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MAXIMAL FUNCTIONS OF PLURISUBHARMONIC FUNCTIONS

By

Hong Oh KIM and Yeon Yong PARK

Abstract. We show that for nonnegative plurisubharmonic functions
on the unit ball of $C^{n}$ the admissible maximal functions are dominated
by the radial maximal functions in $L^{p}$ -mean. This gives another
characterization of the class $M^{p}$ of holomorphic functions and its
invariance under the compositions by automorphisms of the unit ball.
As a consequence of the invariance all onto endomorphisms of $M^{1}$

$(n=1)$ are characterized.

1. Introduction.

Let $B$ be the unit ball of $C^{n}(n\geqq 1)$ and let $\sigma$ denote the Lebesgue measure
on $S=\partial B$ , normalized so that $\sigma(S)=1$ . For a function $u;B\rightarrow C$ , the radial
maximal function $mu$ on $S$ is defined by

$mu(\eta)=\sup\{|u(r\eta)| : 0\leqq r<1\}$ , $\eta\in S$ .
For $\alpha>1$ and $\eta\in S$ , we let

$D_{\alpha}(\eta)=\{z\in B:|1-<z,$ $\eta>|<\frac{\alpha}{2}(1-|z|^{2})\}$ .
The admissible maximal function $St_{\alpha}u$ on $S$ is defined by

$\ovalbox{\tt\small REJECT}_{\alpha}u(\eta)=\sup\{|u(z)| : z\in D_{\alpha}(\eta)\}$ .
We prove the following theorem.

THEOREM I. For $ 0<p<\infty$ , there is a positive constant $C=C(n, p, \alpha)$ such
that if $u\geqq 0$ is plurisubharmonic in $B$ then

$\int_{s}\ovalbox{\tt\small REJECT}_{\alpha}u(\eta)^{p}d\sigma(\eta)\leqq C\int_{S}\ovalbox{\tt\small REJECT} u(\eta)^{p}d\sigma(\eta)$ .

For $n=1$ , the corresponding theorem for harmonic functions on the upper
half plane appears in [3, Theorem 3.6].
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For an application of Theorem I, we consider the class $M^{p}(B)(0<p<\infty)$ of
holomorphic functions $f$ on $B$ for which

$\int_{S}(\log^{+}\ovalbox{\tt\small REJECT} f(\eta))^{p}d\sigma(\eta)<\infty$ .

For $n=1$ , these classes as topological algebras have been studied in $[7, 10]$ for
$p>1$ and in [2, 5, 6] for $p=1$ . For $n\geqq 1$ , it is shown in [2] that

$\bigcup_{p>0}H^{p}\subsetneqq\bigcap_{p>1}M^{p}\subsetneqq M^{1}\subsetneqq N^{+}$ ,

where $H^{p}$ is the usual Hardy space and $N^{+}$ is the Smirnov class on $B$ . The
main theorem of [2] concerns with the boundary behavior of functions in the
class $M^{p}(p\geqq 1)$ , with its application to outer factors of functions in $M$ ‘ when
$n=1$ .

If we take $u=\log^{+}|f|$ with holomorphic functions $f$ on $B$ in Theorem I,

we get the following characterization of $M^{p}$ immediately.

THEOREM II. A holomorphic function $f$ on $B$ belongs to $M^{p}$ if and only if

$\int_{s}(\log^{+}\ovalbox{\tt\small REJECT}_{a}f(\eta))^{p}d\sigma(\eta)<\infty$ .

Since every automorphism of $B$ maps any radius into a curve which ap-
proaches the boundary nontangentially, the following corollary is immediate.

COROLLARY III. The class $M^{p}(0<p<\infty)$ is invariant under the compositions

of automorphisms of $B$ .

When $p>1$ , this fact is not new because $M^{p}(p>1)$ can be defined by means
of boundary functions. See $[2, 7]$ . As a consequence of this corollary we can
characterize all onto algebra endomorphisms of $M^{1}$ for the case $n=1$ . For the
case $p>1$ , see [7].

THEOREM IV. Let $n=1$ . Then $\Gamma:M^{1}\rightarrow M^{1}$ is an onto algebra endomorphism

if and only if
$\Gamma(f)=f\circ\varphi$ , $f\in M^{1}$

for some automorphism $\varphi$ of the unit disc $U$ of $C^{1}$ . In particular, $\Gamma$ is invertible
in this case and $\Gamma^{-1}(f)=f\circ\varphi^{-1},$ $f\in M^{1}$ .

The proof will be given in the last section. The theorem might be true
for $n>1$ but we do not have a proof.
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2. An inequality of Hardy and Littlewood.

The following lemma is due to Hardy and Littlewood. It is stated in $[3, 4]$

for $|u|$ with harmonic functions $u$ but the proof is exactly the same for non-
negative subharmonic functions.

2.1. LEMMA. If $u\geqq 0$ is subharmonic on the disc $D(z_{0}, R)$ with center at $z_{0}$

and radius $R>0$ in the complex plane $C$ and if $ 0<p<\infty$ , then

$u(z_{0})\leqq K(\frac{1}{\pi R^{2}}\int\int_{D(z_{0}.R)}u(z)^{p}dxdy)^{1/p}$ ,

where $K=K(p)$ is a positive constant independent of $u$ .
The next lemma will be a polydisc version of the above inequality. Its

statement is suitably adapted for the proof of Theorem I.
Let $z=r\zeta\in B$ and $R>0$ . Let $\zeta_{2},$

$\cdots,$
$\zeta_{n}\in S$ be such that $\zeta,$ $\zeta_{2},$

$\cdots,$
$\zeta_{n}$ form

an orthonomal basis for $C^{n}$ . Define a polydisc $\Delta(z, R)$ with respect to the basis
$\zeta,$ $\zeta_{2},$

$\cdots,$
$\zeta_{n}$ at $z$ as follows:

$\Delta(z, R)\equiv\Delta(z, R;\zeta, \zeta_{2}, \cdots, \zeta_{n})$

$=\{w=z+\lambda\zeta+\sum_{2}^{n}\lambda_{j}\zeta_{j}$ : $|\lambda|<R,$ $|\lambda_{j}|<R^{1/2},2\leqq j\leqq n\}$ .

2.2. LEMMA. Let $\Delta=\Delta(z, R)\subset B$ . If $u\geqq 0$ is plurisubharmonic in $B$ and
$ 0<p<\infty$ , then

$u(z)^{p}\leqq K\frac{1}{m_{n}(\Delta)}\int_{\Delta}u(w)^{p}dm_{n}(w)$ ,

where $K=K(n, p)$ is a positive constant independent of $u$ and $dm_{n}$ is the Lebesgue
measure on $C^{n}$ .

PROOF. We define
$v(\lambda, \lambda_{2}, \cdots, \lambda_{n})=u(z+\lambda\zeta+\lambda_{2}\zeta_{2}+\cdots+\lambda_{n}\zeta_{n})$ .

Since $u$ is plurisubharmonic in $B,$ $v$ is an n-subharmonic function for $|\lambda|<R$ ,
$|\lambda_{j}|<R^{1/2}(2\leqq j\leqq n)$ . We now apply Lemma 2.1 $n$ times to $v$ . The positive
constants $K\prime s$ in the following are not the same in each occurence but are in-
dependent of $v$ .

$v(0, \cdots, 0)^{p}\leqq K\frac{1}{R}\int_{|\lambda_{n^{1<}}R^{1/2}}v(0, \cdots, 0, \lambda_{n})dm_{1}(\lambda_{n})$

$\leqq\cdots$

$\leqq K\frac{1}{R^{n-1}}\int\cdots\int_{|\lambda_{J^{|<R^{1}/2_{(2\leq j\leq n)}}}}v(0, \lambda_{2}, \cdots, \lambda_{n})^{p}dm_{1}(\lambda_{2})\cdots dm_{1}(\lambda_{n})$
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$\leqq K\frac{1}{R^{n+1}}\int\cdots\int_{\lambda_{1}}||<|v(\lambda_{1}, \cdots, \lambda_{n})^{p}dm_{1}(\lambda_{1})\cdots dm_{1}(\lambda_{n})$ .

Therefore, we have

$u(z)^{p}\leqq K\frac{1}{m_{n}(\Delta)}\int_{\Delta}u(w)^{p}dm_{n}(w)$ . Q. E. D.

3. Geometric lemmas.

3.1. LEMMA. Let $z=r\zeta\in B$ and let $\Delta(z, \epsilon(1-r^{2}))\subset B$ for a choice of $\zeta_{2},$ $\cdots$ ,
$\zeta_{n}\in S$ and $\epsilon>0$ . If $r>1/2$ and $w\in\Delta(z, \epsilon(1-r^{2}))$ then

$r-\delta(1-r^{2})<|w|<r+\delta(1-r^{2})$

for some choice of a positive constant $\delta=\delta(n, \epsilon)$ independent of $z$ and $\zeta\prime s$ .

PROOF. Suppose $w=z+\lambda\zeta+\Sigma_{2}^{n}\lambda_{j}\zeta_{j}\in\Delta(z;\epsilon(1-r^{2}))$ . Then

$|w|^{2}=|r+\lambda|^{2}+\sum_{2}^{n}|\lambda_{J}|^{2}\leqq r^{2}+|\lambda|^{2}+2|\lambda|+(n-1)\epsilon(1-r^{2})$

$\leqq r^{2}+(n+2)\epsilon(1-r^{2})$ .
Also,

$|w|^{2}\geqq(r-|\lambda|)^{2}=r^{2}-2r|\lambda|+|\lambda|^{2}$

$\geqq r^{2}-2|\lambda|\geqq r^{2}-2\epsilon(1-r^{2})$ .
If $r>1/2$ then

$||w|-r|\leqq 2||w|^{2}-r^{f}|\leqq 2(n+2)\epsilon(1-r^{2})$ .
So we can take $\delta=2(n+2)\epsilon$ . Q. E.D.

The following lemma appears in [1] but its proof is included for the sake
of completeness.

3.2. LEMMA. Let $\beta>\alpha>1$ and $z=r\zeta\in D_{\alpha}(\eta)$ . Then there is a positive con-
stant $\epsilon=\epsilon(n, \alpha, \beta)$ such that

$\Delta(z, \epsilon(1-r^{2}))\subset D_{\beta}(\eta)$

for any choice of $\zeta_{2},$
$\cdots,$

$\zeta_{n}\in S$ .

PROOF. Suppose $w=z+\lambda\zeta+\Sigma_{2}^{n}\lambda_{J}\zeta_{j}\in\Delta(z, \epsilon(1-r^{2}))$ . Then $|\lambda|<\epsilon(1-r^{2})$ and
and $|\lambda_{f}|<\{\epsilon(1-r^{2})\}^{1/2}$ . By the orthogonality of $\zeta$ and $\zeta_{J}$ , the Schwarz lemma
and the hypothesis $z\in D_{\alpha}(\eta)$ , we have

$|\langle\zeta_{j}, \eta\rangle|=|\langle\zeta_{j}, \eta-r\zeta\rangle|$

$\leqq|\eta-r\zeta|$
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$\leqq\sqrt{}\overline{2}|1-\langle r\zeta, \eta\rangle|^{1/2}$

$\leqq\{\alpha(1-r^{2})\}^{1/2}$ .
We compute

$|1-\langle w, \eta\rangle|=|1-(\langle r\zeta, \eta\rangle+\lambda\langle\zeta, \eta\rangle+\sum_{2}^{n}\lambda_{j}\langle\zeta_{j}, \eta\rangle)|$

$\leqq\frac{\alpha}{2}(1-r^{2})+\epsilon(1-r^{2})+\sum_{2}^{n}\{\epsilon(1-r^{2})\}^{1/2}|\langle\zeta_{j}, \eta\rangle|$

$\leqq\{\frac{\alpha}{2}+\epsilon+(n-1)\epsilon^{1/2}\alpha^{1/2}\}(1-r^{2})$

On the other hand, from the proof of Lemma 3.1, we have

$1-|w|^{2}\geqq\{1-(n+2)\epsilon\}(1-r^{2})$ .
Therefore we can choose $\epsilon=\epsilon(n, \alpha, \beta)>0$ so small that

$|1-\langle w, \eta\rangle|<\frac{\beta}{2}(1-|w|^{2})$ ,

for any $w\in\Delta(z, \epsilon(1-r^{2}))$ . Therefore $\Delta(z, \epsilon(1-r^{2}))\subset D_{\beta}(\eta)$ . Q. E. D.

We define the radial projection $\pi$ from $B\backslash \{0\}$ onto $S$ as
$\pi(w)=w/|w|$ , $w\in B\backslash \{0\}$ .

For $\eta\in S$ and $\delta>0$ ,

$Q(\eta, \delta)=\{\zeta\in S:|1-\langle\zeta, \eta\rangle|<\delta\}$

is the nonisotropic “ball” of radius $\delta^{1/2}$ around $\eta$ . The volume $\sigma(Q(\eta, \delta))$ is
roughly propotional to $\delta^{n}$ , i.e., $\sigma(Q(\eta, \delta))\approx\delta^{n}$ . See [9, Proposition 5.1.4].

33. LEMMA. Let $z=r\zeta\in D_{\alpha}(\eta),$ $r>0$ and $\beta>\alpha>1$ . Then there is a positive
constant $\epsilon=\epsilon(n, \alpha, \beta)$ so small that

$\pi(\Delta(z, \epsilon(1-r^{2}))\subset Q(\eta,$ $(\frac{\beta}{2}+1)(1-r^{2}))$

for any choice of $\zeta_{2},$
$\cdots,$

$\zeta_{n}$ .

PROOF. Chooce $\beta^{\prime}$ so that $\beta>\beta^{\prime}>\alpha$ . Let $w=\rho w\in\Delta(z, \epsilon(1-r^{2}))$ . Then

$|1-\langle\omega, \eta\rangle|=|1-\langle\rho\omega, \eta\rangle-(1-\rho)\langle\omega, \eta\rangle|$

$\leqq|1-\langle\omega, \eta\rangle|+(1-\rho^{2})$ .
By Lemma 3.2, we can choose $\epsilon>0$ so small that

$|1-\langle w, \eta\rangle|<\frac{\beta^{\prime}}{2}(1-r^{2})$ .
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From the proof of Lemma 3.1, we have

$1-\rho^{2}\leqq(1+2\epsilon)(1-r^{2})$ .
Therefore we have

$|1-\langle\omega, \eta\rangle|<(\frac{\beta^{\prime}}{2}+1+2\epsilon)(1-r^{2})$ .

If we choose $\epsilon=\epsilon(n, \alpha, \beta)>0$ even smaller so that $\beta^{\prime}/2+1+2\epsilon<\beta/2+1$ , we have

$|1-\langle\omega, \eta\rangle|<(\frac{\beta}{2}+1)(1-r^{2})$ ;

so that $\omega\in Q(\eta, (\beta/2+1)(1-r^{2}))$ . Q. E.D.

4. Proof of Theorem I.

It suffices to prove the theorem for a modified admissible maximal function
(with the same notation) as

$ffl_{a}u(\eta)=\sup\{|u(z)|$ : $|z|\geqq\frac{1}{2},$ $z\in D_{\alpha}(\eta)\}$ .

Let $z=r\zeta\in D_{\alpha}(\eta),$ $r\geqq 1/2$ and $\beta>\alpha$ . By Lemmas 3.1, 3.2 and 3.3, we can choose
positive constants $\epsilon=\epsilon(n, \alpha, \beta)$ and $\delta=\delta(n, \epsilon)=\delta(n, \alpha, \beta)$ so that

(i) $\Delta=\Delta(z, \epsilon(1-r^{2}))\subset D_{\beta}(\eta)$ for a choice of $\zeta_{2},$
$\cdots,$

$\zeta_{n}$ ,

(ii) $\pi(\Delta)\subset Q(\eta, (\beta/2+1)(1-r^{2}))$ ,
(iii) $r-\delta(1-r^{2})<|w|<r+\delta(1-r^{2})$ if $ w\in\Delta$ .

Using Lemma 2.2, we have the following computation in which the constants
$K=K(n, p, \delta)$ are not the same in each occurrence, but are independent of $u$ .

$u(z)^{p/2}\leqq K\frac{1}{(1-r^{2})^{n+1}}\int_{\Delta}u(w)^{p/2}dm_{n}(w)$

$\leqq K\frac{1}{(1-r^{2})^{n+1}}\int_{r-\delta(1- r^{2})}^{r+\delta(1-r2)}\rho^{2n-1}d\rho\int_{Q(\eta(\beta/2+1)(1-r^{2_{))}}}\ovalbox{\tt\small REJECT} u(\omega)^{p/2}d\sigma(\omega)$

$\leqq K\frac{1}{(1-r^{2})^{n}}\int_{Q}Ru(\omega)^{p/2}d\sigma(\omega)$

$\leqq K\frac{1}{\sigma(Q)}\int_{Q}mu(\omega)^{p/2}d\sigma(\omega)$

$\leqq KM\{(\ovalbox{\tt\small REJECT} u)^{p/2}\}(\eta)$ ,

where $M$ is the Hardy-Littlewood maximal function operator on $S$ . Therefore
we have

$\{\mathscr{R}_{\alpha}u(\eta)\}^{p/2}\leqq KM\{(\mathscr{R}u)^{p/2}\}(\eta)$ .

We note that the constan $K$ is eventally dependent on $n,$ $p,$ $\alpha$ from the choice
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of $\beta$ and $\delta$ . By the Hardy-Littlewood maximal theorem [9, Theorem 5.2.6], we
have

$\int_{S}.St_{\alpha}u(\eta)^{p}d\sigma(\eta)\leqq C\int_{S}B\ell u(\eta)^{p}d\sigma(\eta)$ .

for some positive constant $C=C(n, p, \alpha)$ indpendent of $u$ . Q.E.D.

5. Proof of Theorem IV.

By corollary III, every automorphism $\varphi$ of $U$ defines an algebra isomorphism
$\Gamma(f)=f\circ\varphi,$ $\varphi\in M^{1}$ . Conversely, let $\Gamma$ be any onto endomorphism of $M^{1}$ . We
will follow the corresponding proof for the case $N^{+}[8]$ . Let $\varphi=\Gamma(z)$ and let
$\lambda=U$ . ( $z$ denotes the identity function on $U.$ ) Define $\gamma(f)=\Gamma(f)(\lambda)$ , $f\in M^{1}$ .
Since $\gamma$ is a multiplicative linear functional on $M^{1},$ $\gamma$ corresponds to the point evalua-
tion at some $\beta\in U$ by Theorem 6.4 of [6]. Thus $\beta=\gamma(z)=\Gamma(z)(\lambda)=\varphi(\lambda)$ . Hence
$\varphi(\lambda)\in U$ for all $\lambda\in U$ and $\Gamma(f)(\lambda)=f(\varphi(\lambda)),$ $f\in M^{1},$ $\lambda\in U$ . Since $\Gamma$ is onto, $\varphi$ is
not constant. Thus $\varphi(U)$ is open in $U$ . Therefore $\Gamma$ is one-to-one (and onto).

Thus $\Gamma^{-1}$ is also an onto endomorphism, so $\Gamma^{-1}(f)=f\circ\psi$, $f\in M^{1}$ , for some
holomorphic self-map $\psi$ of $U$ . But then $ z=\Gamma\Gamma^{-1}(z)=\Gamma(\psi)=\psi\circ\varphi$ and $\varphi\circ\psi=z$ .
Therefore $\varphi$ is an automorphism of $U$ . Q. E. D.
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