TSUKUBA J. MATH.
Vol. 16 No. 1 (1992), 11—18

MAXIMAL FUNCTIONS OF PLURISUBHARMONIC FUNCTIONS

By

Hong Oh KiMm and Yeon Yong PARK

Abstract. We show that for nonnegative plurisubharmonic functions
on the unit ball of C" the admissible maximal functions are dominated
by the radial maximal functions in L?-mean. This gives another
characterization of the class M? of holomorphic functions and its
invariance under the compositions by automorphisms of the unit ball.
As a consequence of the invariance all onto endomorphisms of M!
(n=1) are characterized.

1. Introduction.

Let B be the unit ball of C*(n=1) and let ¢ denote the Lebesgue measure
on S=0B, normalized so that ¢(S)=1. For a function u: B—C, the radial
maximal function Hu on S is defined by

Hu(p)=sup{|u(rp)|: 0=r<1}, g&S.
For a>1 and p<S, we let
Da={ze B: [1-<z, > < F(1—12/%}.
The admissible maximal function #,u on S is defined by

Hou(n)=sup{|u(z)| : 2&Da(y)}.

We prove the following theorem.

THEOREM I. For 0<p<co, there is a positive constant C=C(n, p, a) such
that if u=0 is plurisubharmonic in B then

Ssﬂau(v)pda(ﬂ)é CSSJMu(n)”da(n).

For n=1, the corresponding theorem for harmonic functions on the upper
half plane appears in [3, Theorem 3.6].
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For an application of Theorem I, we consider the class M?(B)(0<p <) of
holomorphic functions f on B for which

[ Gog* (P da(m<eo.

For n=1, these classes as topological algebras have been studied in [7, 10] for
p>1 and in [2, 5, 6] for p=1. For n=1, it is shown in that

\UHS "NMPSM'S N,
p>0 p>1

where HP is the usual Hardy space and N* is the Smirnov class on B. The
main theorem of concerns with the boundary behavior of functions in the
class MP(p=1), with its application to outer factors of functions in M' when
n=1.

If we take u=log*|f| with holomorphic functions f on B in Theorem I,
we get the following characterization of M? immediately.

THEOREM II. A holomorphic function f on B belongs to MP if and only if

[ Gtog* o femIPdatn)< .

Since every automorphism of B maps any radius into a curve which ap-
proaches the boundary nontangentially, the following corollary is immediate.

COROLLARY Ill. The class MP(0< p< o) is invariant under the compositions
of automorphisms of B.

When p>1, this fact is not new because M?(p>1) can be defined by means
of boundary functions. See [2,7]. As a consequence of this corollary we can
characterize all onto algebra endomorphisms of M' for the case n=1. For the
case p>1, see [7].

THEOREM IV. Let n=1. Then I': M*—>M" is an onto algebra endomorphism
if and only if ,
I'(f)=fep, feM
for some automorphism ¢ of the unit disc U of C'. In particular, I" is invertible
in this case and I'"'(f)=f-¢™!, fEM".

The proof will be given in the last section. The theorem might be true
for n>1 but we do not have a proof.
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2. An inequality of Hardy and Littlewood.

The following lemma is due to Hardy and Littlewood. It is stated in [3, 4]
for |u| with harmonic functions u but the proof is exactly the same for non-
negative subharmonic functions.

2.1. LEMMA. If u=0 is subharmonic on the disc D(z,, R) with center at z,
and radius R>0 in the complex plane C and if 0<p<oco, then

1 1/p
ﬂ.’Rz SSD(Zo.R) u(Z)pdxdy) ’

where K=K (p) is a positive constant independent of u.

u(zg)=K

The next lemma will be a polydisc version of the above inequality. Its
statement is suitably adapted for the proof of Theorem I.

Let z=+{=B and R>0. Let {;, ---, {,=S be such that {, Z;, -, {, form
an orthonomal basis for C*. Define a polydisc A(z, R) with respect to the basis
& & -+, Ln at z as follows:

A(Z’ R)EA(Z, R; C; CZ’ ] {n)

={w=z++ DAL [AI<R, |4 <R, 25 <n}.

2.2. LEMMA. Let A=A(z, RYCB. If u=0 s plurisubharmonic in B and
0<p<co, then

w2 <K §Au(w>z’dmn<w),

1
ma(A)

where K=K(n, p) is a positive constant independent of u and dm, is the Lebesgue
measure on C".

PROOF. We define
‘U(Z, 22; "ty zn)zu(2+zc+22c2+ +2nCn)-
Since u is plurisubharmonic in B, v is an n-subharmonic function for |A|<R,
| ;| <RY¥2<j<n). We now apply Lemma 2.1 n times to v. The positive
constants K’s in the following are not the same in each occurence but are in-
dependent of v.

1
v(0, .-+, 0)p§K~R—SMnKm/2v(O, vy 0, 2z)dmy(4n)
g ..
<k 1 SS 20, Aoy -+, An)Pdma(Ae) -+ dma(Az)
= Rn_l [2j|<R1/2(25jsn) » A2 y An 1\A2 N\An
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SKl

SK e it cmticasyen PR 0 AP AMACA) < d(Re).

Therefore, we have
1

u(z)?<K —7y)

SA u(w)Pdm, (w). Q.E.D.

3. Geometric lemmas.

3.1. LEMMA. Let z=r{< B and let A(z, e(1—r®))C B for a choice of §s, -,
.S and €>0. If r>1/2 and wsA(z, (1—r?)) then

r—o(l—rH<iw|<r+4o(1—r?)

for some choice of a positive constant 6=0(n, &) independent of z and {’s.
PROOF. Suppose w=z+A{+327A,{;SA(z; e(1—7?). Then

|wlP=1r421% 314 PSP+ 1212421 2] +(n—De(L—*)

<ri4(n+2)e(1—r?).
Also,
lw|*Z(@—|A])}=r=2r|A|+|2]*

=2r’—2|2|zr*—2e(1—1?).
If »>1/2 then

Hw|—r|22||lw|*—r?| =2(n+2)e(1—77).
So we can take d=2(n-+2)e. Q.E.D.

The following lemma appears in [1] but its proof is included for the sake
of completeness.

3.2. LEMMA. Let B>a>1 and z=r{=D.(n). Then there is a positive con-
stant e=¢&(n, a, B) such that
Az, (1—7r*))CDg(n)
for any choice of &, -+, LnES.
PROOF. Suppose w=z+Al+ 323 4,{;SA(z, e(1—7?%). Then |2|<e(l—r?*) and

and |4;) <{e(1—7*)}'%. By the orthogonality of { and {;, the Schwarz lemma
and the hypothesis z& D,(7), we have

[<Cs > 1=148s n—70>1
=l|p—rgl
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SVZ 1L, i
< {a(l—ro}e.

We compute

[ 1—<w, 77>l=’1—(<rc, >+ 4<E, 7)>+§b<51, 7}>)'
< S A=) el—r)+ S Hel—r} 1y )

o _ 172 ,,1/2 .2
={F+e+(n—Dera ba—r?

On the other hand, from the proof of Lemma 3.1, we have
1—|w|?={1—(n+2)e}(1—r?).
Therefore we can choose eé=¢(n, a, §)>0 so small that

1w, I<E 1w,

for any weA(z, e(1—7*%). Therefore A(z, e(1—7*)CDs(7n). Q.E.D.
We define the radial projection = from B\{0} onto S as
z(w)=w/|lwl|, we BN {0} .
For »€S and >0,
Q(n, 0)={¢=S: 11—, pyl<é}
is the nonisotropic “ball” of radius ¢'/? around 7. The volume ¢(Q(7%, 9)) is
roughly propotional to 4", i.e., a(Q(%, 0))=0™. See [9, Proposition 5.1.4].
33. LEMMA. Let z=r{&D,(y), r>0 and B>a>1. Then there is a positive
constant e=¢e(n, a, B) so small that
B
7(AGz, s(1—rNCQ(n, (5 +1)a-r)
for any choice of §s, -, {a.
PrROOF. Chooce 8’ so that §>B'>a. Let w=pwe<A(z, e(1—r?)). Then
[ 1—<w, p=]1—-<pw, n>—1—pXo, 7|
S 1—<w, P |+(1—p%.

By Lemma 3.2, we can choose ¢>0 so small that

1w, < E-1—r.
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From the proof of Lemma 3.1, we have

1—p?S(14-2e)(1—1?).
Therefore we have

11—<w, 7] <( ‘le +1+25)(1—r2).

If we choose e=¢(n, a, 8)>0 even smaller so that 8'/2+1+4-2¢<f/2+1, we have

1<, PI<(5+1)a—r;

so that w=Q(y, (B/2+1)(1—r?)). Q.E.D.

4. Proof of Theorem 1.

It suffices to prove the theorem for a modified admissible maximal function
(with the same notation) as

Hou(p=sup{lu()| : 1212 5, 2= Duln)}

Let z=r{=D.(n), r=1/2 and >a. By Lemmas 3.1, 3.2 and 3.3, we can choose
positive constants e=e¢(n, a, 8) and d=0d(n, e)=0(n, a, B) so that

(i) A=Az, e(1—r*)CDg(n) for a choice of {,, -+, {a,

(ii) #(A)CQ(y, (B/2+1)1—7?),

(iii) r—o(l—r)<|w|<r+o(1—r?) if weA.
Using Lemma 2.2, we have the following computation in which the constants
K=K(n, p, 0) are not the same in each occurrence, but are independent of u.

u(z)’*<K Au(w)””dmn(w)

=)
(1_r2)n+|
1 r+0(1-r2)
Tl_rz)nﬂ S
1

KWSQmu(w)Pﬂda(w)

<K ,o““dpg Mu(w)?'?d o(w)

r-8(1-72) Q7. (Br2+13(1~72)

A

gxﬁmgqmu(w)waa(m)

S KM{(Hu)*?} (),

where M is the Hardy-Littlewood maximal function operator on S. Therefore
we have
{Mau(} P2 KM{(HMu)?'?}(n).

We note that the constan K is eventally dependent on 7, p, « from the choice
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of B and 0. By the Hardy-Littlewood maximal theorem [9, Theorem 5.2.6], we
have

Ssﬂtau(n)pdo(rj)é el u(nrda(n.

for some positive constant C=C(n, p, a) indpendent of u. Q.E.D.

5. Proof of Theorem IV.

By corollary III, every automorphism ¢ of U defines an algebra isomorphism
I'(f)=f-¢, p=M'. Conversely, let I" be any onto endomorphism of M! We
will follow the corresponding proof for the case N* [8]. Let ¢=I(z) and let
A=U. (z denotes the identity function on U.) Define 7(f)=I(f)R), feM:.
Since 7 is a multiplicative linear functional on M!, 7 corresponds to the point evalua-
tion at some S<U by Theorem 6.4 of [6]. Thus B=7(2)=1"(z)(A)=¢(A). Hence
oAU for all 2eU and I'(f)( D)= f(p(A), feM', A=U. Since I' is onto, ¢ is
not constant. Thus ¢(U) is open in U. Therefore /' is one-to-one (and onto).
Thus /"' is also an onto endomorphism, so I™'(f)=f-¢, feM', for some
holomorphic self-map ¢ of U. But then z=I1"I""'(2)=1"(¢)=¢-¢ and ¢-¢=z.
Therefore ¢ is an automorphism of U. Q.E.D.
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