ such that for any $h\in H$

and $g\in M-H,$ $hg\not\in H$ (or for any $h\in H,$ $g\in M-H,$ $gh\not\in H$ ). If $A$ is an M-
graded algebra such that $A_{1}$ is a subalgebra of $A$ , then

(i) $U(A)\cap A^{(H)}=U(A^{(H)}$ .
(ii) $A^{(H)}\cap J(A)\subseteqq J(A^{(H)})$ .

PROOF. Our assumptions guarantee that $A^{(H)}$ is a subalgebra of $A$ such
that

$A=A^{(H)}\oplus(\oplus_{g\not\in H}A_{g})$

(direct sum of left or right $A^{(H)}$ -modules). This clearly implies (i). Since (ii)

is a consequence of (i), the result follows. $\blacksquare$

COROLLARY 3.4. Let $\{H_{i}|i\in l\}$ be the family of all finitely generated sub-
groups of a group $G$ and let $A$ be a G-graded algebra. Then

$J(A)\subseteqq\bigcup_{i\in I}J(A^{(H_{i})})$

$Jn$ particular,
(i) If each $J(A^{(H_{i})})=0$ , then $J(A)=0$ .
(ii) If each $J(A^{(H_{i})})$ is nil, then $J(A)$ is nil.

PROOF. If $a\in A$ and $H$ is the supporting subgroup of $a$ , then $a\in A^{(H)}$ and
SO

$A=\bigcup_{i\in I}A^{(H_{i})}$

Hence any given $a\in J(A)$ lies in some $A^{(H_{i})}$ and so, by Lemma 3.3
$a\in J(A)\cap A^{(H_{i})}\subseteqq J(A^{(H_{i})})$ ,

as desired. $\blacksquare$

LEMMA 3.5. Let $A$ be a G-graded algebra, where $G$ is an arbitrary group,
let $H$ be a subgroup of $G$ and let $\{H_{i}|i\in I\}$ be a family of subgroups of $G$ con-
taining $H$ and such that each finite subset of $G$ is contained in some $H_{i}$ . Then

$A^{(H)}\cap J(A)=\bigcap_{i\in I}(A^{(H)}\cap J(A^{(H_{i})}))$

PROOF. It is clear that every finitely generated subgroup of $G$ is contained
in some $H_{i}$ . Hence $A=\bigcup_{i\in I}A^{(H_{i})}$ which obviously implies that if $a\in J(A^{(H_{i})})$

$\cap A^{(H)}$ for all $i\in l$ , then $a\in J(A)\cap A^{(H)}$ . Conversely, if $a\in J(A)\cap A^{(H)}$ , then

$a\in J(A)\cap A^{(H_{i})}\subseteqq J(A^{(H_{i})})$ for all $i\in l$

by virtue of Lemma 3.3. Hence $a\in J(A^{(H_{i})})\cap A^{(H)}$ for all $i\in l$ , as we wished
to show. $\blacksquare$
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LEMMA 3.6. Let $G$ be a group and let $A$ be a G-graded algebra. Assume
that for any finitely generated subgroup $H$ of $G,$ $J(A^{(H)})$ is a graded ideal of
$A^{(H)}$ . Then $J(A)$ is a graded ideal of $A$ .

PROOF. Given $a\in J(A)$ , we may write $a=\Sigma_{h\in H}a_{h}$ where each $a_{h}\in A_{h}$ and
$H$ is the supporting subgroup of $a$ . Let $\{H_{i}|i\in l\}$ be the family of all finitely
generated subgroups of $G$ containing $H$. Then, by Lemma 3.5,

$a\in J(A^{(H_{i})})$ for all $i\in l$

Hence, by hypothesis, each $a_{h}\in J(A^{(H_{i)}})$ for all $i\in l$ . But then, by Lemma 3.5
each $a_{h}\in J(A)$ , as required. $\blacksquare$

LEMMA 3.7. Let $H$ be a submonoid of a monoid $M$ and let $A$ be an H-graded
algebra. Then $A$ can be regarded as an M-graded algebra via $\tilde{A}_{g}=A_{g}$ if $g\in H$

and $\tilde{A}_{g}=0$ if $g\not\in H$. Furthermore, any left ideal 1 of $A$ is H-graded if and
only if 1 is M-graded.

PROOF. It is clear that $A=\oplus_{g\in M}\tilde{A}_{g}$ . Furthermore, given $x,$ $y\in M$, if $x\not\in H$

or $y\not\in H$, then

$\tilde{A}_{x}\tilde{A}_{y}=0\subseteqq\tilde{A}_{xy}$

On the other hand, if $x,$ $y\in H$, then

$\tilde{A}_{x}\tilde{A}_{y}=A_{x}A_{y}\subseteqq A_{xy}=\tilde{A}_{xy}$

proving that $A$ is an M-grded algebra. The remaining assertion being a con-
sequence of the definition of $\tilde{A}_{g}$ , the result follows. $\blacksquare$

LEMMA 3.8. Let $M$ be a monoid and let $A$ be an M-graded algebra. Then
(i) $J^{g}(A)$ is the largest proper graded ideal 1 of $A$ such that $1+ab$ is a

unit of $A$ for all $a\in l\cap A_{1},$ $b\in A_{1}$ .
(ii) $J^{g}(A)$ is the largest proper graded ideal 1 of $A$ such that $l\cap A_{1}\subseteqq J(A_{1})$ .
(iii) If $J(A)$ is graded, then $J(A)\subseteqq J^{g}(A)$ .

PROOF. (i) If $a\in J^{g}(A)\cap A_{1}$ and $b\in A_{1}$ , then $u=1+ab\in A_{1}$ and $u+J^{9}(A)$

$=1+J^{g}(A)$ . The latter easily implies that $u$ is a unit of $A$ . Conversely, let 1
be any proper graded ideal of $A$ such that $1+ab$ is a unit of $A$ for all $a\in I\cap A_{1}$

$b\in A_{1}$ . If $I\not\leqq J^{g}(A)$ , then $A=I+L$ for some graded-maximal left ideal $L$ of $A$ .
Hence $l=a+b$ for some $a\in I\cap A_{1},$ $b\in L\cap A_{1}$ . Therefore $b=1+(-a)$ is a unit
of $A$ , a contradiction.

(ii) If $a\in]^{g}(A)\cap A_{1}$ , then by (i), $1+ab\in U(A)$ for all $b\in A_{1}$ . Hence $1+ab$
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$\in U(A_{1})$ for all $b\in A_{1}$ . Therefore $a\in J(A_{1})$ and so $J^{g}(A)\cap A_{1}\subseteqq J(A_{1})$ . Con-
versely, let $I$ be a proper graded ideal of $A$ with $l\cap A_{1}\subseteqq J(A_{1})$ . Then $1+ab$ is
a unit of $A$ for all $a\in l\cap A_{1},$ $b\in A_{1}$ . Hence, by (i), $I\subseteqq J^{g}(A)$ as required.

(iii) By Lemma 3.3 (ii), $A_{1}\cap J(A)\subseteqq J(A_{1})$ . Hence, by (ii), $J(A)\subseteqq J^{e}(A)$ and
the result follows. $\blacksquare$

LEMMA 3.9. Let $M$ be a free monoid (or a free commutative monoid) freely

generated by a set $S$ , let $H$ be the submonoid generated by a subset $T$ of $S$ and
let $a\in R*H$.

(i) $U(R*M)\cap R*H=U(R*H)$ .
(ii) $R*H\cap J(R*M)\subseteqq J(R*H)$ .
(iii) If $T$ is finite and $\{S_{i}|i\in l\}$ is the set of all finite subsets of $S$ containing

$T$, then $a\in J(R*M)$ if and only if $a\in J(R*M_{i})$ for all $i\in l$ , where $M_{i}$ is the
submonoid of $M$ generated by $S_{i}$ .

PROOF. (i) and (ii). Our choice of $H$ and $M$ guarantees that for any
$h\in H$ and $g\in M-H,$ $hg\not\in H$. Hence the required assertions follow by virtue of
Lemma 3.3.

(iii) It is clear that $R*M=\bigcup_{i\in I}R*M_{i}$ . Hence, if $a\in J(R*M_{i})$ for all $i\in l$ ,

then $a\in J(R*M)$ . Conversely, if $a\in J(R*M)$ then

$a\in J(R*M)\cap R*M_{i}\subseteqq J(R*M_{i})$ for all $i\in l$

by virtue of (ii). $\blacksquare$

LEMMA 3.10. Let $M$ be a free monoid (or a free commutative monoid) freely
generated by a set $X$ with $|X|\geqq 2$ . Let $X_{1},$ $X_{2}$ be nonempty subsets of $X$ with
$X=X_{1}\cup X_{2}$ (disjoint union) and let $M_{i}$ be generated by $X_{i},$ $i=1,2$ . Denote by
$RM$ the monoid ring of $M$ over an arbitrary ring $R$ and put $S=RM_{1}$ . Then
there exists a surjective homomorphism $f:RM\rightarrow SM_{2}$ such that the restriction of
$f$ to $S$ is an isomorphism from $S$ onto $S$ .

PROOF. The map $\varphi(x)=x$ for all $x\in X$ determines a map $\lambda:M\rightarrow SM_{g}$ such
that $\lambda(1)=1$ and $\lambda(g_{1}g_{2})=\lambda(g_{1})\lambda(g_{2})$ for all $g_{1},$ $g_{2}\in M$. It follows that the map
$f:RM\rightarrow SM_{2}$ given by $f(\Sigma_{g\in M}r_{g}g)=\Sigma_{g\in M}r_{g}\lambda(g),$ $r_{g}\in R$ , is a surjective ring
homomorphism such that

$f(\sum_{i\in\kappa_{1}}r_{g}g)=\sum_{e\in\kappa_{1}}r_{g}g$

as required. $\blacksquare$
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4. Assumed results.

Our aim here is to quote a number of results of a miscellaneous nature
which will be required for the rest of the paper.

Let $G$ be a group and let $A$ be a strongly G-graded algebra. An ideal $X$

of $A_{1}$ is said to be G-invariant if

$A_{g}XA_{g-1}=X$ for all $g\in G$

The following important result provides a complete description of graded ideals
of strongly graded algebras.

THEOREM 4.1. (Dade (1970)). Let $G$ be a group and let $A$ be a strongly G-
graded algebra.

(i) If 1 is a graded ideal of $A$ and $X=l\cap A_{1}$ , then $X$ is a G-invariant
ideal of $A_{1}$ such that

$I=AX=XA$ and $I\cap A,=A,X=XA$ , for all $g\in G$

(ii) For any G-invariant ideal $X$ of $A_{1},$ $l=XA=AX$ is a graded ideal of
$A$ such that

$l\cap A_{g}=A_{\iota}X=XA_{g}$ for all $g\in G$

(iii) $J(A_{1})$ is a G-invariant ideal of $A_{1}$ and hence $A\cdot J(A_{1})=J(A_{1})\cdot A$ is a
graded ideal of $A$ .

PROOF. See Dade (1970). $\blacksquare$

Next we quote a number of useful properties of a graded radical of a
module.

THEOREM 4.2. (Nastisescu 1984)). Let $G$ be a finite group of order $n$ , let
$A$ be a G-graded algebra and let $V$ be a graded A-module. Then

(i) $J^{g}(V)=\oplus_{g\in G}(J(V)\cap V_{g})$ .
(ii) $nJ(V)\subseteqq J^{g}(V)$ and, in particular, if $n$ is a unit of $A$ , then $J^{g}(V)=J(V)$ .
(iii) If $v=\Sigma_{g\in G}v_{g}\in J(V),$ $v_{g}\in V_{g}$ , then $nv_{g}\in J(V)$ for all $g\in G$ .
(iv) $J(A)^{n}V\subseteqq J^{g}(V)$ .

PROOF. See Ntistasescu (1984). $\blacksquare$

LEMMA 4.3. Let $G$ be a finite group and let $A$ be a strongly G-graded
algebra. Then $J(A_{1})=J(A)\cap A_{1}=J^{l}(A)\cap A_{1}$ .
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PROOF. The second equality follows from Theorem 4.2 (i). By Lemma 3.3,
$J(A)\cap A_{1}\subseteqq J(A_{1})$ . To prove the opposite containment, it suffices to show that
any simple A-module $V$ is semisimple as an $A_{1}$ -module. For the proof of this
fact we refer to Karpilovsky (1987, p. 188). $\blacksquare$

COROLLARY 4.4. Let $G$ be a finite group of order $n$ and let $A$ be a strongly
G-graded algebra. If $n$ is a unit of $A$ , then

$J(A)=A\cdot J(A_{1})$

PROOF. Apply Theorem 4.2 (ii), Theorem 4.1 (i) and Lemma 4.3. $\blacksquare$

Let $C$ be a class of groups. A group $G$ is said to be a residually C-group
if $G$ is a subdirect product of groups belonging to $C$ . Thus $G$ is a residually

C-group if and only if given $1\neq g\in G$ , there exists a normal subgroup $N_{g}$ of
$G$ such that $g\not\in N_{g}$ and $G/N_{g}\in C$ . A group $G$ is called a locally C-group if
each finitely generated subgroup of $G$ is a member of $C$ .

THEOREM 4.5. (Iwasawa (1943)). If $p$ is any prime and $G$ any free group,
then $G$ is a residually p-group.

PROOF. See Iwasawa (1943). $\blacksquare$

THOREEM 4.6. (Gruenberg (1957)). Any finitely generated torsion-free
nilpotent group $G$ is a residually finite p-group for every prime $p$ .

PROOF. See Gruenberg (1957). $\blacksquare$

Given a group $G$ , we write $G^{(n)}$ for the n-th derived subgroup of $G$ . A
group $G$ is said to be free solvable if $G$ is of the form $F/F^{(n)}$ for some free
group $F$ and some $n\geqq 1$ .

THEOREM 4.7. Any free solvable group is a residually finite p-group for
every prime $p$ .

PROOF. See Robinson (1972). $\blacksquare$

A monoid $M$ is said to be a u.p.-monoid (unique product monoid) if, given
any two nonempty finite subsets $A$ and $B$ of $M$, there exists at least one ele-
ment $x\in M$ that has a unique representation in the form $x=ab$ with $a\in A$ and
$b\in B$ .

A monoid $M$ is said to be a t.u. $p$ .-monoid (two unique product monoid) if,
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given any two nonempty finite subsets $A$ and $B$ of $M$ with $|A|+|B|>2$ , there
exist at least two distinct elements $x$ and $y$ of $M$ that have unique representa-

tions in the form $x=ab,$ $y=cd$ with $a,$ $c\in A$ and $b,$ $d\in B$ .
A monoid $M$ is said to be a right-ordered monoid if the elements of $M$ can

be linearly ordered with respect to the relation $<$ and if, for all $x,$ $y,$ $z\in M$,

$x<y$ implies $xz<yz$ .

THEOREM 4.8. (i) Any right-ordered monoid is a $t.u$ . p.-monoid.
(ii) A group $G$ is a $t.u$ . p-group if and only if $G$ is a $u$ . p.-group.
(iii) Every submonoid of a $u$ . p.-group is a $t$ . $u$ . p.-monoid.

PROOF. (i) The proof is straightforward and therefore will be omitted.
(ii) This was proved by Strojnowski (1980).

(iii) This is a direct consequence of (ii). $\blacksquare$

THEOREM 4.9. (Jespers, Krempa and Puczylowski (1982)). Let $M$ be a $t.u.p.-$

monoid, let $A$ be an M-graded algebra and let $l\subseteqq J(A)$ be a nonzero ideal of $A$ .
If $a=a_{1}+\cdots+a_{n},$ $a_{1}\in A_{1},$ $a_{i}\in Ag_{i},$ $g_{i}\neq 1$ , is an element of 1 of minimal positive
length, then

(i) There exists $m\geqq 1$ such that $x_{1}\cdots x_{m}=0$ for all $x_{i}\in\{a_{2}, \cdots, a_{n}\}$ .
(ii) $a_{1}\in J(A_{1})$ and $aa_{1}=a_{1}a$ .

PROOF. See Jespers, Krempa and Puczylowski (1982). $\blacksquare$

THEOREM 4.10. Let $G$ be an arbitrary group and let $A$ be a strongly G-
graded algebra. Suppose that $A_{1}$ is semiprime and that the additive group of $A$

has no n-torsion where $n$ is the order of any finite subgroup of G. Then $A$

is semiprime.

PROOF. This is a special case of a result of Passman (1984). A detailed
proof can also be found in Karpilovsky (1987, p. 309). $\blacksquare$

5. Graded radicals.

In this section, we shall provide a number of results concerning the Ja-
cobson radical of graded algebras. We shall also exhibit numerous interre-
lationships among $J(A),$ $J^{g}(A)$ and $J(A_{1})$ , where $A$ is a G-graded algebra, thereby
obtaining deeper understanding of each of them.

Let $\pi$ be an arbitrary set of prime numbers. A natural number $n$ is called
a $\pi$ -number if each prime divisor of $n$ belongs to $\pi$ . A finite group $G$ is said
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to be a $\pi$-group if $|G|$ is a $\pi$-number.
Let $G$ be a group, let $A$ be a G-graded algebra and let $V$ be a graded A-

module. Assume that $f:G\rightarrow H$ is a surjective homomorphism of groups. Then
both $A$ and $V$ can be regarded as H-graded via

$\hat{A}_{x}=\oplus_{f(g)\approx x}A_{\iota}$ $(g\in G, x\in H)$

$\tilde{V}_{y}=\oplus_{f(g)=y}V_{g}$ $(g\in G, y\in H)$

Of course, a submodule of $V$ can be H-graded without being G-graded.

THEOREM 5.1. Let $\{G_{i}|i\in l\}$ be a collection of arbitrary groups, let $G$ be
a subdirect product of the $G_{i}$ and $lel$ $A$ be a G-graded algebra. Denote by $V$

any graded A-module.
(i) If for each $i\in I,$ $J(V)$ is a $G_{i}$-graded submodule of $V$ (via the projec-

tion $f_{i}$ : $G\rightarrow G_{i}$ ), then $J(V)$ is a graded submodule of $V$ .
(ii) If each $G_{i}$ is finite, then for any $v=\sum_{g\in G}v_{g}\in J(V),$ $v_{g}\in V_{g}$ , there exists

a positive integer $n_{v}$ such that $n_{v}v_{g}\in J(V)$ for all $g\in G$ . Furthermore, $n_{v}$ divides
$|H_{1}||H_{2}|\cdots|H_{k}|$ for some $k=k(v)$ and some $H_{t}\in\{G_{i}\},$ $1\leqq t\leqq k$ .

(iii) If there exist two disjoint sets $\pi_{1}$ and $\pi_{2}$ of prime numbers such that $G$

is a residually $\pi$ -group, $i=1,2$ , then $J(V)$ is a graded submodule of $V$ .

PROOF. (i) and (ii). Given $v=\Sigma_{g\in G}v_{g}\in J(V),$ $v_{g}\in V_{g}$ , write Supp v $=$

$\{g\in G|v_{g}\neq 0\}$ and $1(v)=|$ Supp $v|$ . We argue by induction on l(v). If $l(v)\leqq 1$ ,

then $v=v_{g}$ for some $g\in G$ and there is nothing to prove. Assume that $1(v)=$

$n\geqq 2$ and that the result is true for all $b\in J(V)$ with $l(b)<n$ .
Since $l(v)\geqq 2$ , we may choose two distinct elements $x,$ $y\in Suppv$ . By hy-

pothesis, $f_{\lambda}(x)\neq f_{\lambda}(y)$ for some $\lambda\in 1$ . Define $m=1$ if the hypothesis of (i)

holds and $m=|G_{\lambda}|$ if the hypothesis of (ii) holds. Then, by Theorem 4.2 (iii),

we may write $v=b+c$ with $b,$ $c\in V$ such that $mb,$ $mc\in J(V),$ $l(b)<n$ and $1(c)<n$ .
Since $v=b+c$ , we have

$v_{g}=b_{g}+c_{g}$ for all $g\in G$ (1)

If the hypothesis of (i) holds, then by induction hypothesis, $b_{g},$ $c_{g}\in J(V)$ and
hence each $v_{g}\in J(V)$ , proving that $J(V)$ is a graded $su$bmodule. If the hypothesis
of (ii) holds, then by induction hypothesis, applied to $mb$ and $mc$ , there exist
positive integers 1 and $s$ such that

$lmb_{g}\in J(V)$ and $smc_{g}\in J(V)$ for all $g\in G$ (2)

where $n_{v}=lsm$ divides $|H_{1}||H_{2}|\cdots|H_{r}|$ for some $r\geqq 1$ and some $H_{j}\in\{G_{i}\}$ ,
$1\leqq j\leqq r$ . It follows from (2) and (3) that
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$n_{v}v_{g}=n_{v}b_{g}+n_{v}c_{g}\in J(V)$ for all $g\in G$

proving (i) and (ii).

(iii) Let $v=\Sigma_{g\in G}v_{g}\in J(V)$ where all $v_{g}\in V_{g}$ . Owing to (ii), there exists
$\pi_{i}$-number $n_{i}$ such that $n_{i}v_{g}\in J(V)$ for all $g\in G,$ $i=1,2$ . Since the sets $\pi_{1}$ and
$\pi_{f}$ are disjoint, $(n_{1}, n_{2})=1$ . Thus each $v_{g}\in J(V)$ and the result follows. $\blacksquare$

COROLLARY 5.2. Let $G$ be a group such that there exist two disjoint sets $\pi_{1}$

and $\pi_{2}$ of prime numbers for which $G$ is a residually $\pi_{i}$ -group, $i=1,2$ . Then,

for any G-graded algebra $A,$ $J(A)$ is a graded ideal of $A$ .

PROOF. This is a special case of Theorem 5.1 (iii) in which $V=AA$ . $\blacksquare$

COROLLARY 5.3. (Jespers and Puczylowski (1990)). Assume that $G$ is a re-
sidually finite p-group for two distinct primes $p$ . Then, for any G-graded algebra
$A,$ $J(A))$ is a graded ideal of $A$ .

PROOF. This is a special case of Corollary 5.2. $\blacksquare$

The next corollary for the case where $G$ is infiite cyclic is due to $N\check{a}st\check{a}sescu$

and Van 0ystayen (1982b).

COROLLARY 5.4. Assume that a group $G$ is of one of the following types:
(a) $G$ is a free group.
(b) $G$ is a finitely generated torsion-free nilpotent group.
(c) $G$ is a free solvable group.

Then for any G-graded algebra $A$ and for any A-module $V,$ $J(V)$ is a graded
submodule of $V$ .

PROOF. By Theorem 5.1 (iii), it suffices to show that $G$ is a residually

finite $p$-group for two distinct primes $p$ . Since the latter is a consequence of
Theorems 4.5, 4.6 and 4.7, the result follows. $\blacksquare$

As a main application of Theorem 5.1 we now record the following general

result.

THEOREM 5.5. Let $A$ be a G-graded algebra, where $G$ is a group of one of
the following types:

(a) $G$ is abelian and the orders of finite subgroups of $G$ are units in $A$ .
(b) $G$ is locally finite and the orders of finite subgroups of $G$ are units in $A$ .
(c) $G$ is locally free, or residually-free, or free solvable, or torsion-free

nilpotent.
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(d) $G$ is a subdirect product of the groups $G_{t},$ $i\in l$ , where each $G_{i}$ is of one
of the types (a), (b) or (c).

Then the following properties hold:
(i) $J(A)$ is a graded ideal.
(ii) $J(A)\subseteqq J^{g}(A)$ .
(iii) $J(A)=(J(A)\cap A_{1})A=A(J(A)\cap A_{1})$ , provided $A$ is strongly G-graded.

PROOF. (i) If $G$ is of type (c), then (i) holds by virtue of Theorem 5.1
(i), Lemma 3.6 and Corollary 5.4. The case (d) follows from (a), (b) and (c)

by applying Theorem 5.1 (i). To treat the cases (a) and (b), we may assume
that $G$ is finitely generated (Lemma 3.6). The case (b) now follows by applying
Theorem 4.2 (ii). Finally, the case (a) follows from Theorems 5.1 (i) and 4.2
(ii) and case (c).

(ii) This follows from (i) and Lemma 3.8 (iii).

(iii) Apply (i) and Theorem 4.1 (i). $\blacksquare$

COROLLARY 5.6. Let $N$ be a normal subgroup of a group $G$ and let $A$ be a
strongly G-graded algebra. Assume that the factor group $G/N$ is of one of the
types (a), (b), (c) or (d) in Theorem 5.5. Then

$J(A)=(J(A)\cap A^{(N)})A\subseteqq J(A^{(N)})A$

PROOF. Owing to Lemma 3.2 (i), we may view $A$ as a strongly G/N-

graded algebra with $A^{(N)}$ as the identity component. The desired conclusion is
therefore a consequence of Theorem 5.5 and Lemma 3.3 (ii). $\blacksquare$

Our next application of Theorem 5.5 deals with the Jacobson radical of
monoid-graded algebras.

COROLLARY 5.7. Let $M$ be a submonoid of a group $G$ , where $G$ is of one of
the types (a), (b), (c) or (d) in Theorem 5.5 ($e.g$ . $M$ is a free monoid or $M$ is a
free commutative monoid). If $A$ is any M-graded algebra, then

(i) $J(A)$ is a graded ideal of $A$ .
(ii) $J(A)\subseteqq J^{g}(A)$ .

PROOF. (i) Owing to Lemma 3.7, we may harmlessly assume that $M=G$ .
Now apply Theorem 5.5.

(ii) This follows from (i) and Lemma 3.8 (iii). $\blacksquare$

THEOREM 5.8. Let $G$ be a group, let $A$ be a strongly G-graded algebra and
let $G$ have a flnite chain of subgroups:
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$1=G_{0}\subseteqq G_{1}\subseteqq G_{2}\subseteqq\cdots\subseteqq G_{n}=G$ (3)

such that $G_{i-1}\triangleleft G_{i}$ and each $G_{i}/G_{i-1}$ is of one of the types (a), (b), (c) or (d) in
Theorem 5.5. Then

$J(A)\subseteqq J(A_{1})A$

PROOF. We argue by induction on $i=0,1,$ $\cdots,$ $n$ that

$J(A^{(G_{i})})\subseteqq J(A_{1})A^{(G_{i})}$

Since $G_{n}=G$ , this will obviously complete the proof. Because $G_{0}=1$ , the case
$i=0$ is clear. Suppose now that $i\leqq n$ and that

$J(A^{(G_{i-1})})\subseteqq J(A_{1})A^{(G_{t-1})}$ (4)

Since $G_{i}/G_{i-1}$ is of one of the types (a), (b), (c) or (d) in Theorem 5.5, it follows
from Corollary 5.6 (applied to $N=G_{i-1}$ and $G=G_{i}$ ) that

$J(A^{(G_{i})})\subseteqq J(A^{(G_{i-1})})A^{(G_{i})}$ (5)

Hence, by (4) and (5),

$J(A^{(G_{i})})\subseteqq J(A_{1})A^{(G_{i-1})}A^{(G_{i})}$

$=J(A_{1})A^{(G_{i})}$

and the result follows. $\blacksquare$

COROLLARY 5.9. Let $N$ be a normal subgroup of a group $G$ such that $G/\dot{N}$

is solvable and let $A$ be a strongly G-graded algebra over a field $F$ of character-
istic $0$ . Then $J(A)\subseteqq J(A^{(N)})A$ and, in particular, $J(A^{(N)})=0$ implies $J(A)=0$ .

PROOF. We may view $A$ as a strongly $G/N$-graded algebra with $A^{(N)}$ as
the identity component. Since $G/N$ is solvable, it has a series (3) in which
each $G_{i}/G_{i-1}$ is abelian. Furthermore, since char $F=0$ , the orders of finite
subgroups of $G_{i}/G_{i-1}$ are units in $A$ . This shows that each $G_{i}/G_{i-1}$ is of type
(a) in Theorem 5.5. Hence, by Theorem 5.8, $J(A)\subseteqq J(A^{(N)})A$ and the result
follows. $\blacksquare$

The special case of the above result in which $N=1$ (hence $G$ is solvable)

and $A=FG$ is the group algebra of $G$ over $F$ (hence $A^{(N)}=A_{1}=F$) is due to
Villamayor (1959).

Our next result is also a generalization of a theorem established by Vil-
lamayor (1958) in the context of group algebras.

THEOREM 5.10. Let $N$ be a normal subgroup of a group $G$ such that $G/N$
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is locally finite and let $A$ be a G-graded algebra. Then
(i) $J(A^{(N)})=J(A)\cap A^{(N)}$ .
(ii) $J(A)=J(A^{(N)})A=AJ(A^{(N)})$ , provided $A$ is strongly G-graded and the

orders of finite subgroups of $G/N$ are units in $A$ .
(iii) If $(G:N)=n<\infty$ and $A$ is strongly G-graded, then

$J(A)^{n}\subseteqq J(A^{(N)})A\subseteqq J(A)$

PROOF. We may view $A$ as a $G/N$-graded algebra with $A^{(N)}$ as the identity

component. Furthermore, if $A$ is strongly G-graded, then $A$ is also strongly
$G/N$-graded. Hence we may assume that $N=1$ , in which case $A^{(N)}=A_{1}$ and $G$

is locally finite. Thus, if (i) holds, then (ii) holds by Theorem 5.5 (iii).

To prove (i) it suffices, by Lemma 3.3 (ii), to show that $J(A_{1})\subseteqq J(A)$ .
Since $G$ is locally finite, there is a family $\{H_{i}|i\in l\}$ of finite subgroups of $G$

with $A=\bigcup_{i\in I}A^{(H_{i})}$ . Hence $\bigcap_{t\in I}f(A^{(H_{i})})\subseteqq J(A)$ . But, by Lemma 4.3,

$J(A_{1})\subseteqq J(A^{(H_{i})})$ for all $i\in l$

Hence $J(A_{1})\subseteqq J(A)$ , proving (i).

Finally, assume that $G$ is of finite order $n$ . Then, by Theorems 4.2 (iv)

and 4.1 together with Lemma 4.3, we have

$J(A)^{n}\subseteqq J^{g}(A)=(J^{s}(A)\cap A_{1})A$

$=J(A_{1})A\subseteqq J(A)$

where the last containment follows from (i). This proves (iii) and hence the

result. $\blacksquare$

The special case of the following result where $A$ is a group algebra (or a
twisted group algebra) over a field is due to Villamayor (1959) in characteristic
$0$ and to Passman (1970), Wallace (1970) and Zalesskii (1970) in characteristic
$p>0$ .

THEOREM 5.11. Let $A$ be a strongly G-graded algebra where $G$ is a locally

solvable group such that the orders of finite subgroups of $G$ are units in $A$ , If
$J(A_{1})=0$ , then $J(A)=0$ .

PROOF. Owing to Corollary 3.4 (ii), we may $harm[essly$ assume that $G$ is
solvable. Hence there is a finite chain of subgroups

$1=G_{0}\subseteqq G_{1}\subseteqq G_{2}\subseteqq\cdots\subseteqq G_{n}=G$

such that $G_{j-1}\triangleleft G_{j}$ and $G_{j}/G_{j-1}$ is abelian, $j=1,$ $\cdots,$ $n$ . We argue by induction
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on $i=0,1,$ $\cdots$ , $n$ that $J(A^{(G_{i})})=0$ . Since $G_{0}=1$ , the case $i=0$ follows from the
assumption that $J(A_{1})=0$ . Suppose now that $i\leqq n$ and that $J(A^{(G_{i-1})})=0$ . Given
$a\in J(A^{(G_{i})})$ , let $H$ be the subgroup of $G_{i}$ generated by $G_{i-1}$ and the support of
$a$ . Let $\{H_{i}|i\in l\}$ be the family of all groups $L$ with $G_{i}\supseteqq L\supseteqq H$ and $L/G_{i-1}$

finitely generated. Then, by Lemma 3.5, it suffices to show that $J(A^{(L)})=0$ for
each such $L$ .

Now, by hypothesis, $L/G_{i-1}$ is a finitely generated abelian group. Therefore
there exists an intermediate group $K$ with $L\supseteqq K\supseteqq G_{i-1},$ $L/K$ torsion-free abelian
and $K/G_{i}$ finite of order, say $m$ . Then, by Theorem 5.10 (iii),

$J(A^{(K)})^{m}\subseteqq J(A^{(G_{i-1})})A^{(K)}=0$

and hence $J(A^{(K)})$ is nilpotent. Since, by Theorem 4.10, $A^{(K)}$ is semiprime, we
have $J(A^{(K)})=0$ . Furthermore, because $L/K$ is torsion-free abelian, Corollary

5.6 yields
$J(A^{(L)})\subseteqq J(A^{(K)})A=0$

Therefore $f(A^{(L)})=0$ , and the induction step is proved. Since $G=G_{n}$ , the result
follows. $\blacksquare$

6. The Jacobson radical of monoid crossed products.

Throughout this section, $R$ denotes an arbitrary ring and $M$ a multiplicative
monoid. We write $R*M$ for the crossed product of $M$ over $R$ corresponding to

a crossed system $(M, R, \sigma, \alpha)$ .
Recall that each element of $R*M$ can be uniquely written in the form

$a=\sum_{x\in M}a_{x}\overline{x}$
$(a_{x}\in R)$

with finitely many $a_{x}\neq 0$ . By definition, Supp $a=\{x\in M|a_{x}\neq 0\}$ and the length
$1(a)$ of $a$ is defined by $l(a)=|$ Supp $a|$ . The multiplication in $R*M$ is deter-
mined by

$\overline{x}r=^{x}r\overline{x}$ $(x\in M, r\in R)$ (1)

$\overline{x}9=\alpha(x, y)\overline{xy}$ $(x, y\in M)$ (2)

where $x_{\gamma=\sigma(x)(r)}$ for all $r\in R,$ $x\in M$.

LEMMA 6.1. Given an ideal $L$ of $R*M$, an arbitrary subset $S$ of $M$ and
$s\in S$ , put

$i_{L}(S, s)=$ { $a_{s}\in R|\sum_{x\in S}a_{x}\overline{x}\in L$ for some $a_{g}\in R,$ $g\in S-\{s\}$ }

Then $i_{L}(S, s)$ is an ideal of $R$ .
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PROOF. It is clear that $i_{L}(S, s)$ is an additive subgroup of $R$ . Assume that
$a_{S}\in i_{L}(S, s)$ and choose $a_{g}\in R,$ $g\in S-\{s\}$ such that

$\sum_{x\in S}a_{x}\overline{x}\in L$

Then, for any given $r\in R$ , we have

$r(\sum_{x\in S}a_{x}\overline{x})=\sum_{x\in S}(ra_{x})\overline{x}\in L$

which shows that $ra_{s}ei_{L}(S, s)$ . On the other hand, by (1), we have

$(\sum_{x\in S}a_{x}\overline{x})r=\sum_{x\in S}a_{x}^{x}r\overline{x}\in L$

and so $a_{s}^{s}r\in i_{L}(S, s)$ . But $r\leftrightarrow^{\$}r$ is an automorphism of $R$ , hence $i_{L}(S, s)$ is
also a right ideal of $R$ , as required. $\blacksquare$

The following terminology is extracted from C. Jordan (1975) and Bedi and
Ram (1980). Let $\lambda$ be an automorphism of $R$ . An element $r\in R$ is said to be
$\lambda$-nilpotent if, for any positive integer $n$ , there exists a positive integer $m=m(n)$

such that
$r\lambda^{n}(r)\lambda^{2n}(r)\cdots\lambda^{(m-1)n}(r)=0$ (3)

An ideal 1 of $R$ is called a $\lambda$-nil ideal if every element of 1 is $\lambda$-nilpotent. An
automorphism $\lambda$ of $R$ is said to be of locally finite order if for every $r\in R$ there
exists an integer $n=n(r)\geqq 1$ such that $\lambda^{n}(r)=r$ . For example, every automorphism
of finite order is also of locally finite order. It is clear that if $\lambda$ is of locally
finite order and $r\in R$ is $\lambda$-nilpotent, then $\gamma$ is nilpotent.

LEMMA 6.2. Let $g\in M,$ $r\in R$ and let $\lambda=\sigma(g)$ , Then
(i) $\overline{g}^{n}r=\lambda^{n}(r)\overline{g}^{n}$ for all $n\geqq 1$ .
(ii) $(r\overline{g}^{n})^{m}=r\lambda^{n}(r)\lambda^{2n}(r)\cdots\lambda^{(m-1)n}(r)\overline{g}^{nm}$ for all $n\geqq 1,$ $m\geqq 1$ .
(iii) $r$ is $\lambda$-nilpotent if and only if $r\overline{g}^{n}$ is nilpotent for all $n\geqq 1$ .

PROOF. (i) The case $n=1$ being a consequence of (1), we argue by in-
duction on $n$ . Assume that $\overline{g}^{n}r=\lambda^{n}(r)\overline{g}^{n}$ . Then, by (1), we have

$\overline{g}^{n+1}r=\overline{g}(\overline{g}^{n}r)=(\overline{g}\lambda^{n}(r))\overline{g}^{n}=\lambda^{n+1}(r)\overline{g}^{n+1}$

as required.
(ii) Again, the case $m=1$ is obvious. Assume that (ii) is true for $m$ .

Then, by (i),

$(r\overline{g}^{n})^{m+1}=(r\overline{g}^{n})(r\lambda^{n}(r)\cdots\lambda^{(m-1)n}(r)\overline{g}^{nm})$

$=r\lambda^{n}(r)\lambda^{2n}(r)\cdots\lambda^{n+(m-1)n}(r)\overline{g}^{n(m+1)}$
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as desired.
(iii) Given $k\geqq 1$ , we have $\overline{g}^{k}=u\overline{g^{k}}$ for some $u\in U(R)$ (see (2)). Hence, if

$a\overline{g}^{k}=0$ for some $a\in R$ , then $a=0$ . Now apply (3) and (ii). $\blacksquare$

LEMMA 6.3. Let $M\neq 1$ be a t.u.p.-monoid. If 1 is a nonzero ideal of $R*M$,

then there exists an element $\chi$ in I of minimal positive length and with $1\not\in Suppx$ .

PROOF. Let $y=r_{1}\overline{g}_{1}+\cdots+r_{t}\overline{g}_{t},$ $0\neq r_{i}\in R,$ $g_{i}\in M$ be any element of 1 of
minimal positive length. Choose any nonidentity $g$ in $M$. Since $M$ is a t.u. $p.-$

monoid, there exists $m\geqq 0$ such that

$g_{i}g^{m}\neq 1$ for all $i\in\{1, \cdots , t\}$

Now put $x=y\overline{g}^{m}$ . Then $x\in I$ , Supp $x\subseteqq\{g_{1}g^{m}, \cdots , g_{t}g^{m}\}$ and $1\not\in Suppx$ . Hence
it suffices to verify that $x\neq 0$ . By (2), we may write $\overline{g}_{i}\overline{g}^{m}=u_{i}\overline{g_{i}g^{m}}$ for some
$u_{i}\in U(R)$ , in which case

$x=r_{1}u_{1}\overline{g_{1}g^{m}}+\cdots+r_{t}u_{t}\overline{g_{t}g^{m}}$

Since $M$ is cancellative, we deduce that $x\neq 0$ , as desired. $\blacksquare$

We have now accumulated all the information necessary to prove the follow-
ing result.

THEOREM 6.4. Let $M\neq 1$ be a $t.u$ .p.-monoid such that $J(R*M)\neq 0$ .
(i) There exists an element $x$ in $J(R*M)$ of minimal positive length and

wilh $1\not\in Suppx$ .
(ii) Let $x\in J(R*M)$ be of minimal positive length, let $S=Suppx$ and let

$L=J(R*M)$ . Then, for any $s\in S-\{1\},$ $i_{L}(S, s)$ is a nonzero $\sigma(s)$-nil ideal of $R$ .
(iii) If at least one $\sigma(g),$ $1\neq g\in M$, is of locally finite order and $M$ is a $u.p.-$

group, then $R$ has a nonzero nil ideal.

PROOF. (i) This is a special case of Lemma 6.3.
(ii) Write $x=r_{1}\overline{g}_{1}+\cdots+r_{t}\overline{g}_{t}$ with $0\neq r_{i}\in R,$ $g_{i}\in M$ and $s=g_{1}\neq 1$ . Since

$r_{1}\neq 0$ and $x\in L$ , we see that $r_{1}\in i_{L}(S, s)\neq 0$ .
Now fix $a_{1}\in i_{L}(S, s)$ . Then there exist $a_{1},$ $\cdots,$ $a_{t}$ in $R$ such that

$y=a_{1}\overline{g}_{1}+a_{2}\overline{g}_{2}+\cdots+a_{t}\overline{g}_{t}\in L$

If $y=0$ , then $a_{1}=0$ and $a_{1}$ is obviously $\sigma(s)$-nilpotent. If $y\neq 0$ , then $y$ is an
element of $L$ of minimal positive length (in particular, $a_{1}\neq 0$). Hence, for any
positive integer $n$ ,

$y\overline{g}_{1}^{n-1}=a_{1}\overline{g}_{1}^{n}+a_{2}(\overline{g}_{2}\overline{g}_{1}^{n-1})+\cdots+a_{i}(\overline{g}_{t}\overline{g}_{1}^{n-1})$
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is also an element of $L$ of minimal positive length. Since $g_{1}^{n}\neq 1$ , it follows
from Theorem 4.9 (i) that $a_{1}\overline{g}_{1}^{n}$ is nilpotent. Thus, by Lemma 6.2 (iii), $a_{1}$ is
$\sigma(s)$-nilpotent and so $i_{L}(S, s)$ is a $\sigma(s)$-nil ideal of $R$ .

(iii) Let $x$ be as in (ii). Multiplying $x$ on the right by $\overline{g}_{1}^{-1}\overline{g}$ , we may as-
sume that $g_{1}=s=g$ . Hence, by (ii), $R$ has a nonzero $\sigma(g)$-nil ideal. But $\sigma(g)$

is of locally finite order, hence $R$ has a nonzero nil ideal. $\blacksquare$

COROLLARY 6.5. Let $M\neq 1$ be a t.u.p.-monoid and let $R*M$ be a crossed
product of $M$ over R. If at least one $\sigma(g),$ $1\neq g\in M$, is of locally finite order,
then $R\cap J(R*M)$ is a nil ideal of $R$ .

PROOF. Assume that $0\neq r\in R\cap J(R*M)$ and that $1\neq g\in M$ is such that $\sigma(g)$

is of locally finite order. Put $S=\{g\}$ and $L=J(R*M)$ . Then, by the definition
of $i_{L}(S, g)$ , we have $i_{L}(S, g)=\{a\in R|a\overline{g}\in J(R*M)\}$ . By hypothesis, $x=r\overline{g}$ is an
element in $J(R*M)$ of minimal positive length with Supp $x=S$ and with $ 1\not\in$

Supp $x$ . Hence, by Theorem 6.4 (ii), $i_{L}(S, g)$ is a $\sigma(g)$-nil ideal of $R$ . Since $\sigma(g)$

is of locally finite order, we deduce that $i_{L}(S, g)$ is a nil ideal of $R$ . Since
$r\in i_{L}(S, g)$ , the result follows. $\blacksquare$

Note that in general $R\cap J(R*M)$ need not be nil even in the simplest case
where $M$ is a free monoid on one generator. For a corresponding example we
refer to Bedi and Ram (1980).

COROLLARY 6.6. Let $M$ be a free monoid (or a free commutative monoid)

freely generated by an infinite set X. Then, for an arbitrary ring $R,$ $J(RM)$ is
a nil ideal.

PROOF. Let $a\in J(RM)$ . Then there exist $x_{1},$ $x_{2},$ $\cdots$ , $x_{n}$ in $X,$ $n\geqq 1$ , such
that $a\in RM^{\prime}$ where $ M^{\prime}=\langle x_{1}, \cdots, x_{n}\rangle$ . Since $X$ is infinite, we may choose $x\in X$

with $x\neq x_{i},$ $1\leqq i\leqq n$ . Put $X_{1}=X-\{x\}$ and $X_{2}=\{x\}$ and let $M_{i}$ be generated

by $X_{i},$ $i=1,2$ . Since $M^{\prime}\subseteqq X_{1}$ , we have $a\in RM_{1}$ . Put $S=RM_{1}$ and let $ f:RM\rightarrow$

$SM_{2}$ be the surjective homomorphism described in Lemma 3.10. Since $ a\in$

$J(RM)\cap RM_{1}$ , we have $ f(a)\in$ ] $(SM_{2})\cap S$ . By Corollary 6.5, $J(SM_{2})\cap S$ is nil
and so $f(a)$ is nilpotent. Hence, by Lemma 3.10, $a$ is also nilpotent and the
result follows. $\blacksquare$

Let $R*M$ be a crossed product of $M$ ever $R$ and let $S$ be a subset of $R$ .
In what follows, we put

$S*M=\{\sum_{x\in M}a_{x}\overline{x}|a_{x}\in S\}$
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We say that $S$ is M-invariant if $\sigma(g)(S)=S$ for all $g\in M$. For example, if $R*M$

is a twisted monoid ring of $M$ over $R$ (i.e. if $\sigma(g)=1$ for all $g\in M$), then any
subset $S$ of $R$ is M-invariant.

LEMMA 6.7. Let $R*M$ be a crossed product of $M$ over $R$ and let I be an M-
invariant ideal of R. Then

(i) $I*M$ is an ideal of $R*M$ such that $R*M/I*M$ is a crossed product of $M$

over $R/l$ . Furthermore, if $R*M$ is a twisted monoid ring (respectively, skew
monoid ring) of $M$ over $R$ , then $R*M/I*M$ is a twisted monoid ring (respectively,

skew monoid ring) of $M$ over $R/l$ .
(ii) $(I*M)^{n}=l^{n}*M$ for all $n\geqq 1$ .
(iii) If $R*M$ is a twisted monoid ring of $M$ over $R$ and if 1 is a locally

nilpotent ideal of $R$ , then $I*M$ is a nil ideal of $R*M$ and, in particular, $ I*M\subseteqq$

$J(R*M)$ .

PROOF. (i) It is clear that $I*M$ is an additive subgroup of $R*M$. Fix
$a\in I,$ $x\in M$ and $g\in M$. Then $(a\overline{x})\overline{g}=a\alpha(x, y)\overline{xg}\in l*M$. Also

$\overline{g}(a\overline{x})=gaa(g, x)\overline{gx}\in l*M$

since $ga\in I$ by the assumption that $I$ is M-invariant. This demonstrates that
$l*M$ is an ideal of $R*M$.

For each $g\in G$ , put $\tilde{g}=\overline{g}+I*M$. Then $R*M/l*M$ is a free left $R/l$-module
freely generated by $\tilde{g},$ $g\in G$ . Define

$\tilde{\alpha}$ ; $M\times M-U(R/I)$

by $\tilde{\alpha}(x, y)=\alpha(x, y)+l$ . Then, for all $x,$ $y\in M$,

$\tilde{x}\tilde{y}=(\overline{x}+l*M)(S+l*M)=\alpha(x, y)\overline{xy}+I*M$

$=(\alpha(x, y)+l)(\overline{xy}+l*M)$

$=\tilde{\alpha}(x, y)\tilde{xy}$

Since 1 is M-invariant, the map
$\tilde{\sigma}$ ; $M-Aut(R/l)$

given by
$\tilde{\sigma}(g)(r+l)=\sigma(g)(r)+l$ for all $r\in R,$ $g\in M$

is well-defined. Furthermore, given $x\in M$ and $r\in R$ , we have

$\tilde{x}(r+l)=(\overline{x}+I*M)(r+I*M)$

$=\sigma(x)(r)\overline{x}+I*M=(\sigma(x)(r)+l)\tilde{x}$

$=\tilde{\sigma}(x)(r+l)\tilde{x}$
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Using associativity of the multiplication, it is now immediate to verify that
$(M, R/l,\tilde{\sigma},\tilde{\alpha})$ is a crossed system. Hence $R*M/l*M$ is a crossed product of
$M$ over $R/I$ . Furthermore, if $\sigma(g)=1$ for all $g\in M$ (respectively, if $\alpha(x, y)=l$

for all $x,$ $y\in M$ ), then $\tilde{\sigma}(g)=1$ for all $g\in M$ (respectively, $\tilde{\alpha}(x, y)=1$ for all
$x,$ $y\in M$ ), proving the second assertion.

(ii) It suffices to show that for all $a_{i}\in l,$ $x_{i}\in M,$ $1\leqq i\leqq n$ ,

$(a_{1}\overline{x}_{1})(a_{2}\overline{x}_{2})\cdots(a_{n}\overline{x}_{n})\in l^{n}*M$

Since the latter is a consequence of the assumption that 1 is M-invariant, the
required assertion follows.

(iii) Let $x=r_{1}\overline{g}_{1}+\cdots+r_{n}\overline{g}_{n},$ $0\neq r_{i}\in I,$ $g_{i}\in M$, be a nonzero element of $l*M$

and let $S=\{r_{1}, \cdots, r_{n}\}$ . Since 1 is locally nilpotent, $S^{m}=0$ for some $m\geqq 1$ . We
claim that $x^{m}=0$ . It suffices to show that

$(\lambda_{1}\overline{x}_{1})(\lambda_{2}\overline{x}_{2})\cdots(\lambda_{m}\overline{x}_{m})=0$

for all $\lambda_{i}\in S,$ $x_{i}\in\{g_{1}, \cdots, g_{n}\}$ . But

$(\lambda_{1}\overline{x}_{1})(\lambda_{2}\overline{x}_{2})\cdots(\lambda_{m}\overline{x}_{m})=(\lambda_{1}\cdots\lambda_{m})\overline{x}_{1}\overline{x}_{2}\cdots\overline{x}_{m}$

and $\lambda_{1}\cdots\lambda_{m}=0$ , since $S^{m}=0$ , hence the result follows. $\blacksquare$

The following assertion is contained implicitly in the work of Ram (1984).

LEMMA 6.8. Let $\lambda$ be an automorphism of a ring $R$ and let $R$ satisfy the
ascending chain condition on left annihilators. If $R$ has a nonzero $\lambda$-nil ideal,

then $R$ has a nonzero nilpotent ideal.

PROOF. Let 1 be a nonzero $\lambda$-nil ideal of $R$ . We claim that $R$ has a
nonzero right nil ideal. Since $R$ satisfies the ascending chain condition on left
annihilators, a standard argument will show that $R$ has a nonzero nilpotent ideal.
If 1 is nil, then there is nothing to prove. Hence we may assume that $r\in l$ is not
nilpotent. We assert that $r\lambda^{n}(r)\neq 0$ for some $n\geqq 1$ . Assume by way of con-
tradiction that $r\lambda^{n}(r)=0$ for all $n\geqq 1$ . For any $m\geqq 1$ , put

$ l_{m}=\lambda^{m}(r)R+\lambda^{m+1}(r)R+\cdots+\cdots$

It is clear that
$ l_{1}\supseteqq l_{2}\supseteqq\cdots\supseteqq\cdots$

Hence
$ l(l_{1})\subseteqq l(l_{2})\subseteqq\cdots\subseteqq\cdots$

where $l(l_{i})$ is the left annihilator of $l_{i}$ in $R$ . By hypothesis, we have $l(l_{k})=$

$l(l_{k+1})$ for some $k\geqq 1$ . Since for any $n\geqq 1$ ,
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$\lambda^{k}(r)\lambda^{k+n}(r)=\lambda^{k}(r\lambda^{n}(r))=0$

it follows that
$\lambda^{k}(r)\in l(l_{k+1})=l(l_{k})$

Thus $\lambda^{k}(r)\lambda^{k}(r)=0$ , so $r^{2}=0$ a contradiction.
By the foregoing, we may choose $n\geqq 1$ such that $r\lambda^{n}(r)\neq 0$ . Since $r\in l$ is a

$\lambda$-nil ideal of $R$ , there exists a positive integer $t$ such that

$r\lambda^{n}(r)\lambda^{2n}(r)\cdots\lambda^{(t-1)n}(r)=0$ (4)

Since $r\lambda^{n}(r)\neq 0,$ $t>2$ . Now choose $t$ minimal such that (4) holds and put

$s=r\lambda^{n}(r)\cdots\lambda^{(l-2)n}(r)$ (5)

If the right ideal $sR$ is not nil, sa is not nilpotent for some $a\in R$ . Put $r_{1}=r$

and $r_{2}=sa$ . We claim that $l(r_{1})\subset l(r_{2})$ . Indeed, by (4) and (5), $\lambda^{-n}(r)s=0$ and so
$\lambda^{-n}(r)\in l(r_{2})$ . But $\lambda^{-n}(r)\not\in l(r_{1})$ since $r\lambda^{n}(r)\neq 0$ . Hence $l(r_{1})\subset l(r_{2})$ . If $r_{2}R$ is not
nil, then arguing as before we get $r_{8}\in R$ such that $l(r_{1})\subset l(r_{2})\subset l(r_{3})$ . Continuing
in this fashion, we will obtain a desired nonzero right nil ideal. $\blacksquare$

To take advantage of the above lemma, we need the following observation.

LEMMA 6.9. Let $\lambda$ be an automorphism of a ring $R$ , let 1 be a $\lambda$-nil ideal
of $R$ and let $K$ be any ideal of $R$ with $\lambda(K)=K$. If $\mu$ is the automorphism of
$R/K$ induced by $\lambda$ , then $(l+K)/K$ is a $\mu$-nil ideal of $R/K$.

PROOF. By definition of $\mu$ , we have $\mu^{k}(r+K)=\lambda^{k}(r)+K$ for all $r\in R$ and
all $k\geqq 1$ . Now fixr $r\in I$ and a positive integer $n$ . Sincer $r$ is $\lambda$-nilpotent, there
exists $n\geqq 1$ such that (3) holds. But then

$(r+K)\mu^{n}(r+K)\mu^{2n}(r+K)\cdots\mu^{(m-1)n}(r+K)=0$

as required. $\blacksquare$

COROLLARY 6.10. (C. Jordan (1975)). Let $R$ be a noetherian ring and let $\lambda$

be an automorphism of R. Then every $\lambda$-nil ideal of $R$ is nilpotent.

PROOF. Let $I$ be a $\lambda$-nil ideal of $R$ . If $R$ is semiprime, then by Lemma
6.8, $1=0$ . Suppose that $R$ is not semiprime. Let rad$(R)$ be the prime radical
of $R$ . Since $R$ is noetherian, rad$(R)$ is nilpotent. Since $\lambda(rad(R))=rad(R)$ , $\lambda$

induces an automorphism $\mu$ of $R/rad(R)$ . Hence, by Lemma 6.9, $(l+rad(R))/$

$rad(R)$ is a $\mu$-nil ideal of the noetherian semiprime ring $R/rad(R)$ . By the forego-
ing, $l\subseteqq rad(R)$ and so $I$ is nilpotent. $\blacksquare$
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In wheat follows, rad$(R)$ and $N(R)$ denote the prime and upper nil radicals
of $R$ , respectively.

THEOREM 6.11. Let $M\neq 1$ be a $t.u$ .p.-monoid and let $R*M$ be a crossed pro-
duct of $M$ over a ring $R$ .

(i) If $R/rad(R)$ satisfies the ascending chain condition on left annihilators,

thon $J(R*M)\subseteqq rad(R)*M$.
(ii) If each automorphism $\tilde{\sigma}(g),$ $g\in M,$ of $R/N(R)$ induced by $\sigma(g)$ is of

locally finite order, then $J(R^{*}M)\subseteqq N(R)*M$.
(iii) If $R$ is noetherian, then $J(R*M)$ is a nilpotent ideal such that $J(R*M)$

$=rad(R)*M$

PROOF. (i) It is clear that rad$(R)$ is an M-invariant ideal of $R$ . Hence,
by Lemma 6.7 (i), rad$(R)*M$ is an ideal of $R*M$ such that $R*M/rad(R)*M$ is
a crossed product of $M$ over $R/rad(R)$ . Owing to Lemma 6.8, $R/rad(R)$ con-
tains no nonzero $\lambda$-nil ideals where $\lambda$ is any automorphism of $R/rad(R)$ . Hence,
by Theorem 6.4 (ii),

$J(R*M/rad(R)*M)=0$

as required.
(ii) As in (i), $R*M/N(R)*M$ is a crossed product of $M$ over $R/N(R)$ .

The assumption on $\tilde{\sigma}(g),$ $g\in M$, guarantees that every $\tilde{\sigma}(g)$-nil ideal of $R/N(R)$

is a nil ideal. Since $R/N(R)$ contains no nonzero nil ideals, it follows that
$R/N(R)$ contains no nonzero $\tilde{\sigma}(g)$-nil ideals for all $g\in M$. Hence, by Theorem
6.4 (ii),

$J(R*M/N(R)*M)=0$

as desired.
(iii) Since $R$ is noetherian, rad$(R)$ is a nilpotent M-invariant ideal of $R*M$.

Hence, by Lemma 6.7 (ii), rad$(R)*M$ is a nilpotent ideal of $R*M$. Since $R/rad(R)$

is noetherian, the result follows by virtue of (i). $\blacksquare$

COROLLARY 6.12. Let $M\neq 1$ be a t.u.p.-monoid and let $R*M$ be a twis $ted$

monoid ring of $M$ over R. Denote by $L(R)$ and $N(R)$ the Levitzki and upper nil
radicals of $R$ , respectively. Then

$L(R)*M\subseteqq J(R*M)\subseteqq N(R)*M$

In particular, if every nil ideal of $R$ is locally nilpotent, then $J(R*M)$ is a nil
ideal of $R*M$ such that $J(R*M)=L(R)*M$.

PROOF. By Theorem 6.11 (ii), $J(R*M)\subseteqq N(R)*M$. Since $L(R)$ is a locally
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nilpotent ideal of $R$ , it follows from Lemma 6.7 (iii) that $L(R)*M$ is a nil ideal
of $R*M$ (in particular, $L(R)*M\subseteqq J(R*M)$). Finally, if every nil ideal of $R$ is
locally nilpotent, then $L(R)=N(R)$ and the required assertion follows. $\blacksquare$

A special case of Corollary 6.12 in which $R*M$ is a monoid ring of $M$ over
$R$ and $N(R)=0$ is due to Schneider and Weissglass (1967). As a further ap-
plication of Theorem 6.4, we also record the following result.

COROLLARY 6.13. Let $M\neq 1$ be a $t.u$ .p.-monoid and let $R*M$ be a crossed
product of $M$ over R. If $R$ has no zero divisors, then $J(R*M)=0$ .

PROOF. Let $\lambda$ be an automorphism of $R$ . If $r\in R$ is $\lambda$-nilpotent, then $r=0$

since $R$ has no zero divisors. Hence $R$ contains no nonzero $\lambda$-nil ideals. The
desired assertion is therefore a consequence of Theorem 6.4 (ii). $\blacksquare$

Our next theorem requires the following two preliminary results.

LEMMA 6.14. Let 1 be a left or right ideal of a ring R. If $l^{n}\subseteqq J(R)$ for
some $n\geqq 1$ , then $l\subseteqq J(R)$ .

PROOF. Since $J(R/J(R))=0,$ $R/J(R)$ contains no nonzero (left or right) nil
ideals. But, by hypothesis, $(l+J(R))/J(R)$ is nil, hence $l+J(R)=J(R)$ as re-
quired. $\blacksquare$

LEMMA 6.15. Let $M$ be a monoid such that $gM=Mg$ for all $g\in M$ and let

$R*M$ be a crossed product of $M$ over R. Then
(i) $(R*M)\overline{g}=\overline{g}(R*M)$ for all $g\in M$.
(ii) For any $r\in R,$ $g\in G$ and $n\geqq l$ ,

$[r\overline{g}(R*M)]^{n}\subseteqq r\overline{g^{n}}(R*M)$

PROOF. (i) We will demonstrate that $(R*M)\overline{g}\subseteqq\overline{g}(R*M)$ . A similar argu-
ment will establish the opposite containment. Since $R*M=\oplus_{x\in M}RX$ . it suffices
to show that for any given $x\in M,$ $R\overline{x}\overline{g}\subseteqq\overline{g}(R*M)$ . Now $\overline{g}r=gr\overline{g}$ for all $r\in R$ ,

hence $\overline{g}R=R\overline{g}$ . Also $xg=gy$ for some $y\in M$, by the hypothesis on $M$. Ac-
cordingly,

$R\overline{x}\overline{g}=R\alpha(x, y)\overline{xy}=R\overline{gy}=R\alpha(g, y)^{-1}\overline{g}J$

$=R\overline{g}J=\overline{g}R\overline{y}\subseteqq\overline{g}(R*M)$

as required.
(ii) The case $n=1$ being trivial, we $\arg ue$ by induction on $n$ . So assume

that
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$[r\overline{g}(R*M)]^{n}\subseteqq r\overline{g^{n}}(R*M)$

Then
$[r\overline{g}(R*M)]^{n+1}\subseteqq r\overline{g^{n}}(R*M)r\overline{g}(R*M)$

$\subseteqq r\overline{g^{n}}\overline{g}(R*M)$ (by $(i)$ )

$\subseteqq r\overline{g^{n+1}}(R*M)$

as desired. $\blacksquare$

Turning our attention to a special class of t.u. $p$ .-monoids, we now prove the
following theorem.

THEOREM 6.16. Let $M\neq 1$ be a free monoid or a free commutative monoid,

and let $R*M$ be a crossed product of $M$ over an arbitrary ring R. For each
$1\neq g\in M$, put

$l_{g}=\{a\in R|a\overline{g}\in J(R*M)\}$

Then
(i) $J(R*M)=(R\cap J(R*M))+\Sigma_{1\neq g\in M}l_{g}\overline{g}$ .
(ii) $R\cap J(R*M)$ is a $\sigma(t)$-nil ideal of $R$ for all $1\neq t\in M$, while each $l_{g}$ is a

$\sigma(g)$-nil ideal of $R$ .
(iii) If $M$ is a free commutative monoid, then for each $1\neq g\in M$ and each

$n\geqq 1,$ $l_{g}=I_{gn}$ .

PROOF. (i) Owing to Corollary 5.7, $J(R*M)$ is a graded ideal of $R*M$.
Hence, if $a\in J(R*M)$ , then there exist $r\in J(R*M)\cap R,$ $r_{i}\in R,$ $1\leqq i\leqq n$ , and some
nonidentity $g_{1},$ $\cdots,$ $g_{n}$ in $M$ such that

$a=r+r_{1}\overline{g}_{1}+\cdots+r_{n}\overline{g}_{n}$ and $r_{i}\overline{g}_{i}\in J(R*M)$ $(1\leqq i\leqq n)$

This demonstrates that

$J(R*M)\subseteqq(R\cap J(R*M))+\sum_{1\neq g\in G}1_{l}\overline{g}$

The opposite inclusion being obvious, the required assertion follows.
(ii) Fix $1\neq g\in M$ and put $S=\{g\},$ $L=J(R*M)$ . Then $i_{L}(S, g)=l_{g}$ by the

definition of the ideal $i_{L}(S, g)$ of $R$ (see Lemma 6.1). We may, of course, as-
sume that $l_{g}\neq 0$ . Choose any $0\neq a\in I_{g}$ and observe that $x=a\overline{g}$ is an element
of $J(R*M)$ of minimal positive length and with $1\not\in Supp_{X}$ . Hence, by Theorem
6.4 (ii), $l_{g}$ is a $\sigma(g)$-nil ideal of of $R$ .

Finally, let $0\neq r\in R\cap J(R*M)$ and let $1\neq t\in M$. Then $r\overline{t}\in J(R*M)$ and so
$r\in l_{t}$ . Hence, by the above, $r$ is $\sigma(t)$-nilpotent and therefore $R\cap J(R*M)$ is
$\sigma(t)$-nil as required.

(iii) Assume that $M$ is a free commutative monoid, and let $r\in I_{g^{n}}$ for some
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$1\neq g\in G$ and some $n\geqq 1$ . Owing to Lemma 6.15 (ii), we have

$[r\overline{g}(R*M)]^{n}\subseteqq r\overline{g^{n}}(R*M)\subseteqq J(R*M)$

Hence, by Lemma 6.14, $r\overline{g}\in J(R*M)$ . Thus $r\in l_{g}$ and so $l_{g^{n}}\subseteqq l_{g}$ . The opposite
containment being obvious, the result follows. $\blacksquare$

Our final aim is to improve the main result of Zalesskii (1965) concerning
the Jacobson radical of $R*G$ where $G$ is a right-ordered group. As a preliminary
to the next lemma, let us make the following useful observations in which $G$

denotes a right-ordered group.
(a) If $g_{1}<g_{2}<g_{3}<\cdots<g_{n}$ is a chain of elements in $G$ with $n\geqq 3$ , then

$g_{1}g_{2}^{-1}<1<g_{\theta}g_{2}^{-1}<\cdots<g_{n}g_{2}^{-1}$

Thus if $x$ is an element of $J(R*G)$ of minimal positive length $n\geqq 3$ , then there
is another such element $y$ (replace $x$ by $x\overline{g}^{-1}$ for suitable $g\in G$) for which

$1\in Suppy=\{g_{1}, g_{2}, \cdots, g_{n}\}$

and (6)
$g_{1}<1=g_{2}<g_{3}<\cdots<g_{n}$

(b) If $S$ is any finite nonempty subset of $G$ and $g_{1},$
$\cdots$ , $g_{n},$ $n\geqq 3$ , are as in

(6), then there exist two elements $s,$ $t\in S$ such that $g_{1}s$ and $g_{n}t$ are uniquely
representable elements of $\{g_{1}, \cdots, g_{n}\}\cdot S$ .

The following lemma is due to Zalesskii (1965).

LEMMA 6.17. Let $R*G$ be a crossed product of a right-ordered group $G$

over a ring $R$ and let $x\in J(R*G)$ be of length $n\geqq 3$ and of the form
$x=r_{1}\overline{g}_{1}+r_{2}\overline{g}_{2}+r_{3}\overline{g}_{\$}+\cdots+r_{n}\overline{g}_{n}$ $(r_{i}\in R)$ (7)

where $g_{1},$ $\cdots,$ $g_{n}$ satisfy (6). Assume that for all $\lambda,$ $\mu\in R$ either $\lambda x\mu=0$ or $\lambda x\mu$

is of length $n$ . Then $r_{2}$ is a nilpotent element.

PROOF. Let $y=\Sigma y_{h}\overline{h},$ $y_{h}\in R,$ $h\in G$ be such that $(1-x)y=1$ and let $S=$

Supp $y$ . By property (b), we may choose $s,$ $ t\in$ Supp $y$ such that $g_{1}s$ and $g_{n}t$

are uniquely representable elements of (Supp x) (Supp $y$ ). Observe also that
$g_{1},$ $g_{n}\in Supp(1-x)\subseteqq Suppx$ . Hence $r_{1}\overline{g}_{1}y_{S}\overline{s}=0$ or $r_{n}\overline{g}_{n}y_{i}\overline{t}=0$ , which implies
$r_{1}g_{1}y_{S}=0$ or $r_{n}\overline{g}_{n}y_{l}=0$ . If $r_{1}\overline{g}_{1}y_{S}=0$ , then 1 $\cdot x\cdot y_{s}$ is an element of length $<n$ ;
hence by hypothesis $xy_{s}=0$ which in turn implies that $r_{2}y_{S}=0$ . Similarly, if
$r_{n}\overline{g}_{n}y_{t}\overline{t}=0$ then $xy_{l}=0$ and $r_{2}y_{t}=0$ . Let $S^{\prime}=\{h\in Suppy|xy_{h}=0\}$ and let $S^{\prime\prime}=$

$S-S^{\prime}$ . Then $S^{\prime\prime}\subset S$ and
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$1=(1-x)(\sum_{h\in S^{n}}y_{h}\overline{h}+\sum_{h\in S^{\prime}}y_{h}\overline{h})$

$=(1-x)(\sum_{h\in S^{\prime\prime}}y_{h}\overline{h})+\sum_{h\in S^{\prime}}y_{h}\overline{h}$

Multiplying both sides on the left by $r_{t}$ , we obtain

$r_{2}(1-x)(\sum_{h\in S^{\prime\prime}}y_{h}\overline{h})=r_{2}$
(8)

If $r_{2}\neq 0$ , then by hypothesis $r_{2}x$ is of length $n$ , i.e. Supp $r_{2}x=\{g_{1}, \cdots, g_{n}\}$ . Ap-

plying the above argument to $r_{2}(1-x)$ instead of $1-x$ , we see that there exists
$h\in S$“ such that $r_{2}xy_{h}=0,$ $r_{2}^{2}y_{h}=0$ . Multiplying both sides of (8) on the left by

$r_{2}$ , we again obtain a relation of type (8) with respect to a proper subset of
$S$ “. Hence, after finitely many steps, we obtain $r_{2}^{m}=0$ for some $m\geqq 1$ , as
desired. $\blacksquare$

COROLLARY 6.18. (Zalesskii (1965)). Let $R*G$ be a crossed product of a
right-ordered group $G$ over a ring $R$ which has no nonzero nil ideals. Then

(i) Every element of $J(R*G)$ is of $length\leqq 2$ .
(ii) If for any $g\in G,$ $J(R*\langle g\rangle)=0$ then $J(R*G)=0$ .

PROOF. (i) Assume by way of contradiction that $x\in J(R*G)$ is of length
$n\geqq 3$ . By observation (a), we may assume that $\chi$ satisfies (6) and (7). Now fix
$\lambda_{i},$ $\mu_{i}\in R,$ $1\leqq i\leqq m$ . Then $\Sigma_{i=1}^{m}\lambda_{i}x\mu_{i}=0$ or is of length $n\geqq 3$ . In the latter case

Supp $(\sum_{i=1}^{m}\lambda x\mu_{i})=Supp_{X}$

and $\Sigma_{i\Rightarrow 1}^{m}\lambda x\mu_{i}$ satisfies the hypothesis of Lemma 6.17. Hence $\Sigma_{i=1}^{m}\lambda r_{2}\mu$ , the
coefficient of 1 in $\Sigma_{i=1}^{m}\lambda_{i}x\mu_{i}$ , must be nilpotent. This shows that $Rr_{2}R$ is a
nonzero nil ideal of $R$ , a contradiction.

(ii) Given $x\in J(R*G)$ , it follows from (i) that $x$ is of $length\leqq 2$ , say $x=$

$\lambda_{1}\overline{g}_{1}+\lambda_{2}\overline{g}_{2}$ for some $\lambda_{1},$ $\lambda_{2}\in R,$ $g_{1},$ $g_{2}\in G$ . Multiplying on the right by $\overline{g}_{2}^{-1}$ , we
we may assume that $ x\in R*\langle g\rangle$ for some $g\in G$ . Hence, by Lemma 3.3 (ii),

$x\in R*\langle g\rangle\cap J(R*G)\subseteqq J(R*\langle g\rangle)=0$

as desired. $\blacksquare$

The following result was established by Zalesskii (1965) under either of the
following hypotheses:

(i) For any $r\in R,$ $2r=0$ implies $r=0$ .
(ii) $R$ is commutative.

We close by demonstrating that these assumptions are redundant.
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THEOREM 6.19. Let $R$ be an arbitrary ring such that $J(R)$ contains no zero
divisors and let $G\neq 1$ be a right-ordered group. Then, for any crossed product
$R*G$ of $G$ over $R,$ $J(R*G)=0$

PROOF. Let $x\in J(R*G)$ be either zero or an element of minimal positive

length $n$ . By assumption, $R$ contains no nonzero nil ideals. Hence, by Corollary

6.18 (i), $n\leqq 2$ . To prove that $x=0$ , we may assume that $x=r_{1}\cdot\overline{1}+r_{2}\overline{g}$ for some
$r_{1},$ $r_{2}\in R,$ $1\neq g\in G$ . Then

$x\in R*\langle g\rangle\cap J(R*G)\subseteqq J(R*\langle g\rangle)$

by Lemma 3.3 (ii). Hence, by Corollary 5.6 and Lemma 3.3 (ii),

$r_{i}\in R\cap J(R*\langle g\rangle)\subseteqq J(R)$ $(i=1,2)$

Let $\lambda$ be the automorphism of $R$ corresponding to $g$ . Since $r_{i}\overline{g}\in J(R*\langle g\rangle)$ and
$g\neq 1$ , it follows from Theorem 4.9 that $r_{i}\overline{g}$ is nilpotent. Hence, by Lemma 6.2
(ii),

$r_{i}\lambda(r_{i})\lambda^{2}(r_{i})\cdots\lambda^{m-1}(r_{i})=0$

for some $m\geqq 1$ . Since $\lambda^{k}(r_{i})\in J(R),$ $0\leqq k\leqq m-1$ , and $J(R)$ has no zero divisors,

it follows that $r_{i}=0$ as required. $\blacksquare$

7. Applications.

In this section we shall demonstrate that most of what is known concerning

the Jacobson radical of polynomial rings and skew polynomial rings is an easy
consequence of our results. Throughout, $R$ denotes an arbitrary ring.

For any cardinal $\alpha$ , let $X_{\alpha}$ denote a set of cardinality $\alpha$ and let $[X_{\alpha}]$ be
the free commutative monoid freely generated by $X_{\alpha}$ . Then the monoid ring
$R[X_{\alpha}]$ of $[X_{a}]$ over $R$ is the polynomial ring over $R$ in $\alpha$ commuting indeter-
minates $x\in X_{\alpha}$ . If $X_{\alpha}$ is a finite set, say $X_{\alpha}=\{x_{1}, \cdots , x_{\alpha}\}$ , then we write
$R[x_{1}, \cdots, x_{\alpha}]$ instead of $R[X_{\alpha}]$ .

In what follows, $L(R)$ and $N(R)$ denote the Levitzki and upper nil radicals
of $R$ , respectively. Given any cardinal $\alpha$ , we put

$J_{\alpha}(R)=R\cap J(R[X_{\alpha}])$

It will also be convenient to define $J_{\infty}(R)$ by

$J_{\infty}(R)=\bigcap_{n=1}^{\infty}J_{n}(R)$

THEOREM 7.1. (Amitsur (1956)). Let $R$ be an arbitrary ring and let $\alpha$ be
any cardinal. Then
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(i) $J(R[X_{\alpha}])=J_{\alpha}(R)[X_{a}]$ .
(ii) $L(R)\subseteqq J_{\alpha}(R)\subseteqq N(R)$ .
(iii) $J(R)\supseteqq J_{1}(R)\supseteqq J_{2}(R)\supseteqq\cdots\supseteqq J_{\infty}(R)$ .
(iv) If $\alpha$ is an infinite cardinal, then $J(R[X_{\alpha}])$ is nil and

$J_{\alpha}(R)=J_{\infty}(R)$

(v) $J_{\alpha}(R/J_{a}(R))=0$ .

PROOF. (i) By Theorem 6.15, it suffices to show that, for any given
$r\in R,$ $1\neq g\in[X_{a}]$ , if $rg\in J(R[X_{\alpha}])$ , then $r\in J(R[X_{\alpha}])$ . Write $g=x_{1}^{n_{1}}\chi_{2}^{n_{2}}\cdots x_{k}^{n_{k}}$ ,
$x_{i}\in X_{\alpha},$ $n_{i}\geqq 1$ and let $M$ be the monoid generated by $X_{\alpha}-\{x_{k}\}$ . Then $ rg\in$

$J((RM)[x_{k}])$ and so, by induction, we may assume that $k=1$ . Furthermore, by

Theorem 6.15, we may assume that $g=x$ for some $x\in X_{\alpha}$ . Since the map
$x-x+1$ determines an automorphism of $R[X_{\alpha}]$ , it follows that $r(x+1)\in J(R[x_{\alpha}])$

and so $r\in J(R[X_{\alpha}])$ , as desired.
(ii) This is a direct consequence of (i) and Corollary 6.11.
(iii) It is an easy consequence of Lemma 3.9 (ii) and the definition of $J_{n}(R)$

that $J_{n}(R)\supseteqq J_{n+1}(R)$ for all $n\geqq 1$ , as required.
(iv) Assume that $\alpha$ is an infinite cardinal. Then, by Corollary 6.6, $J(R[X_{\alpha}])$

is nil. Let $\{S_{i}|i\in l\}$ be the set of all finite subsets of $X_{a}$ and let $M_{i}$ be the
submonoid of $[X_{\alpha}]$ generated by $S_{i},$ $i\in l$ . Given $a\in R$ , it follows from Lemma
3.9 (iii) that $a\in J_{a}(R)$ if and only if $a\in J(RM_{i})$ for all $i\in l$ . Since $\alpha$ is an
infinite cardinal, it follows that $a\in J_{\alpha}(R)$ if and only if $a\in J_{n}(R)$ for all $n\geqq 1$ .

(v) Owing to (i), we have

$R[X_{\alpha}]/J(R[X_{\alpha}])\cong(R/J_{a}(R))[X_{\alpha}]$

Hence $(R/J_{\alpha}(R))[X_{\alpha}]$ is semiprimitive and, by (i), $J_{a}(R/J_{\alpha}(R))=0$ . $\blacksquare$

Turning to skew polynomial rings, let $\lambda$ be an automorphism of $R$ . Recall
that the corresponding skew polynomial ring $R^{\lambda}[x]$ is the skew monoid ring
of the free commutative monoid $[x]$ generated by $x$ with respect to $\lambda$ . Thus
each element of $R^{\lambda}[x]$ can be written uniquely in the form

$\sum_{i\approx 0}r_{\ell X^{i}}$ $(r\in R)$

with finitely many $r_{i}$ distinct from zero. Addition is defined in the usual man-
ner, while multiplication is determined by the rule

$x^{i}r=\lambda^{i}(r)x^{i}$ for all $r\in R,$ $i\geqq 0$

It will also be convenient to consider the corresponding skew group ring $ R^{\lambda}\langle x\rangle$ ,

where $\langle x\rangle$ is an infinite cyclic group generated by $x$ . In what follows, we put
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$l=\{r\in R|rx\in J(R^{\lambda}[x])\}$ , $K=J(R^{\lambda}\langle x\rangle)\cap R$ (1)

LEMMA 7.2. (i) Both 1 and $K$ are $\lambda$-invariant ideals of $R$ .
(ii) $I\cap J(R)=R\cap J(R_{\gamma}[x])$ .

PROOF. The map $\lambda^{*}:$ $R^{\lambda}[x]\rightarrow R^{\lambda}[x]$ induced by $\lambda$ is obviously an auto-
morphism of $R^{\lambda}[x]$ . Hence, if $r\in I$ , then $\lambda^{*}(rx)=\lambda(r)x\in J(R^{\lambda}[x])$ and so $\lambda(r)\in l$ .
This shows that $\lambda(I)\subseteqq l$ and a similar argument shows that $\lambda^{-1}(l)\subseteqq I$ . The
proof that $K$ is $\lambda$-invariant is identical to the above proof.

(ii) By Lemma 3.3 (ii), $R\cap J(R^{i}[x])\subseteqq J(R)$ and hence $ R\cap J(R^{\lambda}[x])\subseteqq$

$l\cap J(R)$ . Conversely, let $r\in l\cap J(R)$ . Then, for all $i\geqq 0$ , $r_{i}\in R$ , $ r(r_{i}x^{i})\in$

$J(R^{\lambda}[x])$ . Hence $1-rf$ is a unit of $R^{\lambda}[x]$ for all $f\in R^{\lambda}[x]$ . Thus $r\in J(R^{\lambda}[x])$ ,

as required. $\blacksquare$

THEOREM 7.3. (Bedi and Ram (1980)). With the notation above, the following
properties hold:

(i) $ J(R^{\lambda}[x])=l\cap J(R)+lx+\cdots+lx^{n}+\cdots$ .
(ii) $ J(R^{\lambda}\langle x\rangle)=K^{\lambda}\langle x\rangle\subseteqq J(R)^{\lambda}\langle x\rangle$ .
(iii) $K\subseteqq l$ and $J(R^{\lambda}\langle x\rangle)\cap R^{\lambda}[x]\subseteqq J(R^{\lambda}[x])$ .
(iv) If $\lambda$ is of locally finite order, then 1 and $K$ are nil ideals and $J(R^{\lambda}[x])$

$=I^{\lambda}[x]$ .
(v) If $\lambda$ is of locally finite order and $J(R)$ is locally nilpotent, then
(a) $J(R^{\lambda}[x])=J(R)^{\lambda}[x]$ .
(b) $ J(R^{\lambda}\langle x\rangle)=J(R)^{\lambda}\langle x\rangle$ .
(c) $J(R^{\lambda}[x])$ and $J(R^{\lambda}\langle x\rangle)$ are locally nilpotent.

PROOF. (i) This is direct consequence of Lemma 7.2 (ii) and Theorem 6.16.
(ii) Apply Corollary 5.6 to the special case where $N=1$ .
(iii) Given $r\in K$, we have $rx\in J(R^{\lambda}\langle x\rangle)$ . Let $f=\Sigma_{i=0}^{n}a_{i}x^{i}$ be a typical

element of $R^{\lambda}[x]$ . Since $rxf\in J(R^{\lambda}\langle x\rangle)$ , there exists $\gamma=\Sigma_{i\in Z}b_{i}x^{i}\in R^{\lambda}\langle x\rangle$ such
that

$rx(\sum_{i=0}^{n}a_{i}x^{i})+\sum_{i\in Z}b_{i}x^{i}+rx(\sum_{i=0}^{n}a_{i}x^{i})(\sum_{i\in Z}b_{i}x^{i})=0$

It follows that $\gamma\in R^{\lambda}[x]$ and so $K\subseteqq l$ . The last assertion is a consequence of
(ii) and the fact that $K\subseteqq l$ .

(iv) Assume that $\lambda$ is of locally finite order. Then, by Theorem 6.16 (ii),

1 is a nil ideal. Since $K\subseteqq I,$ $K$ is also a nil ideal. Since 1 is nil, $l\subseteqq J(R)$ and
so, by (i), $J(R^{\lambda}[x])=l^{\lambda}[x]$ .

(v) Assume that $\lambda$ is of locally finite order and $J(R)$ is locally nilpotent.
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Since $\lambda$ is of locally finite order, it follows from (iv) that $J(R^{\lambda}[x])\subseteqq J(R)^{\lambda}[x]$ .
Also, by (ii), $ J(R^{\lambda}\langle x\rangle)\subseteqq J(R)^{\lambda}\langle x\rangle$ . It will be shown that $J(R)^{\lambda}[x]$ is locally

nilpotent, which will prove (a) and the first part of (c). A similar argument

will show that $J(R^{\lambda}\langle x\rangle)$ is locally nipotent, which will prove (b) and the second
part of (c).

Let $S$ be any finite subset of $J(R)^{\lambda}[x]$ , let $B$ be the set of all coefficients
of elements of $S$ and let $C=\bigcup_{i\geq 0}\lambda^{i}(B)$ . Since $B$ is a finite set and $\lambda$ is of locally

finite order, $C$ is a finite subset of $J(R)$ . But $J(R)$ is locally nilpotent, hence
$C^{m}=0$ for some $m\geqq 1$ . Therefore $S^{m}=0$ and the result follows. $\blacksquare$

In what follows, rad$(R)$ denotes the prime radical of $R$ .

THEOREM 7.4. (Ram (1984)). Let $R$ be a ring satisfying the ascending chain
condition on left annihilators and let $\lambda$ be an automorphism of R. Then the fol-
lowing conditions are equivalent:

(i) $J(R^{\lambda}\langle x\rangle)\neq 0$ .
(ii) $J(R^{\lambda}[x])\neq 0$ .
(iii) $R$ has a nonzero $\lambda$-invariant $\lambda$-nil ideal.
(iv) $R$ has a nonzero right nil ideal.
(v) rad$(R)\neq 0$ .
(vi) rad$(R^{\lambda}\langle x\rangle)\neq 0$ .
(vii) rad $(R^{\lambda}[x])\neq 0$ .

PROOF. $(i)\Rightarrow(ii)$ : Owing to Theorem 7.3 (ii), (iii), $1\neq 0$ and so $J(R^{\lambda}[x])$

$\neq 0$ , by the definition of $I$ .
$(ii)\Rightarrow(iii)$ : By Lemma 7.1 (i), 1 is $\lambda$-invariant, while by Theorem 6.16 (ii),

1 is $\lambda$-nil. Since $J(R^{\lambda}[x])\neq 0$ , Theorem 7.3 (i) also tells us that $1\neq 0$ , as re-
quired.

$(iii)\Rightarrow(iv)$ : This was established in the proof of Lemma 6.8.
$(v)\Rightarrow(vi)$ : Let $A=\{l(Rx)|xRx=0, x\neq 0\}$ . Since rad$(R)\neq 0$ , the set $A$ is

nonempty. Let $l(Rr)$ be a maximal element of $A$ . Then a straighforward
argument shows that $rR\lambda^{n}(r)=0$ for all $n\in Z$ . Hence $rR^{\lambda}\langle x\rangle r=0$ and so
rad$(R^{\lambda}\langle x\rangle)\neq 0$ .

$(vi)\Rightarrow(i)$ : Apply the inclusion rad$(R^{\lambda}\langle x\rangle)\subseteqq J(R^{\lambda}\langle x\rangle)$ .
$(vi)\Rightarrow(vii)$ : Let $J$ be a nonzero nilpotent ideal of $ R^{\lambda}\langle x\rangle$ . Then $J\cap R^{\lambda}[x]$

is a nonzero nilpotent ideal of $R^{\lambda}[x]$ . Hence rad $(R^{\lambda}[x])\neq 0$ .
$(vii)\Rightarrow(ii)$ : This follows from the inclusion rad$(R^{\lambda}[x])\subseteqq J(R^{\lambda}[x])$ . $\blacksquare$
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