TSUKUBA J. MATH. Vol. 15 No. 2 (1991), 347-350

A NOTE ON Ω -STABILITY

Dedicated to Professor Yukihiro Kodama on his 60th birthday

By

Kazumine MORIYASU

By Mañé [2] and Palis [3] it was proved that Ω -stability of a C^1 -diffeomorphism of a compact boundaryless manifold implies Axiom A and no cycle conditions. The converse was already proved by Smale [6]. Our aim is to give a simple proof for the following Smale's theorem.

THEOREM. If a C¹-diffeomorphism of a compact boundaryless manifold satisfies Axiom A and no cycle conditions, then it is Ω -stable.

Axiom A is defined by the following (1) the non-wandering set $\mathcal{Q}(f)$ is hyperbolic (i. e. there exist a Riemannian metric \langle , \rangle and a continuous splitting $T_{\mathcal{Q}(f)}M=E^s \oplus E^u$ such that $Df(E^{\sigma})=E^{\sigma}$, $\sigma=s$, u and $\|Df|_{E^s}\|\leq\lambda$ and $\|Df^{-1}|_{E^u}\|\leq\lambda$ for some $0<\lambda<1$ and (2) the set of all periodic points, $\operatorname{Per}(f)$, is dense in $\mathcal{Q}(f)$. By Axiom A condition $\mathcal{Q}(f)$ splits into the finite disjoint union $\mathcal{Q}(f)=\mathcal{Q}_1\cup\cdots\cup\mathcal{Q}_k$ of closed subsets \mathcal{Q}_i , so-called basic sets, such that for $1\leq i\leq k$ $f(\mathcal{Q}_i)=\mathcal{Q}_i$, $\operatorname{Per}(f|_{\mathcal{Q}_i})$ is dense in \mathcal{Q}_i and $f|_{\mathcal{Q}_i}$ is topologically transitive. The cycle condition is defined as follows: there exist $n\geq 1$ and $\{\mathcal{Q}_{i_j}\}_{j=0}^n\subset\{\mathcal{Q}_i\}$ such that $\mathcal{Q}_{i_j}\neq\mathcal{Q}_{i_l}$ $(0\leq j\neq l\leq n)$, $\mathcal{Q}_{i_{n+1}}=\mathcal{Q}_{i_0}$ and $W^s(\mathcal{Q}_{i_j})\cap W^u(\mathcal{Q}_{i_{j+1}})\neq\phi$ $(0\leq j\leq n)$. Here $W^s(\mathcal{Q}_i)$ is denoted by $W^s(\mathcal{Q}_i)=\{y\in M: d(f^n(y), \mathcal{Q}_i)\to 0 \text{ as } n\to\infty)$ and also $W^u(\mathcal{Q}_i)=\{y\in M: d(f^{-n}(y), \mathcal{Q}_i)\to 0 \text{ as } n\to\infty\}$ where d is the metric on M induced by the Riemannian metric. For the space $\operatorname{Diff}^1(M)$ of C^1 -diffeomorphisms with the uniform C^1 -topology, $f\in\operatorname{Diff}^1(M)$ is called \mathcal{Q} -stable if there is a neighborhood $\mathcal{U}(f)$ in $\operatorname{Diff}^1(M)$ such that every $g\in\mathcal{U}(f)$ is \mathcal{Q} -conjugate to f.

If compact f-invariant set Λ is hyperbolic, then there exists $\varepsilon_0 > 0$ such that $W^{\sigma}_{\varepsilon}(x)$ is a C¹-submanifold, $T_x W^{\sigma}_{\varepsilon}(x) = E^{\sigma}(x)$ and $W^{\sigma}_{\varepsilon}(x)$ varies continuously with $x \ (x \in \Lambda, \ 0 < \varepsilon \leq \varepsilon_0 \text{ and } \sigma = s, u)$, and such that there exists $0 < \lambda_0 < 1$ such that $y \in W^s_{\varepsilon_0}(x) \ (x \in \Lambda)$ implies $d(f(x), f(y)) \leq \lambda_0 d(x, y)$ and $y \in W^u_{\varepsilon_0}(x) \ (x \in \Lambda)$ implies $d(f^{-1}(x), f^{-1}(y)) \leq \lambda_0 d(x, y)$. Here $W^s_{\varepsilon}(x)$ is denoted by $W^s_{\varepsilon}(x) = \{y \in M: d(f^{j}(x), f^{j}(y)) \leq \varepsilon, j \geq 0\}$ and also $W^u_{\varepsilon}(x) = \{x \in M: d(f^{-j}(x), f^{-j}(y)) \leq \varepsilon, j \geq 0\}$.

Received June 22, 1989. Revised February 12, 1991.

Using Axiom A condition, we can check that there exist neighborhoods V of $\mathcal{Q}(f)$, $\mathcal{V}(f)$ of f and c>0 such that for $g \in \mathcal{V}(f)$ and $x, y \in \bigcap_{i \in \mathbb{Z}} g^i(V)$ if $d(g^i(x), g^i(y)) \leq c$ for $i \in \mathbb{Z}$ then x = y (this remark will be discussed in the last part). For $\varepsilon > 0$ small enough there exists $0 < \gamma < \varepsilon$ such that $d(x, y) < \gamma(x, y \in \mathcal{Q}(f))$ implies that $W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y)$ is one point set and its intersection is transversal. By λ -lemma we have $W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y) \in \mathcal{Q}(f)$ which ensures that there exist a neighborhood $U \subset V$ and $\delta > 0$ satisfying the following: for every δ -pseudo orbit $\{x_i\} \subset U$ (i.e. $d(f(x_i), x_{i+1}) < \delta$ for all $i \in \mathbb{Z}$) there is a unique point $x \in M$ such that $d(f^i(x), x_i) < \varepsilon$ $(i \in \mathbb{Z})$. In fact notice that $x \in \mathcal{Q}(f)$. Therefore $\bigcap_{i \in \mathbb{Z}} f^i(U) =$ $\mathcal{Q}(f)$ holds and f has a filtration for $\mathcal{Q}(f)$ (i.e. a sequence $\phi = M_0 \subset M_1 \subset \cdots$ $\subset M_k = M$ of smooth, compact codimension 0 submanifolds with boundary of Msuch that $f(M_i) \subset \inf M_i$ and $\bigcap_{n \in \mathbb{Z}} f^n(M_i - M_{i-1}) = \Omega_i$) (see [6]). Thus $\mathcal{Q}(f)$ coincides with the chain recurrent set R(f) (which means the set of all points xsuch that for $\alpha > 0$ there is a finite α -pseudo orbit $\{x_0, x_1, \cdots, x_n\}$ with $x_0 = x_n = x$).

Choose a neighborhood $\mathcal{U}(f) \subset \mathcal{V}(f)$ of f in Diff¹(M) such that $\max_{x \in M} d(f(x), g(x)) < \delta$ and $R(g) \subset U$ for every $g \in \mathcal{U}(f)$. Then we have $R(g) \subset \bigcap_{i \in \mathbb{Z}} g^i(U)$ because R(g) is g-invariant set. Let $x \in \bigcap_{i \in \mathbb{Z}} g^i(U)$, then $\{g^i(x)\}$ is a δ -pseudo orbit of f. Thus there is a unique point $h(x) \in R(f) = \Omega(f)$ such that $d(f^i(h(x)), g^i(x)) < \varepsilon$ for $i \in \mathbb{Z}$, and then $h: \bigcap_{i \in \mathbb{Z}} g^i(U) \to R(f)$ is injective and $h \circ g = f \circ h$ holds. It is not difficult to see that h is continuous. By Hartman's theorem we have $\#\{x \in M: f^m(x) = x\} = \#\{x \in M: g^m(x) = x\} < \infty$ for m > 0 and $g \in \mathcal{U}(f)$. Then $R(f) = h(\bigcap_{i \in \mathbb{Z}} g^i(U))$. Since h is a homeomorphism and Per(f) is dense in $\Omega(f)$, we have $\Omega(g) = R(g) = \bigcap_{i \in \mathbb{Z}} g^i(U)$.

Finally we explain the above remark. Since f satisfies Axiom A, there is m>0 such that for $x \in \Omega(f)$ and $v \in T_x M$, $||Df^n(v)|| \ge 6||v||$ for n=m or n=-m. And there exists an extended continuous splitting $T_V M = \tilde{E}^s \oplus \tilde{E}^u$. Then we can find a neighborhood $\mathcal{V}(f)$ such that for $g \in \mathcal{V}(f)$ and $x \in \bigcap_m^m g^i(V)$

$$D_{x}g^{m} = \begin{pmatrix} A^{ss} & A^{us} \\ A^{su} & A^{uu} \end{pmatrix} : \widetilde{E}^{s}(x) \oplus \widetilde{E}^{u}(x) \longrightarrow \widetilde{E}^{s}(g^{m}(x)) \oplus \widetilde{E}^{u}(g^{m}(x))$$
$$D_{x}g^{-m} = \begin{pmatrix} B^{ss} & B^{us} \\ B^{su} & B^{uu} \end{pmatrix} : \widetilde{E}^{s}(x) \oplus \widetilde{E}^{u}(x) \longrightarrow \widetilde{E}^{s}(g^{-m}(x)) \oplus \widetilde{E}^{u}(g^{-m}(x))$$
$$\|A^{ss}\| \leq 1/5, \quad |A^{uu}| \geq 5, \quad \|B^{uu}\| \leq 1/5, \quad |B^{ss}| \geq 5$$

348

$$\max\{\|A^{us}\|, \|A^{su}\|, \|B^{us}\|, \|B^{su}\|\} \leq 1/5$$

where $|E| = ||E^{-1}||^{-1}$. Since $g^i(x) \in V$ for $|i| \leq m$, when $||v^u|| \geq ||v^s||$ for $v = v^s + v^u$ $\in \widetilde{E}^{s}(x) \oplus \widetilde{E}^{u}(x)$ we have $||v|| \leq 2||v^u||$ and then

$$\begin{split} \|Dg^{m}(v)\| &= \|A^{ss}(v^{s}) + A^{su}(v^{s}) + A^{us}(v^{u}) + A^{uu}(v^{u})\| \\ &\geq 5 \|v^{u}\| - (2\|v^{s}\|/5 + \|v^{u}\|/5) \\ &\geq 4 \|v^{u}\| \geq 2\|v\| . \end{split}$$

For the case when $||v^s|| \ge ||v^u||$ we have also $||Dg^{-m}(v)|| \ge 2||v||$.

Take and fix $\varepsilon > 0$ such that $\varepsilon(1+K+\cdots+K^{m-1}) < 1/2$ where $K = \sup \{ \|D_x g\| : x \in M, g \in \mathcal{V}(f) \}$. Then there is c > 0 such that for $g \in \mathcal{V}(f)$

$$\|\exp_{g^{\sigma}(x)}^{-1} \circ g^{\sigma} \circ \exp_{x}(v) - D_{x}g^{\sigma}(v)\| \leq \varepsilon \|v\| \qquad (x \in M)$$

whenever $||v|| \leq c$ $(\sigma=1, -1)$. Let $g \in \mathcal{V}(f)$ and $x, y \in \bigcap_{i \in \mathbb{Z}} g^i(V)$. Then we assume $d(g^i(x), g^i(y)) \leq c$ $(i \in \mathbb{Z})$ does not ensure x=y. Take δ with $0 < \delta \leq c_1/4$ where $c_1 = \sup\{d(g^i(x), g^i(y)) : i \in \mathbb{Z}\}$. Obviously $c_1 - \delta < d(g^k(x), g^k(y)) \leq c_1$ for some $k \in \mathbb{Z}$. Put $u = g^k(x), v = g^k(y)$ and $w = \exp_u^{-1}(v)$. Then $c_1 - \delta < ||w|| = d(u, v)$ and $||Dg^n(w)|| \geq 2||w||$ for some |n| = m. We deal with only the case $||Dg^m(w)|| \geq 2||w||$ (because the case $||Dg^{-m}(w)|| \geq 2||w||$ follows from a similar way). Since $||w|| = d(u, v) \leq c$ we have $||\exp_{g^2(u)} \circ g^\circ \exp_u(w) - D_ug(w)|| \leq \varepsilon_1 \varepsilon + Kc_1 \varepsilon = c_1 \varepsilon(1+K)$. Since $||\exp_{g^2(u)} \circ g^2 \circ \exp_u(w)| = d(g^2(u), g^2(v)) \leq c_1$, we have $||D_ug^2(w)|| \leq c_1(1+\varepsilon(1+K))$ and by induction we have $2||w|| \leq D_ug^m(w)|| \leq c_1(1+\varepsilon(1+K+\cdots K^{m-1}))$. Consequently $c_1 - \delta < ||w|| \leq 3c_1/4$, i.e. $c_1/4 < \delta$ which is a contradiction.

REMARK. By the same method of the above proof it is easily proved that Anosov diffeomorphisms are structurally stable. In fact, an Anosov diffeomorphism f has the pseudo orbit tracing property and every diffeomorphism in some neighborhood of f has the same expansive constant.

References

- [1] M. Hirsch, J. Palis, C. Pugh and M. Shub, Neighborhood of hyperbolic sets, Inven. Math. 9 (1970), 121-134.
- [2] R. Mañé, A proof of the C¹ stability conjecture, Publ. Math. I. H. E. S., 66 (1987), 161-210.
- [3] J. Palis, On the C¹ Ω-stability conjecture, Publ. Math. I. H. E. S., 66 (1987), 211-215.
- [4] K. Sakai, Quasi-Anosov diffeomorphisms and pseudo orbit tracing property, Nagoya Math. J. 111 (1988), 111-114.

Kazumine MORIYASU

- [5] M. Shub, Stabilité globale des systèmes dynamiques, Astérisque, 56, 1978.
- S. Smale, The Q-stability theorem, in Global Analysis, Proc. Sympos. Pure Math., A. M. S., 14 (1970), 289-297.

Department of Mathematics Tokyo Metropolitan University Minami Ohsawa, Hachioji-shi Tokyo, 192-03 Japan